Numerical Simulation Study on the Microphysical Characteristics of Stratiform Clouds with Embedded Convections in Northern China based on Aircraft Measurements
-
摘要: 基于2009年5月1日积层混合云降水2架飞机观测数据分析,使用中尺度模式WRFV3对此次过程积云区和层云区的微物理特征和转化过程进行数值模拟比较研究。飞机观测数据分析表明,此次积层混合云中的层云区和积云区冰粒子形状和形成过程有明显差别,层云区的粒子形状组成比较复杂,包含针状、柱状和辐枝状等,而积云区主要以辐枝状粒子为主,聚并、凇附过程明显。数值模式能较好地模拟出此次积层混合云降水过程的基本特征,包括回波分布、飞行路径上降水粒子的数浓度和液态水含量等。数值模拟结果表明,云水相对丰富、上升气流强的层云区凇附过程较强,产生的雪在低层融化为雨水,为后期高层形成的雪和霰提供丰富的液态水,能发展成对流较强的积云区,存在播种—供给机制。在积云区,水成物的比例从大到小依次为雪(51.9%)、霰(31.0%)和雨水(16.0%);雪的主要源项包括淞附增长(56.8%)和凝华增长(40.1%),霰的主要源项包括凇附增长(46.6%)、雨水碰并雪成霰(42.6%)和凝华增长(16.1%),雨水的主要源项是霰(77.6%)和雪(22.4%)的融化。而相对云水较少、上升气流较弱的层云区将保持层云的状态,层云区水成物的比例从大到小依次为雪(90.4%)、雨水(6.1%)、冰晶(3.5%);高层冰晶和雪通过凝华过程增长,雪在零度层下融化为弱的降水。Abstract: To characterize the microphysical characteristics and transformation process of stratiform clouds with embedded convections, a study was performed using the WRFV3 model and based on two aircraft measurements taken on May 1, 2009. The aircraft observation results showed that significant differences in the shapes and formation process of ice particles existed between the regions of stratiform cloud and embedded convection. Compared with the embedded convection region, the stratiform cloud featured more complicated shapes of ice crystals, including needle column, capped column, and dendrite types. However, the dendrite-type ice crystals dominated in the embedded convection region, and their growth was controlled by aggregation and riming processes. Overall, the results indicated that the basic characteristics of this stratiform cloud with embedded convections simulated by the WRF model agreed well with the aircraft observations, including cloud distribution, LWC, and numerical concentration on the flight route. The simulation results showed that in the stratiform cloud, with higher cloud water content and larger W, embedded convection could be developed because of a strong riming process. The hydrometeors of snow, graupel, and rainwater in the clouds accounted for 51.9%, 31.0%, and 16.0%, respectively, while cloud ice and cloud water accounted for very little. In the higher level, snow and graupel grew through deposition process. In the lower level, they grew through the riming process and melted into rain. Stratiform clouds with lower cloud water content and smaller W would remain as stratiform cloud. The hydrometeors of snow, rainwater, and cloud ice accounted for 90.4%, 6.1%, and 3.5%, respectively. The ice and snow grew through deposition process and melted into rain in the lower level.
-
图 8 08:30~11:00降水粒子图像探头PIP观测和Domain3模拟的粒子数浓度(单位:个 cm−3)随高度分布,散点代表原始观测数据,线条代表100 m平均值
Figure 8. The number concentration on flight route of PIP observation and Domain 3 simulation (units: cm−3) from 0830 BT to 1100 BT; scatter points represent original observed data, and line represent 100 m mean value
图 12 2009年5月1日02:50模式Domain3模拟的 A点(左列)和B点(右列)上空水成物及(a、b)垂直速度、(c、d)雪源汇及(e、f)雨水源汇的垂直分布廓线
Figure 12. The vertical distribution of (a, b) aqueous product in the air, vertical velocity, (c, d) snow source, and (e, f) rain source of simulations at 0250 BT 1 May, 2009: Point A (left column), Point B (right column)
图 15 2009年5月1日04:00 C点和D点上空水成物质量(单位:kg)、该水成物在总水成物中所占比例、各水成物源汇项转化(单位:10−7 kg kg−1 s−1)及该源汇项在总源汇项中所占比例
Figure 15. The aqueous product quality, the proportion of each aqueous product quality in the total aqueous product quality, source-sink transformation of each aqueous product and the proportion of each source-sink transformation in the total source-sink transformation on 0400 BT 1 May, 2009 at (a) Point C and (b) Point D
表 1 两架飞机情况
Table 1. The aircraft parameters and flight time
飞机编号 飞机所属单位 飞机型号 飞行时间 3830 北京人工影响天气办公室 运-12 2009年5月1日08:30~11:34 3817 山西省人工影响天气办公室 运-12 2009年5月1日08:46~11:10 表 2 机载仪器参数
