Observation and Analysis of Atmospheric Ice-Nucleating Particles in Online Continuous-Flow Diffusion Chamber in Winter in North China
-
摘要: 利用国内首台在线连续流量扩散云室,2017年冬季在华北地区高山站开展了大气冰核观测;结合常规气象要素、降水滴谱、气溶胶观测,分析了大气冰核数浓度特征,并对冰核活化参数化方法以及降雪对冰核的影响进行了研究。结果表明:(1)大气冰核在不同时间的浓度差异较大,−20°C时数浓度变化范围为2.50~76.8 L−1,平均值为18.347 L−1;(2)大气冰核浓度随活化温度降低呈指数增加趋势,随过饱和度增加呈指数增加,凝华核化所占比例约为18.64%;(3)大气冰核与粒径大于0.5 μm的气溶胶数浓度的关系可用参数化表示,相关性大于仅基于活化温度建立的参数化公式;(4)降雪过程大气冰核具有先增加后减少的特征。降雪开始后大气冰核数浓度增加,降雪后期系统过境伴随的大风,对气溶胶的清洗作用明显,大气冰核随之减少。本研究为在线连续流量扩散云室类型的冰核观测仪在国内首次使用,所建立的冰核参数化公式有助于华北地区冬季地形云及其降水的微物理特征研究,同时在云模式的发展和人工影响天气研究中也有重要的参考意义。
-
关键词:
- 在线连续流量扩散云室 /
- 大气冰核 /
- 气溶胶 /
- 冰核参数化 /
- 华北地区
Abstract: In this paper, we measure ice-nucleating particle (INP) number concentrations at a mountain site on the northwestern margin of Beijing during the winter of 2017, which were obtained using a newly purchased continuous-flow diffusion chamber (BJ-CFDC). We analyzed the characteristics of the atmospheric INP number concentrations with respect to weather elements, the precipitation size distribution, and aerosol observations. We identified the relationships of the INP number concentration with activation temperature, super saturation with respect to water, and aerosol particles larger than 0.5 m. The results indicate that the atmospheric INP number concentration has a large variation with respect to different activation temperatures, ranging between 2.50–76.8 L−1 at −20°C, with an average of 18.347 L−1. The atmospheric INP number concentration was found to increase exponentially both with decreasing temperature and increasing super saturation with respect to water. The results also revealed that the atmospheric INP number concentration has a good correlation with the concentration of aerosol particles larger than 0.5 m. With this relation, the relevance of the predicted and measured INP number concentrations is greater than the relationship based only on temperature. The atmospheric INP number concentration in snow days was found to first increase and later decrease. That is, the INP number concentration increases when the snow begins, but the strong wind in the later snow period scavenges the aerosols, which leads to a reduced INP number concentration. With the BJ-CFDC, the first instrument of its kind in China, the results of this study will advance the study of orographic cloud and precipitation in winter in North China, as well as facilitate the development of cloud modeling and weather modification studies. -
图 3 闫家坪站点气象要素、气溶胶、冰核数浓度时间序列演变:(a)风向;(b)风速;(c)温度;(d)气压;(e)相对湿度;(f)降雪率;(g)气溶胶PM10和PM2.5质量浓度;(h)0.5~20 μm气溶胶数浓度;(i)冰核数浓度(−20°C,5%水面过饱和度)
Figure 3. Evolution of ice-nucleating particle (INP) concentration time series with weather elements and aerosols at Yanjiaping station: (a) Wind direction (WD); (b) wind speed (WS); (c) temperature; (d) pressure; (e) relative humidity (RH); (f) snowfall rate (SR); (g) PM10 and PM2.5 mass concentration (C); (h) number concentration of aerosols with diameters larger than 500 μm (n); (i) INP number concentration activated at −25°C at 5% supersaturation with respect to water (N)
