高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于飞机观测的华北积层混合云降水微物理特征的数值模拟研究

高茜 郭学良 何晖 刘香娥 黄梦宇 马新成

高茜, 郭学良, 何晖, 等. 2020. 基于飞机观测的华北积层混合云降水微物理特征的数值模拟研究[J]. 大气科学, 44(5): 899−912 doi: 10.3878/j.issn.1006-9895.1908.19114
引用本文: 高茜, 郭学良, 何晖, 等. 2020. 基于飞机观测的华北积层混合云降水微物理特征的数值模拟研究[J]. 大气科学, 44(5): 899−912 doi: 10.3878/j.issn.1006-9895.1908.19114
GAQ Qian, GUO Xueliang, HE Hui, et al. 2020. Numerical Simulation Study on the Microphysical Characteristics of Stratiform Clouds with Embedded Convections in Northern China based on Aircraft Measurements [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 44(5): 899−912 doi: 10.3878/j.issn.1006-9895.1908.19114
Citation: GAQ Qian, GUO Xueliang, HE Hui, et al. 2020. Numerical Simulation Study on the Microphysical Characteristics of Stratiform Clouds with Embedded Convections in Northern China based on Aircraft Measurements [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 44(5): 899−912 doi: 10.3878/j.issn.1006-9895.1908.19114

基于飞机观测的华北积层混合云降水微物理特征的数值模拟研究

doi: 10.3878/j.issn.1006-9895.1908.19114
基金项目: 国家重点研发计划项目2016YFA0601704,国家自然科学基金项目41805114、41675138,中国气象局大气探测重点开放实验室开放课题KLAS201708,北京市自然科学基金项目8164058、8182024
详细信息
    作者简介:

    高茜,女,1984年出生,高级工程师,主要从事云降水物理研究。E-mail: gaoqianbjwm@163.com

    通讯作者:

    郭学良,E-mail: guoxl@mail.iap.ac.cn

  • 中图分类号: P458.3

Numerical Simulation Study on the Microphysical Characteristics of Stratiform Clouds with Embedded Convections in Northern China based on Aircraft Measurements

Funds: National Key Research and Development Project (Grant 2016YFA0601704), National Natural Science Foundation of China (Grants 41805114, 41675138), Open project of Key Laboratory of Atmospheric Sounding of China Meterological Administration (Grant KLAS201708), Beijing Natural Science Foundation (Grants 8164058, 8182024)
  • 摘要: 基于2009年5月1日积层混合云降水2架飞机观测数据分析,使用中尺度模式WRFV3对此次过程积云区和层云区的微物理特征和转化过程进行数值模拟比较研究。飞机观测数据分析表明,此次积层混合云中的层云区和积云区冰粒子形状和形成过程有明显差别,层云区的粒子形状组成比较复杂,包含针状、柱状和辐枝状等,而积云区主要以辐枝状粒子为主,聚并、凇附过程明显。数值模式能较好地模拟出此次积层混合云降水过程的基本特征,包括回波分布、飞行路径上降水粒子的数浓度和液态水含量等。数值模拟结果表明,云水相对丰富、上升气流强的层云区凇附过程较强,产生的雪在低层融化为雨水,为后期高层形成的雪和霰提供丰富的液态水,能发展成对流较强的积云区,存在播种—供给机制。在积云区,水成物的比例从大到小依次为雪(51.9%)、霰(31.0%)和雨水(16.0%);雪的主要源项包括淞附增长(56.8%)和凝华增长(40.1%),霰的主要源项包括凇附增长(46.6%)、雨水碰并雪成霰(42.6%)和凝华增长(16.1%),雨水的主要源项是霰(77.6%)和雪(22.4%)的融化。而相对云水较少、上升气流较弱的层云区将保持层云的状态,层云区水成物的比例从大到小依次为雪(90.4%)、雨水(6.1%)、冰晶(3.5%);高层冰晶和雪通过凝华过程增长,雪在零度层下融化为弱的降水。
  • 图  1  2009年5月1日08:00(北京时,下同)500 hPa(a)高度场(黑色;单位:gpm)、温度场(红色;单位:°C)、流场(蓝色风标)以及(b)FY-2C卫星红外图像

