高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

热带太平洋盐度年际变化对海表温度异常作用比较:1997/1998、2014/2015和2015/2016年El Niño事件

石世玮 智海 林鹏飞 陈涛

石世玮, 智海, 林鹏飞, 等. 2020. 热带太平洋盐度年际变化对海表温度异常作用比较:1997/1998、2014/2015和2015/2016年El Niño事件[J]. 大气科学, 44(5): 1057−1075 doi: 10.3878/j.issn.1006-9895.1912.19172
引用本文: 石世玮, 智海, 林鹏飞, 等. 2020. 热带太平洋盐度年际变化对海表温度异常作用比较:1997/1998、2014/2015和2015/2016年El Niño事件[J]. 大气科学, 44(5): 1057−1075 doi: 10.3878/j.issn.1006-9895.1912.19172
SHI Shiwei, ZHI Hai, LIN Pengfei, et al. 2020. Contrasting Salinity Interannual Variations in the Tropical Pacific and Their Effects on Recent El Niño Events: 1997/1998, 2014/2015, and 2015/2016 [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 44(5): 1057−1075 doi: 10.3878/j.issn.1006-9895.1912.19172
Citation: SHI Shiwei, ZHI Hai, LIN Pengfei, et al. 2020. Contrasting Salinity Interannual Variations in the Tropical Pacific and Their Effects on Recent El Niño Events: 1997/1998, 2014/2015, and 2015/2016 [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 44(5): 1057−1075 doi: 10.3878/j.issn.1006-9895.1912.19172

热带太平洋盐度年际变化对海表温度异常作用比较:1997/1998、2014/2015和2015/2016年El Niño事件

doi: 10.3878/j.issn.1006-9895.1912.19172
基金项目: 国家重点研发计划“重大自然灾害监测预警与防范”重点专项项目2018YFC1506002,国家自然科学基金项目41690122、41690120、41475101、41705055
详细信息
    作者简介:

    石世玮,女,1997年出生,硕士研究生,主要从事气候变化和海气相互作用研究。E-mail: shishiwei@nuist.edu.cn

    通讯作者:

    智海,E-mail: Zhihai@nuist.edu.cn

  • 中图分类号: P467

Contrasting Salinity Interannual Variations in the Tropical Pacific and Their Effects on Recent El Niño Events: 1997/1998, 2014/2015, and 2015/2016

Funds: National Key Research and Development Program on Monitoring, Early Warning and Prevention of Major Natural Disaster (Grant 2018YFC1506002), National Natural Science Foundation of China (Grants 41690122, 41690120, 41475101, 41705055)
  • 摘要: 海洋盐度变化为研究气候变化的机制提供了一个新的视角。本文通过对比1997/1998年、2015/2016年两次强厄尔尼诺(El Niño)事件和2014/2015年特殊El Niño事件,对盐度变化及其影响海表面温度异常(SSTA)的物理过程进行了比较分析。研究表明,El Niño和南方涛动(El Niño–Southern Oscillation, ENSO)发展的强弱与热带西太平洋大范围海表层盐度异常(SSSA)及其向东扩散的差异有明显关联。1997/1998、2015/2016年赤道东太平洋SSTA的增暖,对应两次强El Niño事件,在发生年4月,中西太平洋海域出现了明显的负SSSA,之后东移至日期变更线以西,SSSA引发的混合层深度(MLD)变浅、障碍层厚度(BLT)变厚,导致热带中—西太平洋表层升温增强,促使了赤道中太平洋的早期变暖;2014/2015年弱El Niño事件虽然在发生年4月,位于赤道中西太平洋出现了负SSSA,但没有发展东移,导致BLT的增厚过程减弱,对表层温度的调制作用减弱甚至消失。三次事件对应的盐度变化过程中,水平平流和淡水通量(FWF)引起的表层强迫是影响盐度收支的主要因子,水平平流影响盐度异常的前期变化,触发事件的发生;热带太平洋西部降水引起的FWF负异常的影响最为显著,对ENSO异常信号出现后SSSA的维持起决定性作用。相比较两次强El Niño事件,2014/2015年El Niño对应的早期FWF负异常没有发展和东移,并且之后迅速减弱,导致中西太平洋盐度负趋势减缓,MLD加深,BLT变薄,促使上表层海水冷却,抑制了赤道东太平洋的早期变暖和ENSO发展。研究结果表明,盐度变化与ENSO密切相关,热带中西太平洋海域早期表层盐度变化可能可以作为SSTA的指数。特别地,SSSA在调节SSTA时,不仅影响它的强度,而且可以作为判断ENSO是否发展及其强弱的前兆因子。
  • 图  1  El Niño期间赤道(2°S~2°N)平均海表面温度异常(单位:°C)的时间—经度图:(a)1997/1998年;(b)2014/2015年;(c)2015/2016年。黑色虚线表示日期变更线