图 5 大气冰核数浓度随温度变化图及与前人拟合结果的对比图。横坐标为活化温度,纵坐标为冰核数浓度,灰色点为BJ-CFDC单个测量值,黑色为每个活化温度的平均值,红色细线为Fletcher参数化结果,红色粗实线为Meyers参数化结果,红色虚点线为Cooper参数化结果,红色虚线为DeMott参数化结果,蓝色粗实线为游来光和石安英(1964)年参数化结果,蓝色细实线为游来光等(2002)年参数化结果,绿色线为南京地区参数化结果,绿虚线为黄山地区参数化结果,灰色粗实线为比格混合云室测量的北京山区参数化结果,蓝色细虚线为比格混合云室测量的北京城区的参数化结果,黑色粗实线为本文BJ-CFDC测量的北京山区参数化结果
Figure 5. INP number concentrations fitting at different temperatures compared with previous results (x-axis: activation temperature; y-axis: INP concentration; gray dots: original CFDC measurements; black dots: mean INP concentrations at each activation temperature; thin red line: Fletcher parameterization; thick red line: Meyers parameterization; red dash-dotted line: Cooper parameterization; red dashed line: DeMott parameterization; thick blue line: Beijing_1964 parameterization by You and Shi (1964); thin blue line: Beijing_2002 parameterization by You et al. (2002); green line: Nanjing parameterization by Nuist; green dashed line: Nuist_HM parameterization at Huangshan by Nuist; thick gray line: Beijing_YJP parameterization at Beijing mountain area measured by Bigg-type chamber; thin blue dashed line: Beijing_BMS parameterization at Beijing urban measured by Bigg-type chamber; thick black line: Beijing_CFDC parameterization measureed in this paper)
图 7 基于尺度大于0.5 μm的气溶胶数浓度建立起的不同参数化方案的冰核数浓度计算值与观测值的对比图。图中(a–f)分别对应表3中的D10、D15、Jiang_12、Yang_13、Kai_19、Beijing_CFDC建立的参数化方案。横轴为实测值,纵轴为不同参数化方案的计算值。图中实线为1:1相关性直线,不同的颜色代表了不同的活化温度,圆圈的面积差异代表了粒径大于0.5 μm气溶胶的浓度大小差异
Figure 7. Measured INP number concentrations compared with predicted INP number concentrations from previous parameterization based on the particle number concentrations for particle diameters larger than 0.5 μm. (a)–(f) are parameterizations from Table 3 including D10, D15, Jiang_12, Yang_13, Kai_19, and Beijing_CFDC, respectively. The solid line shows 1:1 correlation. The colors in the figure indicate different temperatures. The areas of the circles indicate the relative differences in the particle number concentrations for particle diameters larger than 0.5 μm
图 8 闫家坪站降雪前后气象要素、气溶胶和冰核数浓度时间序列:(a)风向;(b)风速;(c)降雪量;(d)降雪滴谱(Ns为分档雪粒子数浓度,D为雪粒子直径);(d)气溶胶质量浓度;(e)0.5 μm以上气溶胶数浓度;(f)冰核数浓度(−25°C、5%水面过饱和度)
Figure 8. Evolution of INP number concentrations with weather elements and aerosols before and after snowfall event at Yanjiaping station: (a) Wind direction; (b) wind speed; (c) snowfall rate; (d) aerosol mass concentration (PM10, PM2.5); (e) aerosol number concentration for particle diameters larger than 0.5 μm; (f) INP concentration activated at −25°C at 5% super saturation of water
表 1 公式(1)中大气冰核数浓度与温度关系的拟合参数
Table 1. Parameters of relationship between INP number concentration and temperature in equation(1)
参数化名称 观测地点 A B 文献来源 Fletcher 澳大利亚 0.00001 06 Fletcher, 1962 Meyers 美国 0.06 0.262 Meyers et al., 1992 Cooper 法国 0.005 0.304 Cooper, 1980 DeMott 全球综合 0.117 0.125 DeMott et al., 2010 Beijing,1964 北京城区 0.00254 0.389 游来光和石安英, 1964 Beijing,2002 北京城区 0.034 0.395 游来光等, 2002 Nuist 南京 0.0049 0.388 杨磊等, 2013a Nuist_HM 黄山 0.0046 0.388 苏航等, 2014 Beijing_YJP 华北山区 0.021 0.293 Bi et al., 2018 Beijing_BMS 北京城区 0.00014 0.546 Bi et al., 2018 Beijing_CFDC 华北山区 0.163 0.225 本文 表 2 公式(2)中大气冰核与过饱和度关系的参数
