高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

北美地区一次冬季中尺度对流系统上空红色精灵现象的空间观测及其母体雷暴分析

钟丽华 杨静 陆高鹏 王庸平 何其佳 郄秀书

钟丽华, 杨静, 陆高鹏, 等. 2020. 北美地区一次冬季中尺度对流系统上空红色精灵现象的空间观测及其母体雷暴分析[J]. 大气科学, 44(5): 997−1012 doi: 10.3878/j.issn.1006-9895.2002.19169
引用本文: 钟丽华, 杨静, 陆高鹏, 等. 2020. 北美地区一次冬季中尺度对流系统上空红色精灵现象的空间观测及其母体雷暴分析[J]. 大气科学, 44(5): 997−1012 doi: 10.3878/j.issn.1006-9895.2002.19169
ZHONG Lihua, YANG Jing, LU Gaopeng, et al. 2020. Spatial Observation of Red Sprites over a Winter Mesoscale Convective System in North America and the Analysis of Its Parent Thunderstorm [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 44(5): 997−1012 doi: 10.3878/j.issn.1006-9895.2002.19169
Citation: ZHONG Lihua, YANG Jing, LU Gaopeng, et al. 2020. Spatial Observation of Red Sprites over a Winter Mesoscale Convective System in North America and the Analysis of Its Parent Thunderstorm [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 44(5): 997−1012 doi: 10.3878/j.issn.1006-9895.2002.19169

北美地区一次冬季中尺度对流系统上空红色精灵现象的空间观测及其母体雷暴分析

doi: 10.3878/j.issn.1006-9895.2002.19169
基金项目: 中国科学院战略性先导科技专项XDA17010101,国家自然科学基金项目41574141
详细信息
    作者简介:

    钟丽华,女,1995年出生,硕士研究生,主要从事中高层大气放电现象的研究。E-mail: zhonglihua29@163.com

    通讯作者:

    杨静,E-mail: yangj@mail.iap.ac.cn

  • 中图分类号: P401

Spatial Observation of Red Sprites over a Winter Mesoscale Convective System in North America and the Analysis of Its Parent Thunderstorm

Funds: the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant XDA17010101), National Natural Science Foundation of China (Grant 41574141)
  • 摘要: 红色精灵是发生在雷暴云上空的一种大尺度瞬态放电发光现象,它们通常出现在地面上空40~90 km之间,是由地闪回击和随后可能存在的连续电流产生的。目前,由于综合同步观测资料较少,与夏季红色精灵相比,全世界对冬季红色精灵的研究屈指可数。2008年12月27~28日,受高空槽及低层暖湿气流的影响,北美阿肯色州地区爆发了一次冬季雷暴天气过程,搭载于FORMOSAT-2卫星上的ISUAL(Imager of Sprites and Upper Atmospheric Lightning)探测器有幸在这次雷暴上空记录到了两例红色精灵事件。本文利用ISUAL获取的红色精灵观测资料、多普勒天气雷达资料、美国国家闪电定位资料、超低频磁场数据、美国国家环境中心/气候预测中心提供的云顶亮温和探空数据等综合观测数据,对产生红色精灵的这次冬季雷暴特征和相关闪电活动规律进行了详细研究。结果表明,在两例红色精灵中,ISUAL均未观测到伴随的“光晕(halo)”现象,第一例为“圆柱状”红色精灵,第二例红色精灵由于发光较暗,无法判断其具体形态。产生红色精灵的母体雷暴是一次中尺度对流系统,该系统于27日15:00(协调世界时,下同)左右出现在阿肯色州北部附近,并自西向东移动。23:59系统发展到最强,最大雷达反射率因子(55~60 dBZ)的面积达到339 km2,之后开始减弱。03:03雷暴强度有所增加,随后云体便逐渐扩散,雷暴开始减弱,并在11:00完全消散。两例红色精灵发生分别在04:46:05和04:47:14,此时雷暴处于消散阶段,正负地闪频数均处于一个较低水平且正地闪比例显著增加,并且多位于云顶亮温−40°C~−50°C的层状云区上空。红色精灵的出现伴随着30~35 dBZ回波面积的增加。在红色精灵发生期间,雷达反射率大于40 dBZ的面积减少,10~40 dBZ的面积增加,表明红色精灵的产生与雷暴对流的减弱和层状云区的发展有关,这与已有的夏季红色精灵的研究结果类似。红色精灵的母体闪电为正地闪单回击,位于中尺度对流系统雷达反射率为25~35 dBZ的层状云降水区,对应的雷达回波顶高分别为2.5 km和5 km,峰值电流分别为+183 kA和+45 kA。根据超低频磁场数据估算两个母体闪电的脉冲电荷矩变化(iCMC)分别为+394 C km和+117 C km。超低频磁天线记录到了第一例红色精灵内部的电流信号,表明这例红色精灵放电很强。
  • 图  1  2008年12月27日12:00(a)500 hPa位势高度场(黑色等值线,单位:dagpm)、风矢量(单位:m s−1)和温度(填色,单位: ℃)分布以及(b)800 hPa位势高度场(黑色等值线,单位:dagpm)、水汽通量(填色,单位:g cm−1 hPa−1 s−1)和风矢量(单位:m s−1)分布