    Figure  1.  Longitude–time sections of SST (sea surface temperature) anomalies (units: °C) averaged in the equator (2°S–2°N) during El Niño events for (a) 1997/1998, (b) 2014/2015, and (c) 2015/2016. The black dashed lines represent the location of the international dateline

    图  2  图1,但为海表面盐度异常(SSSA,单位:psu)

    Figure  2.  As in Fig. 1, but for SSS (sea surface salinity) anomalies (SSSA, units: psu)

    图  3  1997/1998年(黑色线)、2014/2015年(红色线)、2015/2016年(蓝色线)三次El Niño期间(a)Niño4区、(b)Niño3.4区、(c)Niño3区区域平均海表面盐度异常(单位:psu)的季节变化。黑色水平线为零线,红色虚线为年分界线

    Figure  3.  Seasonal variability of SSS anomalies during El Niño events for 1997/1998 (black lines), 2014/2015 (red lines), and 2015/2016 (blue lines) averaged over (a) Niño4 box, (b) Niño3.4 box, and (c) Niño3 box. The horizontal black lines represent zero, and the red dashed lines separate the years

    图  4  图1,但为混合层深度(MLD)异常(单位:m)

    Figure  4.  As in Fig.1, but for MLD (mixing layer depth) anomalies (units: m)

    图  5  图1,但为障碍层厚度(BLT)异常(单位:m)

    Figure  5.  As in Fig.1, but for BLT (barrier layer thickness) anomalies

    图  6  El Niño期间盐度和温度影响下的赤道(2°S~2°N)平均障碍层厚度异常(单位:m)的时间—经度分布:(a)1997/1998年;(b)2014/2015年;(c)2015/2016年。左图表示盐度年际变化和温度年际变化共同作用下的障碍层厚度变化,记为BLT(Tinter, Sinter),中图表示仅盐度年际变化影响的障碍层厚度变化,记为BLT(Tclim, Sinter),右图表示仅受温度年际变化影响的障碍层变化,记为BLT(Tinter, Sclim)。黑实线表示日期变更线

    Figure  6.  Longitude–time sections of BLT anomalies (units: m) averaged in the equator (2°S–2°N) under the influence of salinity and temperature during El Niño events in (a) 1997/1998, (b) 2014/2015, and (c) 2015/2016. The results of left figures were obtained from interannual temperature and interannual salinity fields [BLT (Tinter, Sinter)], the results of middle figures were obtained from interannual temperature and climatological salinity fields [BLT (Tclim, Sinter)], and the results of right figures were obtained from interannual salinity and climatological temperature fields [BLT (Tinter, Sclim)]. The black lines represent the location of the international dateline

    6  (续)

    6.  (Continued)

    图  7  图1,但为混合层盐度趋势(单位:psu month−1

    Figure  7.  As in Fig.1, but for MLS (mixing layer salinity) tendency (units: psu month−1)

    图  8  1997/1998年(黑色线)、2014/2015年(红色线)、2015/2016年(蓝色线)三次El Niño期间Niño4区区域平均(a)混合层盐度趋势及其收支项贡献:(b)表层平流、(c)次表层强迫、(d)表层强迫。黑色水平横线为零线,红色虚线为年分界线