Table 2. Parameters of relationship between INP number concentration and supersaturation in equation(2)
参数化名称 活化温度 A B 水面过饱和度(Sw) −25°C 10.436 0.336 冰面过饱和(Sice) −25°C 0.007 0.264 表 3 大气冰核与温度、气溶胶浓度参数化方案
Table 3. Parameterization scheme of INP with function T and aerosols
参数化名称 参数化公式 与本文数据相关性(Pearson 相关系数) 观测地点 文献来源 D10 $ {N}_{T}=0.0000594\times {(-T)}^{3.33}\times {{n}_{0.5}}^{(-0.0264\times T+0.0033)} $ 0.838 全球多站平均 DeMott et al., 2010 D15 $ {N}_{T}={{n}_{0.5}}^{1.25}\times {\rm{e}}^{(-0.46\times T-11.6)} $ 0.798 撒哈拉沙漠沙尘 DeMott et al., 2015 Jiang_12 $ {N}_{T}=5.607\times {10}^{-12}\times {(-T)}^{8.721}\times {{n}_{0.5}}^{(0.019\times T+0.579)} $ 0.583 黄山 蒋惠等,2016 Yang_13 $ {N}_{T}=2.84\times {10}^{-5}\times {(-T)}^{2.39}\times {{n}_{0.5\sim 10}}^{(-0.06\times T-0.644)} $ 0.815 南京 杨磊等,2013b Kai_19 公式(3) 0.839 华北山区 本文 -
[1] Ansmann A, Tesche M, Althausen D, et al. 2008. Influence of Saharan dust on cloud glaciation in southern morocco during the Saharan mineral dust experiment [J]. J. Geophy. Res. Atmos., 113(D4): D04210. doi: 10.1029/2007jd008785 [2] Belosi F, Santachiara G, Prodi F. 2014. Ice-forming nuclei in Antarctica: New and past measurements [J]. Atmos. Res., 145-146: 105−111. doi: 10.1016/j.atmosres.2014.03.030 [3] Bi K, Ma X C, Chen Y B, et al. 2018. The observation of ice-nucleating particles active at temperatures above?15°C and its implication on ice formation in clouds [J]. J. Meteor. Res., 32(5): 734−743. doi: 10.1007/s13351-018-7181-z [4] Bi K, McMeeking G R, Ding D P, et al. 2019. Measurements of ice nucleating particles in Beijing, China [J]. J. Geophys. Res. Atmos., 124(14): 8065−8075. doi: 10.1029/2019JD030609 [5] Bigg E K, Hopwood S C. 1963. Ice nuclei in the Antarctic [J]. J. Atmos. Sci., 20(3): 185−188. doi:10.1175/1520-0469(1963)020<0185:INITA>2.0.CO;2 [6] Bundke U, Bingemer H, Wetter T, et al. 2006. The FINCH (Frankfurt Ice Nuclei counter)—New developments and first measurements [C]. USA, 7th International Aerosol Conference. [7] Che Y F, Dang J, Fang W, et al. 2019. Measurements of natural ice nucleating particles in Beijing in the spring of 2017 [J]. Atmos. Environ., 200: 170−177. doi: 10.1016/j.atmosenv.2018.12.020 [8] Chen J, Wu Z J, Augustin-Bauditz S, et al. 2018. Ice-nucleating particle concentrations unaffected by urban air pollution in Beijing, China [J]. Atmos. Chem. Phys., 18(5): 3523−3539. doi: 10.5194/acp-18-3523-2018 [9] 陈金荣. 1994. 大气冰核浓度的测量及特征 [J]. 气象科学, 14(2): 155−160.Chen Jinrong. 1994. The observation results and its features of the concentration of atmospheric ice nucleus [J]. Scientia Meteor. Sinica (in Chinese), 14(2): 155−160. [10] 陈丽, 银燕. 2009. 沙尘气溶胶对大气冰相过程发展的敏感性试验 [J]. 