    Figure  1.  (a) The geopotential height (black line, units: gpm), temperature (red line, units: °C) and wind field (blue barb) at 500 hPa and (b) FY-2C satellite infrared images at 0800 BT 1 May, 2009

    图  2  2009年5月1日河北省加密气象观测站观测小时降水量(单位:mm):(a)04:00;(b)08:00;(c)12:00

    Figure  2.  Hourly rainfall (units: mm) observed by dense meteorological observation stations of Hebei Province at (a) 0400 BT, (b) 0800 BT, and (c) 1200 BT 1 May, 2009

    图  3  3830(黑线)、3817(红线)飞机探测时段雷达组合反射率(彩色阴影;单位:dBZ)拼图及两架飞机飞行轨迹

    Figure  3.  The combined radar reflectivity (color-shaded; units: dBZ) on the flight route of 3830 (black line) and 3817 (red line) aircraft

    图  4  (a)3830、(b)3817号飞机飞行路径上的雷达回波(单位:dBZ)

    Figure  4.  The radar reflectivity (color-shaded) on (a) 3830 (black line), (b) 3817 (red line) flight route

    图  5  三层嵌套模拟区域(黑色方框)和地形高度(彩色阴影)

    Figure  5.  Three-nested domains (black squares) and terrain height (color-shaded)

    图  6  2009年5月1日观测(第一行)和模式第一层模拟(第二行)的雷达组合反射率(单位:dBZ)对比分布:(a, d)08:00;(b, e)10:00;(c, f)12:00

    Figure  6.  The combined reflectivity(units: dBZ) of observation and Domain 1 simulation at (a, d) 0800 BT, (b, e) 1000 BT, (c, f) 1200 BT, May 1, 2009

    图  7  2009年5月1日08:00观测和Domain3模拟的张家口探空气象要素曲对比线:(a)温度(单位:°C);(b)风速(单位:m s−1);(c)相对湿度

    Figure  7.  (a) The temperature (units: °C), (b) wind speed (units: m s−1), and (c) the relative humidity profiles of observation and Domain 3 simulation at 0800 BT 1 May, 2009

    图  8  08:30~11:00降水粒子图像探头PIP观测和Domain3模拟的粒子数浓度(单位:个 cm−3)随高度分布,散点代表原始观测数据,线条代表100 m平均值

    Figure  8.  The number concentration on flight route of PIP observation and Domain 3 simulation (units: cm−3) from 0830 BT to 1100 BT; scatter points represent original observed data, and line represent 100 m mean value

    图  9  (a)3830、(b)3817两架飞机飞行路径上观测和Domain3模拟的液态水含量(单位:g kg−1

    Figure  9.  The liquid water content (units: g kg−1) on the flight route of (a) 3830 and (b) 3817 aircraft

    图  10  (a)3830、(b)3817飞机机载PIP观测降水粒子图像

    Figure  10.  The image of precipitation particles observed by PIP of (a) 3830 and (b) 3817 aircraft

    图  11  2009年5月1日(a)02:50和(b)04:00模式Domain3模拟的组合反射率(单位:dBZ)和4个点位置(黑点)

    Figure  11.  The combined reflectivity (units: dBZ) of simulations and positions of four points at (a) 0250 BT and (b) 0400 BT 1 May, 2009

    图  12  2009年5月1日02:50模式Domain3模拟的 A点(左列)和B点(右列)上空水成物及(a、b)垂直速度、(c、d)雪源汇及(e、f)雨水源汇的垂直分布廓线

    Figure  12.  The vertical distribution of (a, b) aqueous product in the air, vertical velocity, (c, d) snow source, and (e, f) rain source of simulations at 0250 BT 1 May, 2009: Point A (left column), Point B (right column)

    图  13  图12,但为C点(左列)和D点(右列)

    Figure  13.  Same as Fig. 12, but for Point C (left column) and Point D (right column)