    Figure  1.  Distributions of (a) 500-hPa geopotential height (black contours, units: dagpm), wind vectors (arrows, units: m s−1), and temperature (shaded, unit: ℃); and (b) 850-hPa geopotential height (black contours, units: dagpm), vapor flux (shaded, units: g cm−1 hPa−1 s−1), and wind vectors (arrows, units: m s−1) at 1200 UTC on December 27, 2008

    图  2  2008年12月27日12:00小石城站(LZK)探空图。黑色表示状态曲线,绿色表示环境温度曲线(层结曲线),黄色表示环境露点温度曲线

    Figure  2.  Skew T–logp diagram for LZK at 1200 UTC on December 27, 2008. The black, green, and yellow solid lines represent parcel adiabatic lapse rate, temperature, and dew point, respectively

    图  3  2008年12月28日(a‒f)00:00~05:00不同时刻云顶亮温与闪电(图中所示时刻前后15 min)的叠加(白色“×”表示负地闪,玫红色“+”表示正地闪,红色大“×”表示红色精灵)

    Figure  3.  Cloud-top brightness temperature from (a‒f) 0000 UTC to 0500 UTC on December 28, 2008, with flashes within 15 min centered at the time shown in the figure (the white “×,” rose red “+” and red plus “×” denote −CG flash, +CG flashes, and red sprites, respectively).

    图  4  2008年12月母体雷暴不同云顶亮温面积的演变

    Figure  4.  Evolution of cloud-top brightness temperature area of different temperature intervals on December, 2008

    图  5  2008年12月红色精灵母体雷暴在不同时间的组合反射率演变:27日(a)23:04、(b)23:59、28日(c)01:03、(d)02:03、(e)03:03、(f)04:03、(g)05:02、(h)06:02

    Figure  5.  Evolution of composite radar reflectivity of the sprite-producing thunderstorm at (a) 2304 UTC, (b) 2359 UTC December 27, (c) 0103 UTC, (d) 0203 UTC, (e) 0303 UTC, (f) 0403 UTC, (g) 0502 UTC, (h) 0602 UTC December 28, 2008

    图  6  2008年12月红色精灵母体雷暴的不同雷达反射率面积演变(图中虚线为红色精灵发生时间)

    Figure  6.  Areal evolution of different radar reflectivities during the sprite-producing thunderstorm on December, 2008 (the dotted line in the picture shows the occurrence time of the red sprites).

    图  7  (a)2008年12月28日04:45雷达组合反射率图与该时刻前后15 min内地闪的叠加(黑色大“+”表示母体闪电,蓝色大“+”表示红色精灵,黑色“×”表示正地闪,红色“×”表示负地闪,CG1和CG2分别表示两个母体闪电,SP1和SP2分别表示两个红色精灵)。(b)和(c)分别为沿(a)中AB线(穿过母体闪电)和CD线所做的垂直剖面

    Figure  7.  (a) Overlap of composite radar reflectivity at 0445 UTC December 28, 2008 with CG flashes within 15 min centered at the time shown on the figure (the black plus “+”, blue plus “+”, black “×”, and red “×” represent the parent strokes, sprites, +CG, and −CG flashes, respectively; CG1 and CG2 represent parent strokes; and SP1 and SP2 represent red sprites). (b) and (c) show the vertical cross section along line AB (passing through the parent strokes) and line CD, respectively