气象科学, 30(5): 208−213. doi: 10.3969/j.issn.1009-0827.2009.02.010Chen Li, Yin Yan. 2009. A sensitivity study of the effect of dust aerosols on the development of ice-phase cloud processes [J]. Scientia Meteor. Sinica (in Chinese), 30(5): 208−213. doi: 10.3969/j.issn.1009-0827.2009.02.010 [11] Cooper W A. 1980. A method of detecting contact ice nuclei using filter samples [C]. Preprints, Eighth International Conference on Cloud Physics. Clermont-Ferrand, France, 665-668. [12] Cotton W R, Anthes R A. 1989. Storm and Cloud Dynamics [M]. London: Academic Press, 833pp. [13] DeMott P J, Cziczo D J, Prenni A J, et al. 2003. Measurements of the concentration and composition of nuclei for cirrus formation [J]. Proceedings of the National Academy of Sciences of the United States of America, 100(25): 14655−14660. doi: 10.1073/pnas.2532677100 [14] DeMott P J, Prenni A J, Liu X, et al. 2010. Predicting global atmospheric ice nuclei distributions and their impacts on climate [J]. Proc. Natl. Acad. Sci. USA, 107(25): 11217−11222. doi: 10.1073/pnas.0910818107 [15] DeMott P J, Prenni A J, McMeeking G R, et al. 2015. Integrating laboratory and field data to quantify the immersion freezing ice nucleation activity of mineral dust particles [J]. Atmospheric Chemistry and Physics, 15(1): 393−409. doi: 10.5194/acp-15-393-2015 [16] DeMott P J, Hill T C J, Petters M D, et al. 2017. Comparative measurements of ambient atmospheric concentrations of ice nucleating particles using multiple immersion freezing methods and a continuous flow diffusion chamber [J]. Atmos. Chem. Phys., 17(18): 11227−11245. doi: 10.5194/acp-17-11227-2017 [17] 酆大雄, 陈汝珍, 蒋耿旺. 1994. 黄土高原尘沙作为大气冰核的实验研究 [J]. 应用气象学报, 5(2): 129−134.Feng Daxiong, Chen Ruzhen, Jiang Gengwang. 1994. A laboratory study on the role of the loess particles as natural ice nuclei [J]. Quart. J. Appl. Meteor. (in Chinese), 5(2): 129−134. [18] Fletcher N H, 1962. The Physics of Rainclouds [M]. Cambridge: Cambridge University Press, 386pp. [19] Garimella S, Rothenberg D A, Wolf M J, et al. 2017. Uncertainty in counting ice nucleating particles with continuous flow diffusion chambers [J]. Atmos. Chem. Phys., 17(17): 10855−10864. doi: 10.5194/acp-17-10855-2017 [20] 葛正谟, 周春科. 1986. 兰州市大气冰核的观测 [J]. 高原气象, 5(2): 167−171.Ge Zhengmo, Zhou Chunke. 1986. The observations of atmospheric ice nuclei in Lanzhou [J]. Plateau Meteor. (in Chinese), 5(2): 167−171. [21] Graedel T E, Franey J P. 1975. Field measurements of submicron aerosol washout by snow [J]. Geophys. Res. Lett., 2(8): 325−328. doi: 10.1029/GL002i008p00325 [22] Hara K, Maki T, Kobayashi F, et al. 2016. Variations of ice nuclei concentration induced by rain and snowfall within a local forested site in Japan [J]. Atmos. Environ., 127: 1−5. doi: 10.1016/j.atmosenv.2015.12.009 [23] Hoose C, Möhler O. 2012. Heterogeneous ice nucleation on atmospheric aerosols: A review of results from laboratory experiments [J]. Atmos. Chem. Phys., 12(20): 9817−9854. doi: 10.5194/acp-12-9817-2012 [24] 蒋惠, 银燕, 高仁杰, 等. 2016. 2012年秋季黄山地区大气冰核的观测分析 [J]. 科学技术与工程, 16(28): 17−24, 36. doi: 10.3969/j.issn.1671-1815.2016.28.004Jiang Hui, Yin Yan, Gao Renjie, et al. 2016. The measurement and analysis of atmospheric ice nuclei in Mt.Huangshan in autumn 2012 [J]. Science Technology and Engineering (in Chinese), 16(28): 17−24, 36. doi: 10.3969/j.issn.1671-1815.2016.28.004 [25] Jiang H, Yin Y, Yang L, et al. 2014. The characteristics of atmospheric ice nuclei measured at different altitudes in the Huangshan Mountains in Southeast China [J]. Adv. Atmos. Sci., 31(2): 396−406. doi: 