    Figure  8.  (a) MLS tendency and contribution of MLS budget terms (b) surface advection, (c) subsurface force, and (d) surface force during El Niño events for 1997–1998 (black lines), 2014–2015 (red lines) and 2015–2016 (blue lines) averaged over the Niño4 region. The black line represents zero, and the red dashed lines separate the years

    图  9  图8,但为Niño3.4区域平均(单位:psu month−1

    Figure  9.  As in Fig. 8, but for the means in Niño3.4 region (units: psu month−1)

    图  10  图1,但为淡水通量(FWF)异常(单位:mm d−1

    Figure  10.  As in Fig. 1, but for FWF (freshwater flux) anomalies (units: mm d−1)

    表  1  由温度场和盐度场计算BLT变化的方法,温度和盐度可以被认为是气候变化或年际变化的

    Table  1.   Methods of BLT (Barrier Layer Thickness) variability calculated by temperature and salinity fields, which can be considered to be interannual or climatologically varying

    分解计算BLT温度和盐度的气候态和年际变化选取情况
    BLT (Tclim, Sclim)气候态温度和气候态盐度
    BLT (Tinter, Sinter)温度的年际变化和盐度的年际变化
    BLT (Tinter, Sclim)温度的年际变化和气候态盐度
    BLT (Tclim, Sinter)气候态温度和盐度的年际变化
    下载: 导出CSV
  • [1] Adler R F, Huffman G J, Chang A, et al. 2003. The version-2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979–present) [J]. J. Hydrometeor., 4(6): 1147−1167. doi:10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2
    [2] Barnston A G, Tippett M K, L’Heureux M L, et al. 2012. Skill of real-time seasonal ENSO model predictions during 2002–11: Is our capability increasing? [J]. Bull. Amer. Meteor. Soc., 93(5): 631−651. doi: 10.1175/BAMS-D-11-00111.1
    [3] Bosc C, Delcroix T, Maes C. 2009. Barrier layer variability in the western Pacific warm pool from 2000 to 2007 [J]. J. Geophys. Res., 114(C6): C06023. doi: 10.1029/2008JC005187
    [4] Boyer T P, Levitus S, Antonov J I, et al. 2005. Linear trends in salinity for the World Ocean, 1955–1998 [J]. Geophys. Res. Lett., 32(1): L01604. doi: 10.1029/2004GL021791
    [5] Cane M A, Zebiak S E. 1985. A theory for El Niño and the Southern Oscillation [J]. Science, 228(4703): 1085−1087. doi: 10.1126/science.228.4703.1085
    [6] Carton J A, Giese B S. 2008. A reanalysis of ocean climate using Simple Ocean Data Assimilation (SODA) [J]. Mon. Wea. Rev., 136(8): 2999−3017. doi: 10.1175/2007mwr1978.1
    [7] Chen L, Li T, Wang B, et al. 2017. Formation mechanism for 2015/16 super El Niño [J]. Sci. Rep., 7(1): 2975. doi: 10.1038/s41598-017-02926-3
    [8] Corbett C M, Subrahmanyam B. 2016. Validation of satellite-derived salinity in the equatorial Pacific with specific emphasis on the 2014–15 ENSO event [J]. IEEE Geosci. Remote Sen. Lett., 13(12): 1979−1983. doi: 10.1109/LGRS.2016.2619980
    [9] Corbett C M, Subrahmanyam B, Giese B S. 2017. A comparison of sea surface salinity in the equatorial Pacific Ocean during the 1997–1998, 2012–2013, and 2014–2015 ENSO events [J]. Climate Dyn., 49(9–10): 3513−3526. doi: 10.1007/s00382-017-3527-y
    [10] De Boyer Montégut C, Madec G, Fischer A S, et al. 2004. Mixed layer depth over the global ocean: An examination of profile data and a profile-based climatology [J]. J. Geophys. Res., 109(C12): C12003. doi: 10.1029/2004JC002378