Table 2. The aircraft instrumentation and parameters
仪器名称 观测对象 仪器参数 降水粒子图像探头 云粒子图像 62通道,25~1550 μm 云粒子图像探头 降水粒子 62通道,100~6200 μm 热线含水量仪 液水含量 0~5 g m−3 机载云物理探测系统 温、压、湿、风等 − 表 3 2009年5月1日资料列表
Table 3. The data list of 1st May 2009
资料类型 覆盖区域 飞机资料 北京、山西 常规雷达 北京、张家口、石家庄 区域加密雨量 北京、河北、天津 加密探空 北京、张家口、太原 MICAPS 全国 -
[1] Dudhia J. 1989. Numerical study of convection observed during the winter monsoon experiment using a mesoscale two–dimensional model [J]. J. Atmos. Sci., 46: 3077−3107. doi:10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2 [2] Evans A G, Locatelli J D, Stoelinga M T, et al. 2005. The IMPROVE-1 storm of 1-2 February 2001. Part II: Cloud structures and the growth of precipitation [J]. J. Atmos. Sci., 62(10): 3456−3473. doi: 10.1175/JAS3547.1 [3] 何晖, 高茜, 刘香娥, 等. 2015. 积层混合云结构特征及降水机理的个例模拟研究 [J]. 大气科学, 39(2): 315−328. doi: 10.3878/j.issn.1006-9895.1404.14102He Hui, Gao Qian, Liu Xiang’e, et al. 2015. Numerical simulation of the structural characteristics and precipitation mechanism of stratiform clouds with embedded convections [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 39(2): 315−328. doi: 10.3878/j.issn.1006-9895.1404.14102 [4] Herzegh P H, Hobbs P V. 1980. The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. II: Warm-Frontal clouds [J]. J. Atmos. Sci., 37(3): 597−611. doi:10.1175/1520-0469(1980)037<0597:TMAMSA>2.0.CO;2 [5] 洪延超. 1996a. 积层混合云数值模拟研究(I)——模式及其微物理过程参数化 [J]. 气象学报, 54(5): 544−557. doi: 10.11676/qxxb1996.057Hong Yanchao. 1996a. The numerical simulation study of convective -stratiform mixed clouds, Part (I) ─The model and parameterization of microphysical processes [J]. Acta Meteorologica Sinica (in Chinese), 54(5): 544−557. doi: 10.11676/qxxb1996.057 [6] 洪延超. 1996b. 积层混合云数值模拟研究(Ⅱ)──云相互作用及暴雨产生机制 [J]. 气象学报, 54(6): 661−674. doi: 10.11676/qxxb1996.069Hong Yanchao. 1996b. The numerical simulation study of convective -stratiform mixed cloud, part (Ⅱ)─interaction of clouds and formative mechanism of the heavy rain [J]. Acta Meteorologica Sinica (in Chinese), 54(6): 661−674. doi: 10.11676/qxxb1996.069 [7] Hong S Y, Noh Y, Dudhia J. 2006. A new vertical diffusion package with an explicit treatment of entrainment processes [J]. Mon. Wea. Rev., 134: 2318−2341. doi: 10.1175/MWR3199.1 [8] 黄美元, 洪延超. 1984. 在梅雨锋云系内层状云回波结构及其降水的不均匀性 [J]. 气象学报, 42(1): 81−87. doi: 10.11676/qxxb1984.008Huang Meiyuan, Hong Yanchao. 1984. The inhomogeneous features of the precipitation and the echo structure of stratiform cloud in Mei-Yu frontal cloud system [J]. Acta Meteorologica Sinica (in Chinese), 42(1): 81−87. doi: 10.11676/qxxb1984.008 [9] 黄美元, 徐华英, 洪延超. 1986. 混合云系中的层状云对对流云发展影响的数值模拟研究 [J]. 成都气象学院学报, 1(1): 48−54.Huang Meiyuan, Xu Huaying, Hong Yanchao. 1986. A numerical simulation study for effects of stratiform cloud in mixed cloud system on growth of convective cloud [J]. Journal of Chengdu University of Information Technology (in Chinese), 1(1): 48−54. [10] 黄美元, 洪延超, 徐华英, 等. 1987. 层状云对积云发展和降水的影响——一种云与云之间影响的数值模拟 [J]. 气象学报, 45(1): 72−77. doi: 10.11676/qxxb1987.009Huang Meiyuan, Hong Yanchao, Xu Huaying, et al. 1987. The effects of the existence of stratiform cloud on the development of cumulus cloud and it’s precipitation [J]. Acta Meteorologica Sinica (in Chinese), 45(1): 72−77. doi: 10.11676/qxxb1987.009 [11] 黄天戈, 李艳伟, 王吉宏. 2013. 东北地区一次积层混合云过程的数值模拟 [J]. 气象与环境学报, 29(3): 1−7. doi: 10.3969/j.issn.1673-503X.2013.03.001Huang Tiange, Li Yanwei, Wang Jihong. 2013. Numerical simulation on a convective stratiform mixed cloud process in Northeastern China [J]. Journal of Meteorology and Environment (in Chinese), 29(3): 1−7. doi: 10.3969/j.issn.1673-503X.2013.03.001 [12] Kain J S. 2004. The Kain–Fritsch convective parameterization: An update [J]. J. Appl. Meteor., 43: 170−181. doi:10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2 [13] 李艳伟, 牛生杰. 2012. 