10.1007/s00376-013-3048-5 [26] Jiang H, Yin Y, Su H, et al. 2015. The characteristics of atmospheric ice nuclei measured at the top of Huangshan (the Yellow Mountains) in Southeast China using a newly built static vacuum water vapor diffusion chamber [J]. Atmos. Res., 153: 200−208. doi: 10.1016/j.atmosres.2014.08.015 [27] Junge K, Swanson B D. 2008. High-resolution ice nucleation spectra of sea-ice bacteria: Implications for cloud formation and life in frozen environments [J]. Biogeosciences, 5(3): 865−873. doi: 10.5194/bg-5-865-2008 [28] Klein H, Haunold W, Bundke U, et al. 2010. A new method for sampling of atmospheric ice nuclei with subsequent analysis in a static diffusion chamber [J]. Atmospheric Research, 96(2-3): 218−224. doi: 10.1016/j.atmosres.2009.08.002 [29] 李娟, 黄庚. 2001. 黄河上游地区大气冰核浓度的观测研究 [J]. 气象, 27(11): 8−12. doi: 10.3969/j.issn.1000-0526.2001.11.002Li Juan, Huang Geng. 2001. Analysis of observational results of content of ice nuclei in the atmosphere in the upper reaches of Huanghe River [J]. Meteor. Mon. (in Chinese), 27(11): 8−12. doi: 10.3969/j.issn.1000-0526.2001.11.002 [30] 李娟, 毛节泰. 2006. [J]. 气象, 32(2): 9−13. doi: 10.3969/j.issn.1000-0526.2006.02.002Li Juan, Mao Jietai. 2006. Simulation about influences of ice property changes on cirrus radiative properties [J]. Meteor. Mon. (in Chinese), 32(2): 9−13. doi: 10.3969/j.issn.1000-0526.2006.02.002 [31] Li L G, Zhou D P, Wang Y F, et al. 2017. An observational study of atmospheric ice nuclei number concentration during three fog-haze weather periods in Shenyang, northeastern China [J]. Atmos. Res., 188: 11−19. doi: 10.1016/j.atmosres.2016.12.014 [32] 李泽宇, 孙继明, 牛生杰. 2016. 沙尘冰核对积云起电过程影响的初步数值模拟试验 [J]. 气候与环境研究, 21(1): 107−120. doi: 10.3878/j.issn.1006-9585.2015.15115Li Zeyu, Sun Jiming, Niu Shengjie. 2016. Preliminary modelling for the effects of dust on the cumulus electrification process [J]. Climatic Environ. Res. (in Chinese), 21(1): 107−120. doi: 10.3878/j.issn.1006-9585.2015.15115 [33] Lohmann U, Kärcher B, Hendricks J. 2004. Sensitivity studies of cirrus clouds formed by heterogeneous freezing in the ECHAM GCM [J]. J. Geophys. Res. Atmos., 109(D16): D16204. doi: 10.1029/2003JD004443 [34] Lohmann U, Stier P, Hoose C, et al. 2007. Cloud microphysics and aerosol indirect effects in the global climate model ECHAM5-HAM [J]. Atmos. Chem. Phys., 7(13): 3425−3446. doi: 10.5194/acp-7-3425-2007 [35] 马新成, 游来光, 王广河. 2002. 青海省河南县2002年秋季大气冰核观测的分析研究 [J]. 气象学报, 28(S1): 22−27.Ma Xincheng, You Laiguang, Wang Guanghe. 2002. Analysis study on atmospheric ice nucleis in spring 2002 in Henan, Qinghai Province [J]. Acta Meteor. Sinica (in Chinese), 28(S1): 22−27. [36] Ma X C, Bi K, Chen Y B, et al. 2017. Characteristics of winter clouds and precipitation over the mountains of northern Beijing [J]. Adv. Meteor., 2017: 3536107. doi: 10.1155/2017/3536107 [37] Meyers M P, DeMott P J, Cotton W R. 1992. New primary ice-nucleation parameterizations in an explicit cloud model [J]. J. Appl. Meteor., 31(7): 708−721. doi:10.1175/1520-0450(1992)031<0708:NPINPI>2.0.CO;2 [38] Morris C E, Conen F, Huffman J A, et al. 2014. Bioprecipitation: A feedback cycle linking earth history, ecosystem dynamics and land use through biological ice nucleators in the atmosphere [J]. Glob. Change Biol., 20(2): 341−351. doi: 10.1111/gcb.12447 [39] Murray B J, O’Sullivan D, Atkinson J D, et al. 2012. Ice nucleation by particles immersed in supercooled cloud droplets [J]. Chem. Soc. Rev., 41(19): 6519−6554. doi: 10.1039/C2CS35200A [40] 牛生杰, 安夏兰, 陈跃, 等. 2000. 