Interdecadal Variation Characteristics of Extreme Low Temperature Index in Winter in China
-
摘要: 前人在研究极端气温时,大多关注其长期变化趋势,而对其年代际变化的研究较少。本文利用1961~2016年全国839个台站的逐日最高气温、最低气温和日平均气温资料,重点分析了我国冬季极端低温指数的年代际变化特征。本文采用谐波分解提取了每个台站冬季极端低温指数前四波分量,将其作为年代际变化分量,并将其累计方差贡献大于25%的台站认为发生了明显的年代际变化的台站。结果表明:呈明显年代际变化的台站主要位于长江以北地区、新疆北部以及青藏高原东部地区。其中,长江以北地区及新疆北部地区的年代际变化在1979年后较为一致,据此可将1979年之后的时段大致划分为前冷期(1979~1986年)、暖期(1987~2007年)和后冷期(2008~2016年)三个时期。上述两个地区的冬季极端低温指数的年代际变化与东大西洋/西俄罗斯遥相关型联系在一起,该遥相关型的年代际变化对应着乌拉尔山阻塞型环流频次和东亚大槽强度的年代际变化。Abstract: Although the long-term trend of extreme temperatures has been extensively explored in previous studies, few studies have addressed the interdecadal variation of extreme temperatures. Based on the daily maximum temperature, minimum temperature, and daily temperature at 839 stations in China from 1961 to 2016, the authors analyzed the interdecadal variations in the winter extreme-low-temperature index in China. The first four wave components of the extreme temperature at each station were extracted by harmonic decomposition, which is regarded as the interdecadal component. A station is regarded as having undergone an obvious interdecadal variation if the cumulative variance explained by the interdecadal component is greater than 25%. The results show that the stations with obvious interdecadal variation in their winter extreme-low-temperature index are mainly located north of the Yangtze River, in northern Xinjiang, and in eastern Qinghai–Tibet Plateau. The interdecadal variations north of the Yangtze River and in northern Xinjiang are basically consistent after 1979. The years after 1979 can be divided into three periods: previously cold period (1979–1986), warm period (1987–2007), and later-cold period (2008–2016). The interdecadal variation in the extreme temperature indices of the stations located in the abovementioned two areas might be modulated by the interdecadal variation in the East Atlantic/West Russia (EAWR) teleconnection pattern, which corresponds to the interdecadal variation in both the frequency of the blocking-like circulation over the Ural Mountains and the amplitude of the planetary trough over East Asia.
-
Key words:
- Extreme temperature index /
- Interdecadal variation /
- Circulation anomaly
-
图 1 极端低温指数线性趋势:(a)平均最低气温(单位:°C a−1);(b)极端最低气温(单位:°C a−1);(c)日最低气温极大值(单位:°C a−1);(d)暖夜日数(单位:d a−1);(e)冷夜日数(单位:d a−1)。黑点区域表示通过99%信度水平的显著性检验
Figure 1. Linear trends of the extreme-low-temperature indices: (a) Average minimum temperature (TMINmean, units: °C a−1); (b) extreme minimum temperature (TNn, units: °C a−1); (c) maximum daily minimum temperature (TNx, units: °C a−1); (d) number of warm nights (TN90P, units: d a−1); (e) number of cold nights (TN10P, units: d a−1). Areas with black points indicate that the linear trends are significant at the 99% confidence level
图 2 极端低温指数前4波的累计方差百分率:(a)平均最低气温;(b)极端最低气温;(c)日最低气温极大值;(d)暖夜日数;(e)冷夜日数。黑色实心圆为累计方差贡献≥30%的站点;黑色空心圆为其他站点