层状云系中两种特殊分布嵌入对流的形成过程和降水机理 [J]. 中国科学: 地球科学, 55(1): 113−125. doi: 10.1007/s11430-011-4278-yLi Yanwei, Niu Shengjie. 2012. The formation and precipitation mechanism of two ordered patterns of embedded convection in stratiform cloud [J]. Science China Earth Sciences, 55(1): 113−125. doi: 10.1007/s11430-011-4278-y [14] 李艳伟, 牛生杰, 罗宁, 等. 2009a. 积云并合扩展层化型积层混合云的数值模拟分析 [J]. 地球物理学报, 52(5): 1165−1175. doi: 10.3969/j.issn.0001-5733.2009.05.005Li Yanwei, Niu Shengjie, Luo Ning, et al. 2009a. Numerical simulation about mixture of convective and stratiform clouds formed by convection merger [J]. Chinese J. Geophys. (in Chinese), 52(5): 1165−1175. doi: 10.3969/j.issn.0001-5733.2009.05.005 [15] 李艳伟, 牛生杰, 姚展予, 等. 2009b. 云并合的初始位置探讨 [J]. 大气科学, 33(5): 1015−1026. doi: 10.3878/j.issn.1006-9895.2009.05.12Li Yanwei, Niu Shengjie, Yao Zhanyu, et al. 2009b. Initial part discussion of cloud merger [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 33(5): 1015−1026. doi: 10.3878/j.issn.1006-9895.2009.05.12 [16] Mlawer E J, Taubman S J, Brown P D, et al. 1997. Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated–k model for the longwave [J]. J. Geophys. Res., 102: 16663−16682. doi: 10.1029/97JD00237 [17] Morrison H, Thompson G, Tatarskii V. 2009. Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: Comparison of one– and two–moment schemes [J]. Mon. Wea. Rev., 137: 991−1007. doi: 10.1175/2008MWR2556.1 [18] 陶玥, 李军霞, 党娟, 等. 2015. 北京一次积层混合云系结构和水分收支的数值模拟分析 [J]. 大气科学, 39(3): 445−460. doi: 10.3878/j.issn.1006-9895.1412.13209Tao Yue, Li Junxia, Dang Juan, et al. 2015. A numerical study on precipitation process and moisture budget of stratiform and embedded convective cloud over Beijing area [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 39(3): 445−460. doi: 10.3878/j.issn.1006-9895.1412.13209 [19] 于翡, 姚展予. 2009. 一次积层混合云降水实例的数值模拟分析 [J]. 气象, 35(12): 3−11. doi: 10.7519/j.issn.1000-0526.2009.12.001Yu Fei, Yao Zhanyu. 2009. Numerical study on the complex of the stratiform and embedded convective cloud precipitation: A case study [J]. Meteorological Monthly (in Chinese), 35(12): 3−11. doi: 10.7519/j.issn.1000-0526.2009.12.001 [20] 袁成, 樊玲, 李亚斌. 2001. 哈尔滨地区春夏季降水微结构特征 [J]. 南京气象学院学报, 24(2): 250−257. doi: 10.3969/j.issn.1674-7097.2001.02.015Yuan Cheng, Fan Ling, Li Yabin. 2001. Microphysical features of precipitation in spring and summer in Harbin [J]. Journal of Nanjing Institute of Meteorology (in Chinese), 24(2): 250−257. doi: 10.3969/j.issn.1674-7097.2001.02.015 [21] 朱士超, 郭学良. 2014. 华北积层混合云中冰晶形状、分布与增长过程的飞机探测研究 [J]. 气象学报, 72(2): 366−389. doi: 10.11676/qxxb2014.013Zhu Shichao, Guo Xueliang. 2014. Ice crystal habits, distribution and growth process in stratiform clouds with embedded convection in North China: Aircraft measurements [J]. Acta Meteorologica Sinica (in Chinese), 72(2): 366−389. doi: 10.11676/qxxb2014.013 [22] 朱士超, 郭学良. 2015. 华北一次积层混合云微物理和降水特征的数值模拟与飞机观测对比研究 [J]. 大气科学, 39(2): 370−385. doi: 10.3878/j.issn.1006-9895.1405.14117Zhu Shichao, Guo Xueliang. 2015. A case study comparing WRF-model-simulated cloud microphysics and precipitation with aircraft measurements in stratiform clouds with embedded convection in northern China [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 39(2): 370−385. doi: 10.3878/j.issn.1006-9895.1405.14117 [23] 邹倩, 刘琦俊, 刘卫国. 2008. 积层混合云结构和云微物理的数值模拟 [J]. 干旱气象, 26(2): 74−83. doi: 10.3969/j.issn.1006-7639.2008.02.014Zou Qian, Liu Qijun, Liu Weiguo. 2008. Numerical simulation of stratocumulus cloud structure and cloud microphysical processes [J]. Arid Meteorology (in Chinese), 26(2): 74−83. doi: 10.3969/j.issn.1006-7639.2008.02.014 -