    [11] Delcroix T, Cravatte S, McPhaden M J. 2007. Decadal variations and trends in tropical Pacific sea surface salinity since 1970 [J]. J. Geophys. Res., 112(C3): C03012. doi: 10.1029/2006JC003801
    [12] Dong S F, Garzoli S L, Baringer M. 2009. An assessment of the seasonal mixed layer salinity budget in the Southern Ocean [J]. J. Geophys. Res., 114(C12): C12001. doi: 10.1029/2008JC005258
    [13] Durack P J, Wijffels S E. 2010. Fifty-year trends in global ocean salinities and their relationship to broad-scale warming [J]. J. Climate, 23(16): 4342−4362. doi: 10.1175/2010jcli3377.1
    [14] Fedorov A V, Pacanowski R C, Philander S G, et al. 2004. The effect of salinity on the wind-driven circulation and the thermal structure of the upper ocean [J]. J. Phys. Oceanogr., 34(9): 1949−1966. doi:10.1175/1520-0485(2004)034<1949:teosot>2.0.co;2
    [15] Gao S, Qu T D, Nie X W. 2014. Mixed layer salinity budget in the tropical Pacific Ocean estimated by a global GCM [J]. J. Geophys. Res., 119(12): 8255−8270. doi: 10.1002/2014JC010336
    [16] Gasparin F, Roemmich D. 2016. The strong freshwater anomaly during the onset of the 2015/2016 El Niño [J]. Geophys. Res. Lett., 43(12): 6452−6460. doi: 10.1002/2016GL069542
    [17] Hasson A E A, Delcroix T, Dussin R. 2013. An assessment of the mixed layer salinity budget in the tropical Pacific Ocean. Observations and modelling (1990–2009) [J]. Ocean Dyn., 63(2–3): 179−194. doi: 10.1007/s10236-013-0596-2
    [18] Hu S N, Fedorov A V. 2016. Exceptionally strong easterly wind burst stalling El Niño of 2014 [J]. Proc. Natl. Acad. Sci. USA, 113(8): 2005−2010. doi: 10.1073/pnas.1514182113
    [19] Huang B Y, Mehta V M. 2005. Response of the Pacific and Atlantic oceans to interannual variations in net atmospheric freshwater [J]. J. Geophys. Res., 110(C8): C08008. doi: 10.1029/2004JC002830
    [20] Jacox M G, Hazen E L, Zaba K D, et al. 2016. Impacts of the 2015–2016 El Niño on the California current system: Early assessment and comparison to past events [J]. Geophys. Res. Lett., 43(13): 7072−7080. doi: 10.1002/2016GL069716
    [21] Kara A B, Rochford P A, Hurlburt H E. 2000. An optimal definition for ocean mixed layer depth [J]. J. Geophys. Res., 105(C7): 16803−16821. doi: 10.1029/2000jc900072
    [22] Latif M, Anderson D, Barnett T, et al. 1998. A review of the predictability and prediction of ENSO [J]. J. Geophys. Res., 103(C7): 14375−14393. doi: 10.1029/97jc03413
    [23] Levine A F Z, McPhaden M J. 2016. How the July 2014 easterly wind burst gave the 2015–2016 El Niño a head start [J]. Geophys. Res. Lett., 43(12): 6503−6510. doi: 10.1002/2016GL069204
    [24] Lian T, Chen D K, Tang Y M. 2017. Genesis of the 2014–2016 El Niño events [J]. Sci. China Earth Sci., 60(9): 1589−1600. doi: 10.1007/s11430-016-8315-5
    [25] 刘伯奇, 李健颖, 毛江玉, 等. 2015. 2014年赤道东太平洋El Niño事件发展以及停滞过程的成因 [J]. 科学通报, 60(22): 2136−2148. doi: 10.1360/N972014-01294