Figure 2. Cumulative percentage of variance explained by the first four waves of the extreme-low-temperature index: (a) TMINmean; (b) TNn; (c) TNx; (d) TN90P; (e) TN10P. Solid filled circles represent stations where explained cumulative variance is ≥30%; black hollow circles represent the other stations
图 3 长江以北地区前4波累计方差百分率大于或等于30%站点的冬季极端低温指数合成(黑色细线):(a)平均最低气温;(b)极端最低气温;(c)日最低气温极大值;(d)暖夜日数;(e)冷夜日数。红粗线为各站点的极端气温指数序列的平均值
Figure 3. The composites of the extreme-low-temperature indices (black thin lines) in winter for the stations (cumulative percentage of variance explained by the first four waves explain at least 30% of the variance) to the north of the Yangtze River: (a) TMINmean; (b) TNn; (c) TNx; (d) TN90P; (e) TN10P. Red thick lines indicate the average of the extreme-low-temperature indices sequences of each station
图 5 新疆北部地区前4波累计方差贡献率大于或等于30%站点冬季极端低温指数合成(黑色细线):(a)平均最低气温;(b)极端最低气温;(c)日最低气温极大值;(d)暖夜日数;(e)冷夜日数。黑色粗线为各站点的极端气温指数序列的平均值
Figure 5. The composites of the extreme-low-temperature indices (black thin lines) in winter for the stations (cumulative explained variance of the first four waves explains at least 30% of the variance) of northern Xinjiang: (a) TMINmean; (b) TNn; (c) TNx; (d) TN90P; (e) TN10P. Black thick lines indicate the average of the extreme-low-temperature indices sequences at all stations
图 7 (a、b)300 hPa、(c、d)500 hPa、(e、f)850 hPa位势高度差值场(等值线间隔均10 gpm),(g、h)海平面气压差值场(等值线间隔为100 Pa)。左列为暖期减去前冷期,右列为暖期减去后冷期,实(虚)线为正(负)值,0值线已略去,阴影区为通过95%信度水平的显著性检验区
Figure 7. Differences of geopotential height (contours interval: 10 gpm) at (a, b) 300 hPa, (c, d) 500 hPa, (e, f) 850 hPa, and (g, h) differences of sea level pressure (SLP, contours interval: 100 Pa) between the warm period and the first cold period (left column), the second cold period (right column). Solid (dashed) lines indicate positive (negative) values, zero lines are omitted. The shadings indicate differences above 95% confidence level
图 8 乌拉尔山阻塞型环流(60°E阻塞型环流)频次(日数)、遥相关型指数的年代际变化(前4波合成)。竖直虚线对应1987年和2007年,以标明我国长江以北地区、新疆北部地区极端低温指数发生年代际转变的年份。遥相关型年代际变化分量的方差贡献在图例括号中表示
Figure 8. Interdecadal variation (synthesis of the first four waves) in both the frequency (days) of blocking flow over Ural Mountains (60°E) (BFUM) and the teleconnection indices. The two vertical dashed lines represent the years of 1987 and 2007, indicating the interdecadal transition years of the extreme-low-temperature indices both to the north of the Yangtze River and in northern Xinjiang. Explained variances in the interdecadal variation component for the teleconnection patterns are indicated by the numbers in brackets in the legend
图 9 暖期与(a)前冷期、(b)后冷期的冬季海表面温度差值场(单位:°C)。阴影区表示差值场通过95%信度水平的显著性检验,红色实线、蓝色虚色和黑色实线分别表示正、负和0值,等值线间隔为0.025°C,黑色框表示本文选出的海温异常符号一致的区域
Figure 9. Winter sea surface temperature (SST) difference fields (units: °C) between the warm period and (a) the first cold period, (b) the second cold period. The shadings indicate differences above 95% confidence level. Red solid lines, blue dashed lines, and black lines indicate positive, negative, and zero values, respectively, contour interval: 0.025°C, the black boxes areas indicate the signs of SST anomalies are the same