贺兰山地区大气冰核浓度的测量及初步分析 [J]. 南京气象学院学报, 23(2): 294−297. doi: 10.3969/j.issn.1674-7097.2000.02.021Niu Shengjie, An Xialan, Chen Yao, et al. 2000. Measurements and analysis of concentrations of atmospheric ice nuclei in the Helanshan area [J]. J. Nanjing Inst. Meteor. (in Chinese), 23(2): 294−297. doi: 10.3969/j.issn.1674-7097.2000.02.021 [41] Patade S, Nagare B, Wagh S, et al. 2014. Deposition ice nuclei observations over the Indian region during CAIPEEX [J]. Atmos. Res., 149: 300−314. doi: 10.1016/j.atmosres.2014.07.001 [42] Phillips V T J, DeMott P J, Andronache C. 2008. An empirical parameterization of heterogeneous ice nucleation for multiple chemical species of aerosol [J]. J. Atmos. Sci., 65(9): 2757−2783. doi: 10.1175/2007JAS2546.1 [43] Plaude N O, Vychuzhanina M V. 2000. Aerosol particle size distribution, the total number and ice nuclei concentrations in Moscow region [J]. AIP Conf. Proc., 534(1): 463−466. doi: 10.1063/1.1361907 [44] Richardson M S, DeMott P J, Kreidenweis S M, et al. 2007. Measurements of heterogeneous ice nuclei in the western United States in springtime and their relation to aerosol characteristics [J]. J. Geophys. Res. Atmos., 112(D2): D02209. doi: 10.1029/2006JD007500 [45] Rogers D C. 1988. Development of a continuous flow thermal gradient diffusion chamber for ice nucleation studies [J]. Atmos. Res., 22: 149−181. doi: 10.1016/0169-8095(88)90005-1 [46] Rogers D C, DeMott P J, Kreidenweis S M, et al. 2001. A continuous-flow diffusion chamber for airborne measurements of ice nuclei [J]. J. Atmos. Oceanic Technol., 18(5): 725−741. doi:10.1175/1520-0426(2001)018<0725:ACFDCF>2.0.CO;2 [47] Santachiara G, Di Matteo L, Prodi F, et al. 2010. Atmospheric particles acting as Ice Forming Nuclei in different size ranges [J]. Atmos. Res., 96(2-3): 266−272. doi: 10.1016/j.atmosres.2009.08.004 [48] Schill G P, Jathar S H, Kodros J K, et al. 2016. Ice-nucleating particle emissions from photochemically aged diesel and biodiesel exhaust [J]. Geophys. Res. Lett., 43(10): 5524−5531. doi: 10.1002/2016GL069529 [49] 沈新勇, 梅海霞, 王卫国, 等. 2015. 双参数微物理方案的冰相过程模拟及冰核数浓度的影响试验 [J]. 大气科学, 39(1): 83−99. doi: 10.3878/j.issn.1006-9895.1405.13310Shen Xinyong, Mei Haixia, Wang Weiguo, et al. 2015. Numerical simulation of ice-phase processes using a double-moment microphysical scheme and a sensitivity test of ice nuclei concentration [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 39(1): 83−99. doi: 10.3878/j.issn.1006-9895.1405.13310 [50] 石安英, 樊慧新, 丛澜, 等. 1982. “三七”炮弹聚能分散碘化银成冰核效率的试验研究 [J]. 大气科学, 6(3): 315−323. doi: 10.3878/j.issn.1006-9895.1982.03.11Shi Anying, Fan Hueixin, Cong Lan, et al. 1982. A study on the ice nucleus generating efficiency by “37 model silver iodide shell” possessing aggregative energy [J]. Chinese Journal of Atmospheric Sciences (Scientia Atmospherica Sinica) (in Chinese), 6(3): 315−323. doi: 10.3878/j.issn.1006-9895.1982.03.11 [51] 石爱丽, 郑国光, 游来光. 2006. 