高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

ETKF初值扰动方法中真实观测及扰动调节因子研究

张涵斌 陈静 汪娇阳 董颜

张涵斌, 陈静, 汪娇阳, 董颜. ETKF初值扰动方法中真实观测及扰动调节因子研究[J]. 大气科学, 2020, 44(1): 197-210. doi: 10.3878/j.issn.1006-9895.1908.18262
引用本文: 张涵斌, 陈静, 汪娇阳, 董颜. ETKF初值扰动方法中真实观测及扰动调节因子研究[J]. 大气科学, 2020, 44(1): 197-210. doi: 10.3878/j.issn.1006-9895.1908.18262
ZHANG Hanbin, CHEN Jing, WANG Jiaoyang, DONG Yan. Study of the Application of Real Observation Data and a Rescaling Factor in Ensemble Transform Kalman Filter Initial Perturbation Method[J]. Chinese Journal of Atmospheric Sciences, 2020, 44(1): 197-210. doi: 10.3878/j.issn.1006-9895.1908.18262
Citation: ZHANG Hanbin, CHEN Jing, WANG Jiaoyang, DONG Yan. Study of the Application of Real Observation Data and a Rescaling Factor in Ensemble Transform Kalman Filter Initial Perturbation Method[J]. Chinese Journal of Atmospheric Sciences, 2020, 44(1): 197-210. doi: 10.3878/j.issn.1006-9895.1908.18262

ETKF初值扰动方法中真实观测及扰动调节因子研究

doi: 10.3878/j.issn.1006-9895.1908.18262
基金项目: 国家重点研发计划项目 2018YFF0300103;2018YFC1507405,国家自然科学基金项目 41605082国家重点研发计划项目2018YFF0300103、2018YFC1507405,国家自然科学基金项目41605082

Study of the Application of Real Observation Data and a Rescaling Factor in Ensemble Transform Kalman Filter Initial Perturbation Method