图 10 暖期与前冷期(左)、后冷期(右)的(a、d)向上长波辐射、(b、e)潜热通量、(c、f)感热通量的差值场(单位:W m−2)。阴影区表示差值场通过95%信度水平的显著性检验,实线和虚线分别表示正值和负值,0线已略去,等值线间隔为3 W m−2
Figure 10. Differences (units: W m−2) in (a, d) upward long-wave-radiation fluxes, (b, e) latent heat fluxes, (c, f) sensible heat fluxes between the warm period and the first cold period (left column), the second cold period (right column). The shadings indicate differences above 95% confidence level. Solid lines and dashed lines represent positive and negative values, respectively. Zero lines are omitted. Contours interval: 3 W m−2
表 1 极端气温指数
Table 1. Extreme temperature index
序号 代码 名称 定义 单位 1 TNn 极端最低气温 每月内日最低气温的最小值 °C 2 TXx 极端最高气温 每月内日最高气温的最大值 °C 3 TNx 极端最低气温极大值 每月内日最低气温的最大值 °C 4 TXn 极端最高气温极小值 每月内日最高气温的最小值 °C 5 TN90P 暖夜日数 日最低气温(TN)>90%分位值的日数 d 6 TN10P 冷夜日数 日最低气温(TN)<10%分位值的日数 d 7 TX90P 暖昼日数 日最高气温(TX)>90%分位值的日数 d 8 TX10P 冷昼日数 日最高气温(TX)<10%分位值的日数 d 9 TMAXmean 平均最高气温 日最高气温的平均值 °C 10 TMINmean 平均最低气温 日最低气温的平均值 °C -
[1] Barnes E A, Dunn-Sigouin E, Masato G, et al. 2014. Exploring recent trends in Northern Hemisphere blocking [J]. Geophys. Res. Lett., 41(2): 638−644. doi: 10.1002/2013GL058745 [2] Bueh C, Nakamura H. 2007. Scandinavian pattern and its climatic impact [J]. Quart. J. Roy. Meteor. Soc., 133(629): 2117−2131. doi: 10.1002/qj.173 [3] 布和朝鲁, 彭京备, 谢作威, 等. 2018. 冬季大范围持续性极端低温事件与欧亚大陆大型斜脊斜槽系统研究进展 [J]. 大气科学, 42(3): 656−676. doi: 10.3878/j.issn.1006-9895.1712.17249Bueh Cholaw, Peng Jingbei, Xie Zuowei, et al. 2018. Recent progresses on the studies of wintertime extensive and persistent extreme cold events in China and large-scale tilted ridges and troughs over the Eurasian Continent [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 42(3): 656−676. doi: 10.3878/j.issn.1006-9895.1712.17249 [4] Cohen J, Screen J A, Furtado J C, et al. 2014. Recent Arctic amplification and extreme mid-latitude weather [J]. Nature Geoscience, 7(9): 627−637. doi: 10.1038/ngeo2234 [5] 丁一汇, 戴晓苏. 2002. 中国近百年来的温度变化 [J]. 气象学报, 13(5): 513−525. doi: 10.7519/j.issn.1000-0526.1994.12.008Ding Yihui, Dai Xiaosu. 2002. Temperature variation in China during the last 100 years [J]. Meteorological Monthly (in Chinese), 13(5): 513−525. doi: 10.7519/j.issn.1000-0526.1994.12.008 [6] 丁一汇. 2005. 高等天气学 [M]. 2版. 北京: 气象出版社, 257pp.Ding Yihui. 2005. Advanced Synoptic Meteorology (in Chinese) [M]. 2nd ed. Beijing: China Meteorological Press, 257pp. [7] 丁一汇, 任国玉, 赵宗慈, 等. 2007. 中国气候变化的检测及预估 [J]. 沙漠与绿洲气象, 1(1): 1−10. doi: 10.3969/j.issn.1002-0799.2007.01.001Ding Yihui, Ren Guoyu, Zhao Zongci, et al. 2007. Detection, attribution and projection of climate change over China [J]. Desert and Oasis Meteorology (in Chinese), 1(1): 1−10. doi: 10.3969/j.issn.1002-0799.2007.01.001 [8] 丁一汇, 柳艳菊, 梁苏洁, 等. 2014. 东亚冬季风的年代际变化及其与全球气候变化的可能联系 [J]. 