    图  14  2009年5月1日 04:00 C点上空霰源汇垂直分布廓线

    Figure  14.  The vertical distribution of graupel source at 0400 BT (Point C) 1 May, 2009

    图  15  2009年5月1日04:00 C点和D点上空水成物质量(单位:kg)、该水成物在总水成物中所占比例、各水成物源汇项转化(单位:10−7 kg kg−1 s−1)及该源汇项在总源汇项中所占比例

    Figure  15.  The aqueous product quality, the proportion of each aqueous product quality in the total aqueous product quality, source-sink transformation of each aqueous product and the proportion of each source-sink transformation in the total source-sink transformation on 0400 BT 1 May, 2009 at (a) Point C and (b) Point D

    表  1  两架飞机情况

    Table  1.   The aircraft parameters and flight time

    飞机编号飞机所属单位飞机型号飞行时间
    3830北京人工影响天气办公室运-122009年5月1日08:30~11:34
    3817山西省人工影响天气办公室运-122009年5月1日08:46~11:10
    下载: 导出CSV

    表  2  机载仪器参数

    Table  2.   The aircraft instrumentation and parameters

    仪器名称观测对象仪器参数
    降水粒子图像探头 云粒子图像62通道,25~1550 μm
    云粒子图像探头  降水粒子62通道,100~6200 μm
    热线含水量仪   液水含量0~5 g m−3
    机载云物理探测系统温、压、湿、风等
    下载: 导出CSV

    表  3  2009年5月1日资料列表

    Table  3.   The data list of 1st May 2009

    资料类型覆盖区域
    飞机资料北京、山西
    常规雷达北京、张家口、石家庄
    区域加密雨量北京、河北、天津
    加密探空北京、张家口、太原
    MICAPS全国
    下载: 导出CSV
  • [1] Dudhia J. 1989. Numerical study of convection observed during the winter monsoon experiment using a mesoscale two–dimensional model [J]. J. Atmos. Sci., 46: 3077−3107. doi:10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2
    [2] Evans A G, Locatelli J D, Stoelinga M T, et al. 2005. The IMPROVE-1 storm of 1-2 February 2001. Part II: Cloud structures and the growth of precipitation [J]. J. Atmos. Sci., 62(10): 3456−3473. doi: 10.1175/JAS3547.1
    [3] 何晖, 高茜, 刘香娥, 等. 2015. 积层混合云结构特征及降水机理的个例模拟研究 [J]. 大气科学, 39(2): 315−328. doi: 10.3878/j.issn.1006-9895.1404.14102

    He Hui, Gao Qian, Liu Xiang’e, et al. 2015. Numerical simulation of the structural characteristics and precipitation mechanism of stratiform clouds with embedded convections [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 39(2): 315−328. doi: 10.3878/j.issn.1006-9895.1404.14102
    [4] Herzegh P H, Hobbs P V. 1980. The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. II: Warm-Frontal clouds [J]. J. Atmos. Sci., 37(3): 597−611. doi:10.1175/1520-0469(1980)037<0597:TMAMSA>2.0.CO;2
    [5] 洪延超. 1996a. 积层混合云数值模拟研究(I)——模式及其微物理过程参数化 [J]. 气象学报, 54(5): 544−557. doi: 10.11676/qxxb1996.057

    Hong Yanchao. 1996a. The numerical simulation study of convective -stratiform mixed clouds, Part (I) ─The model and parameterization of microphysical processes [J]. Acta Meteorologica Sinica (in Chinese), 54(5): 544−557. doi: 10.11676/qxxb1996.057
    [6] 洪延超. 1996b. 积层混合云数值模拟研究(Ⅱ)──云相互作用及暴雨产生机制 [J]. 气象学报, 54(6): 661−674. doi: 10.11676/qxxb1996.069