    [26] Lukas R, Lindstrom E. 1991. The mixed layer of the western equatorial Pacific Ocean [J]. J. Geophys. Res., 96(S01): 3343−3357. doi: 10.1029/90JC01951
    [27] Maes C, Picaut J, Belamari S. 2002. Salinity barrier layer and onset of El Niño in a Pacific coupled model [J]. Geophys. Res. Lett., 29(24): 2206. doi: 10.1029/2002GL016029
    [28] Maes C, Picaut J, Belamari S. 2005. Importance of the salinity barrier layer for the buildup of El Niño [J]. J. Climate, 18(1): 104−118. doi: 10.1175/JCLI-3214.1
    [29] Maes C, Ando K, Delcroix T, et al. 2006. Observed correlation of surface salinity, temperature and barrier layer at the eastern edge of the western Pacific warm pool [J]. Geophys. Res. Lett., 33(6): L06601. doi: 10.1029/2005GL024772
    [30] McPhaden M J. 2003. Tropical Pacific Ocean heat content variations and ENSO persistence barriers [J]. Geophys. Res. Lett., 30(9): 1480. doi: 10.1029/2003GL016872
    [31] McPhaden M J. 2015. Playing hide and seek with El Niño [J]. Nat. Climate Change, 5(9): 791−795. doi: 10.1038/nclimate2775
    [32] McPhaden M J, Busalacchi A J, Cheney R, et al. 1998. The tropical ocean-global atmosphere observing system: A decade of progress [J]. J. Geophys. Res., 103(C7): 14169−14240. doi: 10.1029/97JC02906@10.1002/(ISSN)2169-9291.TOGA1
    [33] Miller A J, Angell J K, Korshover J. 1976. Tropical waves and the Quasi-Biennial Oscillation in the lower stratosphere [J]. J. Atmos. Sci., 33(3): 430−435. doi:10.1175/1520-0469(1976)033<0430:TWATQB>2.0.CO;2
    [34] Miller J R. 1976. The salinity effect in a mixed layer ocean model [J]. J. Phys. Oceanogr., 6(1): 29−35. doi:10.1175/1520-0485(1976)006<0029:tseiam>2.0.co;2
    [35] Min Q Y, Su J Z, Zhang R H, et al. 2015. What hindered the El Niño pattern in 2014? [J]. Geophys. Res. Lett., 42(16): 6762−6770. doi: 10.1002/2015GL064899
    [36] Mu M, Ren H L. 2017. Enlightenments from researches and predictions of 2014–2016 super El Niño event [J]. Sci. China Earth Sci., 60(9): 1569−1571. doi: 10.1007/s11430-017-9094-5
    [37] Ren H L, Wang R, Zhai P M, et al. 2017. Upper-ocean dynamical features and prediction of the super El Niño in 2015/16: A comparison with the cases in 1982/83 and 1997/98 [J]. J. Meteor. Res., 31(2): 278−294. doi: 10.1007/s13351-017-6194-3
    [38] Santoso A, McPhaden M J, Cai W J. 2017. The defining characteristics of ENSO extremes and the strong 2015/2016 El Niño [J]. Rev. Geophys., 55(4): 1079−1129. doi: 10.1002/2017RG000560
    [39] Sprintall J, Tomczak M. 1992. Evidence of the barrier layer in the surface layer of the tropics [J]. J. Geophys. Res., 97(C5): 7305−7316. doi: 10.1029/92JC00407
    [40] Stramma L, Fischer T, Grundle D S, et al. 2016. Observed El Niño conditions in the eastern tropical Pacific in October 2015 [J]. Ocean Sci., 12(4): 861−873. doi: 10.5194/os-12-861-2016
    [41] 王凡, 刘传玉, 胡石建, 等. 2018. 太平洋暖池冷舌交汇区盐度变异机制及气候效应研究 [J]. 地球科学进展, 33(8): 775−782. doi: 10.11867/j.issn.1001-8166.2018.08.0775