    图  8  2008年12月28日ISUAL探测器捕捉到的(a、b)两例红色精灵事件和(c、d)由Duke Forest记录到的相关超低频ULF磁场信号

    Figure  8.  (a, b) Two red sprites observed by ISUAL (Imager of Sprites and Upper Atmospheric Lightning) on December 28, 2008, and (c, d) the associated ULF (Ultra Low Frequency) signals in Duke Forest

    图  9  2008年12月(a)母体雷暴中每6 min地闪频数、(b)红色精灵发生前后约两小时内每6 min地闪频数和(c)地闪峰值电流随时间的演变。(a)和(b)中的黑色虚线表示红色精灵发生的时间,(c)中蓝色“+”为红色精灵的母体闪电,峰值电流分别为+183 kA和+45 kA

    Figure  9.  (a) Evolution of CG flashes per six minutes in the parent thunderstorm; (b) CG flashes per six minutes about two hours before and after the sprite; and (c) peak current of CG flashes in the parent thunderstorm on December, 2008. The black dotted line in (a) and (b) represents the sprite occurrence time, and the blue “+” in (c) represents the parent flashes of the red sprites and the peak currents are +183 kA and +45 kA, respectively

  • [1] Adachi T, Fukunishi H, Takahashi Y, et al. 2005. Characteristics of thunderstorm systems producing winter sprites in Japan [J]. J. Geophys. Res., 110(D11): D11203. doi: 10.1029/2004JD005012
    [2] Barrington-Leigh C P, Inan U S. 1999. Elves triggered by positive and negative lightning discharges [J]. Geophy. Res. Lett., 26(6): 683−686. doi: 10.1029/1999GL900059
    [3] Barrington-Leigh C P, Inan U S, Stanley M. 2001. Identification of sprites and elves with intensified video and broadband array photometry [J]. J.Geophys. Res, 106(A2): 1741−1750. doi: 10.1029/2000JA000073
    [4] Boccippio D J, Williams E R, Heckman S J, et al. 1995. Sprites, ELF transients, and positive ground strokes [J]. Science, 269(5227): 1088−1091. doi: 10.1126/science.269.5227.1088
    [5] Chern A B, Kuo C L, Lee Y J, et al. 2008. Global distributions and occurrence rates of transient luminous events [J]. J. Geophys. Res., 113(A8): A08306. doi: 10.1029/2008JA013101
    [6] Chern J L, Hsu R R, Su H T, et al. 2003. Global survey of upper atmospheric transient luminous events on the ROCSAT-2 satellite [J]. J. Atmos. Solar-Terr. Phys., 65(5): 647−659. doi: 10.1016/S1364-6826(02)00317-6
    [7] Chou J K, Tsai L Y, Kuo C L, et al. 2011. Optical emissions and behaviors of the blue starters, blue jets, and gigantic jets observed in the Taiwan transient luminous event ground campaign [J]. J. Geophys. Res, 116(A7). doi: 10.1029/2010JA016162
    [8] Cummer S A, Inan U S. 1997. Measurement of charge transfer in sprite-producing lightning using ELF radio atmospherics [J]. Geophy. Res. Lett., 24(14): 1731−1734. doi: 10.1029/97GL51791
    [9] Cummer S A, Lyons W A. 2005. Implications of lightning charge moment changes for sprite initiation [J]. J. Geophys. Res., 110(A4): A04304. doi: 10.1029/2004JA010812
    [10] Cummer S A, Li J B, Han F, et al. 2009. Quantification of the troposphere-to-ionosphere charge transfer in a gigantic jet [J]. Nat. Geosci., 2(9): 617−620. doi: 10.1038/ngeo607
    [11] Cummer S A, Lyons W A, Stanley M A. 2013. Three years of lightning impulse charge moment change measurements in the United States [J]. J. Geophys. Res., 118(11): 5176−5189. doi: 10.1002/jgrd.50442
    [12] Cummins K L, Krider E P, Malone M D. 1998. The US national lightning detection network/sup TM/and applications of cloud-to-ground lightning data by electric power utilities [J]. IEEE Transactions on Electromagnetic Compatibility, 40(4): 465−480. doi: 10.1109/15.736207
    [13] Cummins K L, Murphy M J. 2009. An overview of lightning locating systems: History, techniques, and data uses, with an in-depth look at the U.S. NLDN [J]. IEEE Transactions on Electromagnetic Compatibility, 51(3): 499−518. doi: 10.1109/TEMC.2009.2023450
    [14] Fukunishi H, Takahashi Y, Uchida A, et al. 1999. Occurrences of sprites and elves above the Sea of Japan near Hokuriku in winter [J]. Eos, Transactions, American Geophysical Union, 80(46): F217.
    [15] Ganot M, Yair Y, Price C, et al. 2007. First detection of transient luminous events associated with winter thunderstorms in the eastern Mediterranean [J]. Geophy. Res. Lett., 34(12). doi: 10.1029/2007GL029258
    [16] Hayakawa M, Nakamura T, Hobara Y, et al. 2004. Observation of sprites over the Sea of Japan and conditions for lightning-induced sprites in winter [J]. J. Geophys. Res., 109(A1): A01312. doi: 10.1029/2003JA009905
    [17] Hayakawa M, Nakamura T, Iudin D, et al. 2005. On the fine structure of thunderstorms leading to the generation of sprites and elves: Fractal analysis [J]. J. Geophys. Res., 110(D6): D06104. doi: 10.1029/2004JD004545
    [18] Hobara Y, Iwasaki N, Hayashida T, et al. 2001. Interrelation between ELF transients and ionospheric disturbances in association with sprites and elves [J]. Geophy. Res. Lett., 28(5): 935−938. doi: 10.1029/2000GL003795
    [19] Hu W Y, Cummer S A, Lyons W A, et al. 2002. Lightning charge moment changes for the initiation of sprites [J]. Geophy. Res. Lett., 29(8): 1279. doi: 10.1029/2001GL014593
    [20] Kuo C L, Chen A B, Lee Y J, et al. 2007. Modeling elves observed by FORMOSAT-2 satellite [J]. J. Geophys. Res., 112(A11): A11312. doi: 10.1029/2007JA012407
    [21] Kuo C L, Chou J K, Tsai L Y, et al. 2009. Discharge processes, electric field, and electron energy in ISUAL-recorded gigantic jets [J]. J. Geophys. Res., 114(A4): A04314. doi: 10.1029/2008JA013791
    [22] Lang T J, Lyons W A, Cummer S A, et al. 2016. Observations of two sprite-producing storms in Colorado [J]. J. Geophys. Res., 121(16): 9675−9695. doi: 10.1002/2016JD025299
    [23] Lu G, Cummer S A, Chen A B, et al. 2017. Analysis of lightning strokes associated with sprites observed by ISUAL in the vicinity of North America [J]. Terr., Atmos. Ocean. Sci., 28(4): 583−595. doi: 10.3319/TAO.2017.03.31.01