2003 年秋季青海省河南县地面大气冰核观测分析 [J]. 应用气象学报, 17(2): 245−249. doi: 10.3969/j.issn.1001-7313.2006.02.016Shi Aili, Zheng Guoguang, You Laiguang. 2006. Observation and analysis on ice nucleus of Henan County of Qinghai Province in autumn 2003 [J]. Journal of Applied Meteorological Science, 17(2): 245−249. doi: 10.3969/j.issn.1001-7313.2006.02.016 [52] Stevenson C M. 1969. An improved Millipore filter technique for measuring the concentrations of freezing nuclei in the atmosphere [J]. Quart. J. Roy. Meteor. Soc., 95(403): 203−204. doi: 10.1002/qj.49709540316 [53] 苏航, 银燕, 陆春松, 等. 2014. 新型扩散云室搭建及其对黄山地区大气冰核的观测研究 [J]. 大气科学, 38(2): 386−398. doi: 10.3878/j.issn.1006-9895.2013.12211Su Hang, Yin Yan, Lu Chunsong, et al. 2014. Development of new diffusion cloud chamber type and its observation study of ice nuclei in the Huangshan area [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 38(2): 386−398. doi: 10.3878/j.issn.1006-9895.2013.12211 [54] 苏正军, 郑国光, 关立友. 2010. 人工冰核的核化速率实验 [J]. 气象, 36(11): 46−49. doi: 10.7519/j.issn.1000-0526.2010.11.007Su Zhengjun, Zheng Guoguang, Guan Liyou. 2010. Experimental study on nucleation rate of artificial ice nuclei [J]. Meteor. Mon. (in Chinese), 36(11): 46−49. doi: 10.7519/j.issn.1000-0526.2010.11.007 [55] Vali G, DeMott P J, Möhler O, et al. 2015. Technical note: A proposal for ice nucleation terminology [J]. Atmos. Chem. Phys., 15(18): 10263−10270. doi: 10.5194/acp-15-10263-2015 [56] Wang B B, Knopf D A, China S, et al. 2016. Direct observation of ice nucleation events on individual atmospheric particles [J]. Phys. Chem. Chem. Phys., 18(43): 29721−29731. doi: 10.1039/C6CP05253C [57] 汪学林, 张万钧, 熊尚清. 1965. 白城地区春季的大气冰核 [J]. 气象学报, 35(3): 273−279.Wang Xuelin, Zhang Wanjun, Xiong Shangqing. 1965. Ice nuclei measurements in spring in Baicheng area [J]. Acta Meteor. Sinica (in Chinese), 35(3): 273−279. [58] 王雨, 银燕, 陈倩, 等. 2017. 沙尘气溶胶作为冰核对阿克苏地区一次多单体型强对流风暴降水及其微物理过程影响的数值模拟研究 [J]. 大气科学, 41(1): 15−29. doi: 10.3878/j.issn.1006-9895.1605.15246Wang Yu, Yin Yan, Chen Qian, et al. 2017. A numerical study of the effect of aerosols acting as ice nuclei on the precipitation and microphysical processes in a multi-size convective storm occurring in Aksu in Xinjiang, Northwest China [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 41(1): 15−29. doi: 10.3878/j.issn.1006-9895.1605.15246 [59] 吴明林, 刘峻, 黄文娟, 等. 1986. 福建石塔山大气冰核的观测和分析 [J]. 热带气象, 2(1): 71−78.Wu Minglin, Liu Jun, Huang Wenjuan, et al. 1986. The measurement and analysis of atmospheric ice-nucleus concentration on Fujian Shita mountain [J]. J. Trop. Meteor. (in Chinese), 2(1): 71−78. [60] 肖辉, 杨慧玲, 洪延超, 等. 2012. 大气冰核谱分布对对流风暴云人工催化影响的数值模拟研究 [J]. 气候与环境研究, 17(6): 833−847. doi: 10.3878/j.issn.1006-9585.2012.06.20Xiao Hui, Yang Huiling, Hong Yanchao, et al. 2012. Numerical simulation of the impacts of ice nucleus spectra on cloud seeding effects in convective storm clouds [J]. Climatic Environ. Res. (in Chinese), 17(6): 833−847. doi: 10.3878/j.issn.1006-9585.2012.06.20 [61] 杨磊, 银燕, 杨绍忠, 等. 2013a. 