    Hong Yanchao. 1996b. The numerical simulation study of convective -stratiform mixed cloud, part (Ⅱ)─interaction of clouds and formative mechanism of the heavy rain [J]. Acta Meteorologica Sinica (in Chinese), 54(6): 661−674. doi: 10.11676/qxxb1996.069
    [7] Hong S Y, Noh Y, Dudhia J. 2006. A new vertical diffusion package with an explicit treatment of entrainment processes [J]. Mon. Wea. Rev., 134: 2318−2341. doi: 10.1175/MWR3199.1
    [8] 黄美元, 洪延超. 1984. 在梅雨锋云系内层状云回波结构及其降水的不均匀性 [J]. 气象学报, 42(1): 81−87. doi: 10.11676/qxxb1984.008

    Huang Meiyuan, Hong Yanchao. 1984. The inhomogeneous features of the precipitation and the echo structure of stratiform cloud in Mei-Yu frontal cloud system [J]. Acta Meteorologica Sinica (in Chinese), 42(1): 81−87. doi: 10.11676/qxxb1984.008
    [9] 黄美元, 徐华英, 洪延超. 1986. 混合云系中的层状云对对流云发展影响的数值模拟研究 [J]. 成都气象学院学报, 1(1): 48−54.

    Huang Meiyuan, Xu Huaying, Hong Yanchao. 1986. A numerical simulation study for effects of stratiform cloud in mixed cloud system on growth of convective cloud [J]. Journal of Chengdu University of Information Technology (in Chinese), 1(1): 48−54.
    [10] 黄美元, 洪延超, 徐华英, 等. 1987. 层状云对积云发展和降水的影响——一种云与云之间影响的数值模拟 [J]. 气象学报, 45(1): 72−77. doi: 10.11676/qxxb1987.009

    Huang Meiyuan, Hong Yanchao, Xu Huaying, et al. 1987. The effects of the existence of stratiform cloud on the development of cumulus cloud and it’s precipitation [J]. Acta Meteorologica Sinica (in Chinese), 45(1): 72−77. doi: 10.11676/qxxb1987.009
    [11] 黄天戈, 李艳伟, 王吉宏. 2013. 东北地区一次积层混合云过程的数值模拟 [J]. 气象与环境学报, 29(3): 1−7. doi: 10.3969/j.issn.1673-503X.2013.03.001

    Huang Tiange, Li Yanwei, Wang Jihong. 2013. Numerical simulation on a convective stratiform mixed cloud process in Northeastern China [J]. Journal of Meteorology and Environment (in Chinese), 29(3): 1−7. doi: 10.3969/j.issn.1673-503X.2013.03.001
    [12] Kain J S. 2004. The Kain–Fritsch convective parameterization: An update [J]. J. Appl. Meteor., 43: 170−181. doi:10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2
    [13] 李艳伟, 牛生杰. 2012. 层状云系中两种特殊分布嵌入对流的形成过程和降水机理 [J]. 中国科学: 地球科学, 55(1): 113−125. doi: 10.1007/s11430-011-4278-y

    Li Yanwei, Niu Shengjie. 2012. The formation and precipitation mechanism of two ordered patterns of embedded convection in stratiform cloud [J]. Science China Earth Sciences, 55(1): 113−125. doi: 10.1007/s11430-011-4278-y
    [14] 李艳伟, 牛生杰, 罗宁, 等. 2009a. 积云并合扩展层化型积层混合云的数值模拟分析 [J]. 地球物理学报, 52(5): 1165−1175. doi: 10.3969/j.issn.0001-5733.2009.05.005

    Li Yanwei, Niu Shengjie, Luo Ning, et al. 2009a. Numerical simulation about mixture of convective and stratiform clouds formed by convection merger [J]. Chinese J. Geophys. (in Chinese), 52(5): 1165−1175. doi: 10.3969/j.issn.0001-5733.2009.05.005
    [15] 李艳伟, 牛生杰, 姚展予, 等. 2009b. 云并合的初始位置探讨 [J]. 大气科学, 33(5): 1015−1026. doi: 10.3878/j.issn.1006-9895.2009.05.12