    Wang Fan, Liu Chuanyu, Hu Shijian, et al. 2018. Variability and climate effect of the salinity in the Pacific warm pool-cold tongue confluence region [J]. Advance in Earth Science, 33(8): 775−782. doi: 10.11867/j.issn.1001-8166.2018.08.0775
    [42] Wang X D, Liu H L. 2016. Seasonal-to-interannual variability of the barrier layer in the western Pacific warm pool associated with ENSO [J]. Climate Dyn., 47(1–2): 375−392. doi: 10.1007/s00382-015-2842-4
    [43] Xue Y, Kumar A. 2017. Evolution of the 2015/16 El Niño and historical perspective since 1979 [J]. Sci. China Earth Sci., 60(9): 1572−1588. doi: 10.1007/s11430-016-0106-9
    [44] Yeh S W, Kug J S, An S I. 2014. Recent progress on two types of El Niño: Observations, dynamics, and future changes [J]. Asia-Pacific Journal of Atmospheric Sciences, 50(1): 69−81. doi: 10.1007/s13143-014-0028-3
    [45] Yu L S, Jin X Z, Weller R A. 2008. Multidecade global flux datasets from the Objectively Analyzed Air–sea Fluxes (OAFlux) project: Latent and sensible heat fluxes, ocean evaporation, and related surface meteorological variables [R]. OAFlux Project Tech. Rep. OA-2008-01.
    [46] Zhang R H, Gao C. 2017. Processes involved in the second-year warming of the 2015 El Niño event as derived from an intermediate ocean model [J]. Sci. China Earth Sci., 60(9): 1601−1613. doi: 10.1007/s11430-016-0201-9
    [47] Zhang R H, Busalacchi A J, Murtugudde R G, et al. 2006. An empirical parameterization for the salinity of subsurface water entrained into the ocean mixed layer (S e) in the tropical Pacific [J]. Geophys. Res. Lett., 33(2): L02605. doi: 10.1029/2005GL024218
    [48] Zhang R H, Wang G H, Chen D K, et al. 2010. Interannual biases induced by freshwater flux and coupled feedback in the tropical Pacific [J]. Mon. Wea. Rev., 138(5): 1715−1737. doi: 10.1175/2009mwr3054.1
    [49] Zheng F, Zhang R H. 2012. Effects of interannual salinity variability and freshwater flux forcing on the development of the 2007/08 La Niña event diagnosed from Argo and satellite data [J]. Dyn. Atmos. Oceans, 57: 45−57. doi: 10.1016/j.dynatmoce.2012.06.002
    [50] Zheng F, Zhang R H. 2015. Interannually varying salinity effects on ENSO in the tropical Pacific: A diagnostic analysis from Argo [J]. Ocean Dyn., 65(5): 691−705. doi: 10.1007/s10236-015-0829-7
    [51] Zhi H, Zhang R H, Lin P F, et al. 2015. Quantitative analysis of the feedback induced by the freshwater flux in the tropical Pacific using CMIP5 [J]. Adv. Atmos. Sci., 32(10): 1341−1353. doi: 10.1007/s00376-015-5064-0
    [52] Zhi H, Zhang R H, Zheng F, et al. 2016. Assessment of interannual sea surface salinity variability and its effects on the barrier layer in the equatorial Pacific using BNU-ESM [J]. Adv. Atmos. Sci., 33(3): 339−351. doi: 10.1007/s00376-015-5163-y
    [53] Zhi H, Zhang R H, Lin P F, et al. 2019. Interannual salinity variability in the tropical Pacific in CMIP5 simulations [J]. Adv. Atmos. Sci., 36(4): 378−396. doi: 10.1007/s00376-018-7309-1
    [54] Zhu J S, Huang B H, Zhang R H, et al. 2014. Salinity anomaly as a trigger for ENSO events [J]. Sci. Rep., 4: 6821. doi: 10.1038/srep06821
    [55] Zhu J S, Kumar A, Huang B H, et al. 2016. The role of off-equatorial surface temperature anomalies in the 2014 El Niño prediction [J]. Sci. Rep., 6: 19677. doi: 10.1038/srep19677
  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  292
  • HTML全文浏览量:  109
  • PDF下载量:  57
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-06-13
  • 网络出版日期:  2020-01-15
  • 刊出日期:  2020-10-20

目录

    /

    返回文章
    返回