南京地区大气冰核浓度的测量及分析 [J]. 大气科学, 37(3): 579−594. doi: 10.3878/j.issn.1006-9895.2012.11242Yang Lei, Yin Yan, Yang Shaozhong, et al. 2013a. Measurement and analysis of atmospheric ice nuclei in Nanjing [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 37(3): 579−594. doi: 10.3878/j.issn.1006-9895.2012.11242 [62] 杨磊, 银燕, 杨绍忠, 等. 2013b. 南京地区冬季大气冰核特征及其与气溶胶关系的研究 [J]. 大气科学, 37(5): 983−993. doi: 10.3878/j.issn.1006-9895.2012.12098Yang Lei, Yin Yan, Yang Shaozhong, et al. 2013b. Characteristics of atmospheric ice nuclei and its relationship to aerosols in winter in Nanjing [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 37(5): 983−993. doi: 10.3878/j.issn.1006-9895.2012.12098 [63] 游来光. 1976. 大气中的冰核 [J]. 气象, 2(11): 29−32. doi: 10.7519/j.issn.1000-0526.1976.11.018You Laiguang. 1976. Ice nuclei in atmosphere [J]. Meteor. Mon. (in Chinese), 2(11): 29−32. doi: 10.7519/j.issn.1000-0526.1976.11.018 [64] 游来光, 石安英. 1964. 北京地区1963年春季冰核数浓度变化特点的观测分析 [J]. 气象学报, 34(4): 548−554.You Laiguang, Shi Anying. 1964. The measurement and analysis of ice-nucleus number concentration at Peking during the period from march 18th to April 30th in 1963 [J]. Acta Meteor. Sinica (in Chinese), 34(4): 548−554. [65] 游来光, 杨绍忠, 王祥国, 等. 2002. 1995和1996年春季北京地区大气冰核浓度的观测与研究 [J]. 气象学报, 60(1): 101−109. doi: 10.3321/j.issn:0577-6619.2002.01.012You Laiguang, Yang Shaozhong, Wang Xiangguo, et al. 2002. Study of ice nuclei concentration at Beijing in spring of 1995 and 1996 [J]. Acta Meteor. Sinica (in Chinese), 60(1): 101−109. doi: 10.3321/j.issn:0577-6619.2002.01.012 [66] 张建新, 廖飞佳, 高子毅, 等. 2006. 夏季新疆中天山北坡大气冰核的浓度观测分析 [J]. 高原气象, 25(1): 138−142. doi: 10.3321/j.issn:1000-0534.2006.01.019Zhang Jianxin, Liao Feijia, Gao Ziyi, et al. 2006. Study on atmospheric ice nuclei on north slop of Mid-Tianshan Mountains in summer [J]. Plateau Meteor. (in Chinese), 25(1): 138−142. doi: 10.3321/j.issn:1000-0534.2006.01.019 [67] 赵剑平, 张滵, 王玉玺, 等. 1965. 我国北部地区大气冰核观测的分析研究 [J]. 气象学报, 35(4): 416−422.Zhao Jianping, Zhang Mi, Wang Yuxi, et al. 1965. Analysis of atmospheric ice nuclei in North China [J]. Acta Meteor. Sinica (in Chinese), 35(4): 416−422. [68] 周德平, 洪也, 王扬锋, 等. 2012a. 沈阳春夏季大气冰核浓度的观测研究 [J]. 气候与环境研究, 17(6): 719−726.Zhou Deping, Hong Ye, Wang Yangfeng, et al. 2012. An observational study of atmospheric ice nuclei concentration in spring and summer in Shenyang [J]. Climatic Environ. Res. (in Chinese), 17(6): 719−726. doi: 10.3878/j.issn.1006-9585.2012.06.09 [69] 周德平, 李炳昆, 陈光, 等. 2012b. 用5L混合云室观测抚顺市大气冰核浓度 [J]. 气象与环境学报, 28(6): 44−49.Zhou Deping, Li Bingkun, Chen Guang, et al. 2012b. Study of atmospheric ice nuclei concentration using 5 L mixing cloud chamber in Fushun, Liaoning Province [J]. J. Meteor. Environ. (in Chinese), 28(6): 44−49. [70] 周德平, 苏航, 耿树江, 等. 2018. 辽沈地区不同高度大气冰核数浓度的飞机观测 [J]. 气象与环境学报, 34(6): 133−139. doi: 10.3969/j.issn.1673-503X.2018.06.016Zhou Deping, Su Hang, Geng Shujiang, et al. 2018. Aircraft observation of atmospheric ice nuclei concentration in Liaoning and Shenyang regions [J]. J. Meteor. Environ. (in Chinese), 34(6): 133−139. doi: 10.3969/j.issn.1673-503X.2018.06.016 -