    [24] Lu G P, Cummer S A, Lyons W A, et al. 2011. Lightning development associated with two negative gigantic jets [J]. Geophy. Res. Lett., 38(12): L12801. doi: 10.1029/2011GL047662
    [25] Lu G P, Cummer S A, Li J B, et al. 2013. Coordinated observations of sprites and in-cloud lightning flash structure [J]. J. f Geophys. Res., 118(12): 6607−6632. doi: 10.1002/jgrd.50459
    [26] Lu G P, Cummer S A, Tian Y, et al. 2016. Sprite produced by consecutive impulse charge transfers following a negative stroke: Observation and simulation [J]. J. Geophys. Res., 121(8): 4082−4092. doi: 10.1002/2015JD024644
    [27] Lyons W A. 1994. Characteristics of luminous structures in the stratosphere above thunderstorms as imaged by low-light video [J]. Geophy. Res. Lett., 21(10): 875−878. doi: 10.1029/94GL00560
    [28] Lyons W A. 1996. Sprite observations above the U.S. High Plains in relation to their parent thunderstorm systems [J]. J. Geophys. Res., 101(D23): 29641−29652. doi: 10.1029/96JD01866
    [29] Lyons W A. 2006. The meteorology of transient luminous events-An introduction and overview[M]//Füllekrug M, Mareev E A, Rycroft M J. Sprites, Elves and Intense Lightning Discharges. Dordrecht: Springer, 19–56. doi: 10.1007/1-4020-4629-4_2.
    [30] Lyons W A, Cummer S A, Stanley M A, et al. 2008. Supercells and sprites [J]. Bull. Amer. Meteor. Soc., 89(8): 1165−1174. doi: 10.1175/2008BAMS2439.1
    [31] Lyons W A, Nelson T E, Williams E R, et al. 2003. Characteristics of sprite-producing positive cloud-to-ground lightning during the 19 July 2000 STEPS mesoscale convective systems [J]. Mon. Wea. Rev, 131(10): 2417. doi:10.1175/1520-0493(2003)131<2417:COSPCL>2.0.CO;2
    [32] Mohr K I, Zipser E J. 1996. Mesoscale convective systems defined by their 85-GHz ice scattering signature: Size and intensity comparison over tropical oceans and continents [J]. Mon. Wea. Rev., 124(11): 2417−2437. doi:10.1175/1520-0493(1996)124<2417:MCSDBT>2.0.CO;2
    [33] Moudry D, Stenbaek-Nielsen H, Sentman D, et al. 2003. Imaging of elves, halos and sprite initiation at 1ms time resolution [J]. J. Atmos. Solar-Terr. Phys., 65(5): 509−518. doi: 10.1016/S1364-6826(02)00323-1
    [34] Pasko V P. 2003. Electrical jets [J]. Nature, 423: 927−929. doi: 10.1038/423927a
    [35] Peng K M, Hsu R R, Su H T, et al. 2017. Transient luminous event coordinated observations using FORMOSAT-2 satellite and Taiwan sprites campaign [J]. Terr., Atmos. Ocean. Sci., 28(4): 597−608. doi: 10.3319/TAO.2016.09.21.03
    [36] Qin J Q, Celestin S, Pasko V P. 2013. Dependence of positive and negative sprite morphology on lightning characteristics and upper atmospheric ambient conditions [J]. J. Geophys. Res., 118(5): 2623−2638. doi: 10.1029/2012JA017908
    [37] Ren H, Tian Y, Lu G P, et al. 2019. Examining the influence of current waveform on the lightning electromagnetic field at the altitude of halo formation [J]. J. Atmos. Solar-Terr. Phys., 189: 114−122. doi: 10.1016/j.jastp.2019.04.010
    [38] São Sabbas F T, Sentman D D, Wescott E M, et al. 2003. Statistical analysis of space–time relationships between sprites and lightning [J]. J. Atmos. Solar-Terr. Phys., 65(5): 525−535. doi: 10.1016/S1364-6826(02)00326-7
    [39] São Sabbas F T, Taylor M J, Pautet P D, et al. 2010. Observations of prolific transient luminous event production above a mesoscale convective system in Argentina during the Sprite2006 Campaign in Brazil [J]. J. Geophys. Res., 115(A11): A00E58. doi: 10.1029/2009JA014857
    [40] Sentman D D, Wescott E M, Osborne D L, et al. 1995. Preliminary results from the Sprites94 Aircraft Campaign: 1. Red sprites [J]. Geophy. Res. Lett., 22(10): 1205−1208. doi: 10.1029/95GL00583
    [41] Singh R, Maurya A K, Chanrion O, et al. 2017. Assessment of unusual gigantic jets observed during the monsoon season: First observations from Indian subcontinent [J]. Sci. Rep., 7(1): 16436. doi: 10.1038/s41598-017-16696-5
    [42] Soula S, van der Velde O, Montanyà J, et al. 2009. Analysis of thunderstorm and lightning activity associated with sprites observed during the EuroSprite campaigns: Two case studies [J]. Atmos. Res., 91(2-4): 514−528. doi: 10.1016/j.atmosres.2008.06.017
    [43] Suzuki T, Hayakawa M, Hobara Y, et al. 2006a. Characteristics of the sprite parent winter thundercloud with positive single flash in Hokuriku, Japan (A case study on 14th December 2001) [J]. IEEJ Transactions on Fundamentals and Materials, 126(2): 78−83. doi: 10.1541/ieejfms.126.78
    [44] Suzuki T, Hayakawa M, Matsudo Y, et al. 2006b. How do winter thundercloud systems generate sprite-inducing lightning in the Hokuriku area of Japan? [J]. Geophy. Res. Lett., 33(10): L10806. doi: 10.1029/2005GL025433
    [45] Suzuki T, Matsudo Y, Asano T, et al. 2011. Meteorological and electrical aspects of several winter thunderstorms with sprites in the Hokuriku area of Japan [J]. J. Geophys. Res., 116(D6). doi: 10.1029/2009JD013358
    [46] Takahashi Y, Miyasato R, Adachi T, et al. 2003. Activities of sprites and elves in the winter season, Japan [J]. J. Atmos. Solar-Terr. Phys., 65(5): 551−560. doi: 10.1016/S1364-6826(02)00330-9
    [47] Wang Y P, Lu G P, Ma M, et al. 2019. Triangulation of red sprites observed above a mesoscale convective system in North China [J]. Earth and Planetary Physics, 3(2): 111−125. doi: 10.26464/epp2019015
    [48] 王志超, 杨静, 陆高鹏, 等. 2015. 华北地区一次中尺度对流系统上方的Sprite放电现象及其对应的雷达回波和闪电特征 [J]. 大气科学, 39(4): 839−848. doi: 10.3878/j.issn.1006-9895.1412.14232