Funds: National Key Research and Development Program of China (Grants 2018YFF0300103, 2018YFC1507405), National Natural Science Foundation of China 41605082Funded by National Key Research and Development Program of China (Grants 2018YFF0300103, 2018YFC1507405), National Natural Science Foundation of China (Grant 41605082)
  • 摘要: 目前国家气象中心业务GRAPES区域集合预报系统中集合变换卡尔曼滤波(ETKF)方法采用的是模拟观测信息,为进一步完善ETKF方法,拟对ETKF初值扰动通过引入真实探空观测资料,使扰动场能够代表真实观测的不确定信息,改善区域集合预报技巧。真实观测资料的引入会使得每日的观测数目和分布发生变化,这对ETKF方法而言可能会引起扰动振幅的不稳定,因此在引入真实观测资料的基础上设计了新的扰动振幅调节因子,通过格点空间中离散度和均方根误差关系来对初值扰动振幅进行自适应调整。从初值扰动结构、概率预报技巧以及降水预报效果等方面对比分析了基于模拟观测、真实观测以及真实观测结合新型调节因子的ETKF方案的差异,结果表明:真实探空资料能够有效应用于GRAPES区域集合预报系统中,真实观测资料与模拟观测资料相比较为稀疏,可以获得更大量级的初值扰动振幅;真实观测资料有助于提高区域集合的离散度,但对集合预报准确度以及概率预报结果的提高有限,对于降水预报效果提高也有限;新型的扰动振幅调节因子可以有效获得稳定的初值扰动振幅,并保持ETKF扰动结构,真实观测资料与扰动振幅自适应调节因子相结合,可以有效提高区域集合的概率预报结果,并有效提高降水预报效果。
  • [1] Bishop C H , Etherton B J , Majumdar S J . 2001. Adaptive sampling with the ensemble transform Kalman filter. Part I: Theoretical aspects [J]. Monthly Weather Review, 129(3): 420-436.
    [2] Bishop C H , Holt T R , Nachamkin J , et al . 2009. Regional ensemble forecasts using the ensemble transform technique [J]. Monthly Weather Review, 137(137): 288-298. doi: 10.1175/2008MWR2559.1
    [3] Bojarova J , Gustafsson N , Johansson A , et al . 2011. The ETKF rescaling scheme in HIRLAM [J]. Tellus, 63A: 385-401. doi: 10.1111/j.1600-0870.2011.00513.x
    [4] Bowler N E , Arribas A , Mylne K R , et al . 2008. The MOGREPS short-range ensemble prediction system [J]. Quart. J. Roy. Meteor. Soc., 134(632): 703-722. doi: 10.1002/qj.234
    [5] Bowler N E , Mylne K R , 2009. Ensemble transform Kalman filter perturbations for a regional ensemble prediction system [J]. Quart. J. Roy. Meteor. Soc., 135(640): 757-766. doi: 10.1002/qj.404
    [6] Buizza R , Houtekamer P L , Toth Z , et al . 2005. A comparison of the ECMWF, MSC and NCEP global ensemble prediction systems [J]. Monthly Weather Review, 133(5): 1076-1097.
    [7] Caron J F . 2013. Mismatching perturbations at the lateral boundaries in limited-area ensemble forecasting: A case study [J]. Monthly Weather Review, 141(141): 356-374. doi: 10.1175/MWR-D-12-00051.1
    [8] 陈静, 薛纪善, 颜宏 . 2005.一种新型的中尺度暴雨集合预报初值扰动方法研究 [J]. 大气科学, 29(5): 717-726.
    [9] Du J , DiMego G , Tracton M S , et al . 2003. NCEP short-range ensemble forecasting (SREF) system: Multi-IC, multi-model and multi-physics approach research activities in atmospheric and oceanic modelling, CAS/JSC Working Group on Numerical Experimentation (WGNE), WMO Tech. Doc. 1161.
    [10] Epsten E S . 1969. Stochastic dynamic prediction [J]. Tellus, 21(6): 739-759.
    [11] Frogner I L , Haakenstad H , Iversen T . 2006. Limited-area ensemble predictions at the Norwegian Meteorological Institute [J]. Quarterly Journal of the Royal Meteorological Society, 132(621): 2785-2808. doi: 10.1256/qj.04.178
    [12] Hersbach H . 2000. Decomposition of the continuous ranked probability score for ensemble prediction systems [J]. Wea. Forecasting, 15(5): 559-570.
    [13] Houtekamer P L , Lefaivre L , Derome J , et al . 1996. A system simulation approach to ensemble prediction [J]. Monthly Weather Review, 124(6): 1225-1242.
    [14] 黄红艳, 齐琳琳, 刘健文, 等 . 2016. 多物理ETKF在暴雨集合预报中的初步应用 [J]. 大气科学, 40(4): 657-668.
    [15] Leith C E . 1974. Theoretical skill of Monte Carlo forecast [J]. Monthly Weather Review, 102(6): 409-418.
    [16] 龙柯吉, 陈静, 马旭林, 等 . 2011. 基于集合卡尔曼变换的区域集合预报初步研究 [J]. 成都信息工程学院学报, 26(1): 37-46.
    [17] 马旭林, 薛纪善, 陆维松 . 2008. GRAPES全球集合预报的集合卡尔曼变换初始扰动方案初步研究 [J]. 气象学报, 66(4): 526-536.
    [18] Marsigli C , Boccanera F , Montani A , et al . 2005. The COSMO-LEPS mesoscale ensemble system: Validation of the methodology and verification [J]. Nonlinear Processes Geophys. 12(4): 527-536.
    [19] Molteni F , Buizza R , Palmer T N , et al . 1996. The ECMWF ensemble prediction system: Methodology and validation [J]. Quarterly Journal of the Royal Meteorological Society, 122(122): 3-119.
    [20] Stensrud D J , Fritsch J M . 1994. Mesoscale convective systems in weakly forced large-scale environments. Part II: Generation of a mesoscale initial condition [J]. Monthly Weather Review, 122(9): 2068-2083.
    [21] Stensrud D J , Brooks H E , Du J , et al . 1999. Using ensembles for short-range forecasting [J]. Monthly Weather Review, 127(4): 433-446.
    [22] 田伟红, 庄世宇 . 2008. ETKF方法在区域集合预报中的初步应用 [J]. 气象, 34(8): 35-39.
    [23] Toth Z , Kalnay E . 1993. Ensemble forecasting at NMC: The generation of perturbations [J]. Bull. Amer. Meteor. Soc., 74(12): 2317-2330.
    [24] Toth Z , Kalnay E . 1997. Ensemble forecasting at NCEP and the breeding method [J]. Mon. Wea. Rev., 125(12): 3297-3319.
    [25] Walser A , Arpagaus M , Appenzeller C , et al . 2006. The impact of moist singular vectors and horizontal resolution on short-range limited-area ensemble forecasts for two European winter storms [J]. Monthly Weather Review, 134(10): 2877-2887.
    [26] Wang X , Bishop C H . 2003. A comparison of breeding and ensemble transform Kalman filter ensemble forecast schemes [J]. J. Atmos. Sci., 60(9): 1140-1158.
    [27] Wang X , Bishop C H , Julier S J . 2004. Which is better, an ensemble of positive/negative pairs or a centered spherical simplex ensemble? [J]. Monthly Weather Review, 132(7): 1590-1605.
    [28] Wang Y , Bellus M , Geleyn J F , et al . 2014. A new method for generating initial condition perturbations in a regional ensemble prediction system: Blending [J]. Monthly Weather Review, 142(5): 2043-2059.
    [29] Wei M , Toth Z , Wobus R , et al . 2006. Ensemble transform Kalman filter-based ensemble perturbations in an operational global prediction system at NCEP [J]. Tellus A, 58(1): 28-44.
    [30] 袁月,李晓莉,陈静, 等 . 2016. GRAPES区域集合预报系统模式不确定性的随机扰动技术研究 [J]. 气象, 42(10): 1161-1175.
    [31] 张涵斌, 陈静, 智协飞, 等 . 2014. GRAPES区域集合预报系统应用研究 [J]. 气象, 40(9): 1076-1087.
    [32] Zhang H , Chen J , Zhi X , et al . 2015a. Study on multi-scale blending initial condition perturbations for a regional ensemble prediction system [J]. Advances in Atmospheric Sciences, 32(8): 1143-1155. doi: 10.1007/s00376-015-4232-6
    [33] Zhang H , Chen J , Zhi X , et al . 2015b. A comparison of ETKF and downscaling in a regional ensemble prediction system [J]. Atmosphere, 6(3): 341-360. doi: 10.3390/atmos6030341
    [34] 智协飞, 朱寿鹏, 孙晶, 等 . 2015. 基于BGM与ETKF的台风“苏拉”(1209)集合预报的对比试验. I: 路径预报 [J]. 大气科学学报, 38(6): 776-784.
  • 加载中
计量
  • 文章访问数:  341
  • HTML全文浏览量:  2
  • PDF下载量:  367
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-12-03

目录

    /

    返回文章
    返回