    Li Yanwei, Niu Shengjie, Yao Zhanyu, et al. 2009b. Initial part discussion of cloud merger [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 33(5): 1015−1026. doi: 10.3878/j.issn.1006-9895.2009.05.12
    [16] Mlawer E J, Taubman S J, Brown P D, et al. 1997. Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated–k model for the longwave [J]. J. Geophys. Res., 102: 16663−16682. doi: 10.1029/97JD00237
    [17] Morrison H, Thompson G, Tatarskii V. 2009. Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: Comparison of one– and two–moment schemes [J]. Mon. Wea. Rev., 137: 991−1007. doi: 10.1175/2008MWR2556.1
    [18] 陶玥, 李军霞, 党娟, 等. 2015. 北京一次积层混合云系结构和水分收支的数值模拟分析 [J]. 大气科学, 39(3): 445−460. doi: 10.3878/j.issn.1006-9895.1412.13209

    Tao Yue, Li Junxia, Dang Juan, et al. 2015. A numerical study on precipitation process and moisture budget of stratiform and embedded convective cloud over Beijing area [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 39(3): 445−460. doi: 10.3878/j.issn.1006-9895.1412.13209
    [19] 于翡, 姚展予. 2009. 一次积层混合云降水实例的数值模拟分析 [J]. 气象, 35(12): 3−11. doi: 10.7519/j.issn.1000-0526.2009.12.001

    Yu Fei, Yao Zhanyu. 2009. Numerical study on the complex of the stratiform and embedded convective cloud precipitation: A case study [J]. Meteorological Monthly (in Chinese), 35(12): 3−11. doi: 10.7519/j.issn.1000-0526.2009.12.001
    [20] 袁成, 樊玲, 李亚斌. 2001. 哈尔滨地区春夏季降水微结构特征 [J]. 南京气象学院学报, 24(2): 250−257. doi: 10.3969/j.issn.1674-7097.2001.02.015

    Yuan Cheng, Fan Ling, Li Yabin. 2001. Microphysical features of precipitation in spring and summer in Harbin [J]. Journal of Nanjing Institute of Meteorology (in Chinese), 24(2): 250−257. doi: 10.3969/j.issn.1674-7097.2001.02.015
    [21] 朱士超, 郭学良. 2014. 华北积层混合云中冰晶形状、分布与增长过程的飞机探测研究 [J]. 气象学报, 72(2): 366−389. doi: 10.11676/qxxb2014.013

    Zhu Shichao, Guo Xueliang. 2014. Ice crystal habits, distribution and growth process in stratiform clouds with embedded convection in North China: Aircraft measurements [J]. Acta Meteorologica Sinica (in Chinese), 72(2): 366−389. doi: 10.11676/qxxb2014.013
    [22] 朱士超, 郭学良. 2015. 华北一次积层混合云微物理和降水特征的数值模拟与飞机观测对比研究 [J]. 大气科学, 39(2): 370−385. doi: 10.3878/j.issn.1006-9895.1405.14117

    Zhu Shichao, Guo Xueliang. 2015. A case study comparing WRF-model-simulated cloud microphysics and precipitation with aircraft measurements in stratiform clouds with embedded convection in northern China [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 39(2): 370−385. doi: 10.3878/j.issn.1006-9895.1405.14117
    [23] 邹倩, 刘琦俊, 刘卫国. 2008. 积层混合云结构和云微物理的数值模拟 [J]. 干旱气象, 26(2): 74−83. doi: 10.3969/j.issn.1006-7639.2008.02.014

    Zou Qian, Liu Qijun, Liu Weiguo. 2008. Numerical simulation of stratocumulus cloud structure and cloud microphysical processes [J]. Arid Meteorology (in Chinese), 26(2): 74−83. doi: 10.3969/j.issn.1006-7639.2008.02.014
  • 加载中
图(15) / 表(3)
计量
  • 文章访问数:  573
  • HTML全文浏览量:  187
  • PDF下载量:  179
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-23
  • 网络出版日期:  2020-04-01
  • 刊出日期:  2020-10-20

目录

    /

    返回文章
    返回