    Wang Z C, Yang J, Lu G P, et al. 2015. Sprites over a mesoscale convective system in North China and the corresponding characteristics of radar echo and lightning [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 39(4): 839−848. doi: 10.3878/j.issn.1006-9895.1412.14232
    [49] Wescott E M, Sentman D, Osborne D, et al. 1995. Preliminary results from the Sprites94 aircraft campaign: 2. Blue jets [J]. Geophy. Res. Lett., 22(10): 1209−1212. doi: 10.1029/95GL00582
    [50] Wescott E M, Sentman D D, Heavner M J, et al. 1996. Blue starters: Brief upward discharges from an intense Arkansas thunderstorm [J]. Geophy. Res. Lett., 23(16): 2153−2156. doi: 10.1029/96GL01969
    [51] Wescott E M, Sentman D D, Heavner M J, et al. 1998. Blue jets: Their relationship to lightning and very large hailfall, and their physical mechanisms for their production [J]. J. Atmos. Solar-Terr. Phys., 60(7-9): 713−724. doi: 10.1016/S1364-6826(98)00018-2
    [52] Wescott E M, Sentman D D, Stenbaek-Nielsen H C, et al. 2001. New evidence for the brightness and ionization of blue starters and blue jets [J]. J. Geophys. Res., 106(A10): 21549−21554. doi: 10.1029/2000JA000429
    [53] Winckler J R, Lyons W A, Nelson T E, et al. 1996. New high-resolution ground-based studies of sprites [J]. J. Geophys. Res., 101(D3): 6997−7004. doi: 10.1029/95JD03443
    [54] 杨静, 郄秀书, 张广庶, 等. 2008. 发生于山东沿海雷暴云上方的红色精灵 [J]. 科学通报, 53(7): 1079−1086. doi: 10.1007/s11434-008-0141-8

    Yang J, Qie X S, Zhang G S, et al. 2008. Red sprites over thunderstorms in the coast of Shandong province, China [J]. Chinese Sci. Bull., 53(7): 1079−1086. doi: 10.1007/s11434-008-0141-8
    [55] Yang J, Yang M R, Liu C, et al. 2013. Case studies of sprite-producing and non-sprite-producing summer thunderstorms [J]. Adv. Atmos. Sci., 30(6): 1786−1808. doi: 10.1007/s00376-013-2120-5
    [56] Yang J, Sato M, Liu N Y, et al. 2018. A gigantic jet observed over an mesoscale convective system in midlatitude region [J]. J. Geophys. Res., 123(2): 977−996. doi: 10.1002/2017JD026878
    [57] Zhang J B, Zhang Q L, Guo X F, et al. 2019. Simulated impacts of atmospheric gravity waves on the initiation and optical emissions of sprite halos in the mesosphere [J]. Sci. China Earth Sci., 62(4): 631−642. doi: 10.1007/s11430-018-9311-y
  • 加载中
图(9)
计量
  • 文章访问数:  336
  • HTML全文浏览量:  91
  • PDF下载量:  34
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-11-03
  • 网络出版日期:  2020-07-08
  • 刊出日期:  2020-10-20

目录

    /

    返回文章
    返回