气象学报, 72(5): 835−852. doi: 10.11676/qxxb2014.079Ding Yihui, Liu Yanju, Liang Sujie, et al. 2014. Interdecadal variability of the East Asian winter monsoon and its possible links to global climate change [J]. Acta Meteor. Sinica (in Chinese), 72(5): 835−852. doi: 10.11676/qxxb2014.079 [9] Frich P, Alexander L V, Della-Marta P, et al. 2002. Observed coherent changes in climatic extremes during the second half of the twentieth century [J]. Climate Res., 19(3): 193−212. [10] Gill A E. 1980. Some simple solutions for heat-induced tropical circulation [J]. Quart. J. Roy. Meteor. Soc., 106(449): 447−662. doi: 10.1002/qj.49710644905 [11] 管兆勇, 任国玉. 2012. 中国区域极端天气气候事件变化研究 [M]. 北京: 气象出版社.Guan Zhaoyong, Ren Guoyu. 2012. On Variations of Weather and Climate Extremes in China (in Chinese) [M]. Beijing: China Meteorological Press. [12] Han Z, Li S L, Mu M. 2011. The role of warm North Atlantic SST in the formation of positive height anomalies over the Ural Mountains during January 2008 [J]. Adv. Atmos. Sci., 28(2): 246−256. doi: 10.1007/s00376-010-0069-1 [13] Hoegh-Guldberg O, Cai R S, Poloczanska E, et al. 2014. The ocean [M]//Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part B: Regional Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Field C B, Barrows V R, Dokken D J, et al, Eds. Cambridge, UK and New York, USA: Cambridge University Press, 1655−1731. [14] Horel J D. 1981. A rotated principal component analysis of the interannual variability of the Northern Hemisphere 500 mb height field [J]. Mon. Wea. Rev., 109(10): 2080−2092. doi:10.1175/1520-0493(1981)109<2080:ARPCAO>2.0.CO;2 [15] IPCC. 2013. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [M]. Cambridge, UK and New York, USA: Cambridge University Press, 1535pp. [16] Lau N C, Holopainen E O. 1984. Transient eddy forcing of the time-mean flow as identified by geopotential tendencies [J]. J. Atmos. Sci., 41(3): 313−328. doi:10.1175/1520-0469(1984)041<0313:TEFOTT>2.0.CO;2 [17] 李亚飞, 任荣彩. 2019. 北半球冬季各阻塞系统对大范围极端温度异常的单独和协同影响 [J]. 大气科学, 43(6): 1313−1328. doi: 10.3878/j.issn.1006-9895.1811.18214Li Yafei, Ren Rongcai. 2019. The independent and coordinative influences of the four blocking systems in the Northern Hemisphere winter on the occurrence of widespread extreme cold surface temperature [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 43(6): 1313−1328. doi: 10.3878/j.issn.1006-9895.1811.18214 [18] 梁苏洁, 丁一汇, 赵南, 等. 2014. 近50年中国大陆冬季气温和区域环流的年代际变化研究 [J]. 大气科学, 38(5): 974−992. doi: 10.3878/j.issn.1006-9895.1401.13234Liang Sujie, Ding Yihui, Zhao Nan, et al. 2014. Analysis of the interdecadal changes of the wintertime surface air temperature over mainland of China and regional atmospheric circulation characteristics during 1960−2013 [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 38(5): 974−992. doi: 10.3878/j.issn.1006-9895.1401.13234 [19] Liu J P, Curry J A, Wang H J, et al. 2012. Impact of declining Arctic sea ice on winter snowfall [J]. Proceedings of the National Academy of Sciences of the United States of America, 109(11): 4074−4079. doi: 10.1073/pnas.1114910109 [20] Manton M, J.Della-Marta P M, Haylock M R, et al 2001. Trend in extreme daily rainfall and temperature in Southeast Asia and the South Pacific: 1961−1998 [J]. International Journal of Climatology, 21: 269−284. doi: 10.1002/joc.610 [21] Mori M, Watanabe M, Shiogama H, et al. 2014. Robust Arctic sea ice influence on the frequent Eurasian cold winters in past decades [J]. Nature Geoscience, 7(12): 869−873. doi: 10.1038/ngeo2277 [22] Mori M, Kosaka Y, Watanabe M, et al. 2019. A reconciled estimate of the influence of Arctic sea ice loss on recent Eurasian cooling [J]. Nature Climate Change, 9(2): 123−129. doi: 10.1038/s41558-018-0379-3 [23] Nakamura H. 1994. Rotational evolution of potential vorticity associated with a strong blocking flow configuration over Europe [J]. Geophys. Res. Lett., 21(18): 2003−2006. doi: 10.1029/94GL01614 [24] 秦大河. 2018. 气候变化科学概论 [M]. 北京: 科学出版社.Qin Dahe. 2018. Introduction to Climate Change Science (in Chinese) [M]. Beijing: Science Press. [25] 任国玉, 封国林, 严中伟. 2010. 中国极端气候变化观测研究回顾与展望 [J]. 气候与环境研究, 15(4): 337−353. doi: 10.3878/j.issn.1006-9585.2010.04.01Ren Guoyu, Feng Guolin, Yan Zhongwei. 2010. Progresses in observation studies of climate extremes and changes in mainland of China [J]. Climatic and Environmental Research (in Chinese), 15(4): 337−353. doi: 10.3878/j.issn.1006-9585.2010.04.01 [26] Sala O E, Chapin III F, Armesto J J, et al. 2000. Global biodiversity scenarios for the year 2100 [J]. Science, 287(5459): 1770−1774. doi: 10.1126/science.287.5459.1770 [27] Screen J A, Simmonds I. 2010. The central role of diminishing sea ice in recent Arctic temperature amplification [J]. Nature, 464(7293): 1334−1337. doi: 10.1038/nature09051 [28] Serreze M C, Barrett A P, Stroeve J C, et al. 2009. The emergence of surface-based Arctic amplification [J]. The Cryosphere, 3(1): 11−19. doi: 10.5194/tc-3-11-2009 [29] Shi N, Wang X Q, Tian P Y. 2019a. Interdecadal variations in persistent anomalous cold events over Asian mid-latitudes [J]. Climate Dyn., 52(5): 3729−3739. doi: 10.1007/s00382-018-4353-6 [30] Shi N, Wang Y C, Wang X Q, et al. 2019b. Interdecadal variations in the frequency of persistent hot events in boreal summer over midlatitude Eurasia [J]. J. Climate, 32(16): 5161−5177. doi: 10.1175/JCLI-D-18-0706.1 [31] 宋燕, 季劲钧. 2005. 气候变暖的显著性检验以及温度场和降水场的时空分布特征 [J]. 气候与环境研究, 10(2): 157−165. doi: 10.3969/j.issn.1006-9585.2005.02.002Song Yan, Ji Jinjun. 2005. The remarkable test of abrupt climatic warming and spatiotemporal distribution features of temperature and precipitation fields [J]. Climatic and Environmental Research (in Chinese), 10(2): 157−165. doi: 10.3969/j.issn.1006-9585.2005.02.002 [32] Sun J Q, Wu S, Ao J. 2016. Role of the North Pacific sea surface temperature in the East Asian winter monsoon decadal variability [J]. Climate Dyn., 46(11−12): 3793−3805. doi: 10.1007/s00382-015-2805-9 [33] Takaya K, Nakamura H. 2005. Mechanisms of intraseasonal amplification of the cold Siberian high [J]. J. Atmos. Sci., 62(12): 4423−4440. doi: 10.1175/JAS3629.1 [34] 唐国利, 丁一汇, 王绍武, 等. 2009. 中国近百年温度曲线的对比分析 [J]. 气候变化研究进展, 5(2): 71−78. doi: 10.3969/j.issn.1673-1719.2009.02.002Tang Guoli, Ding Yihui, Wang Shaowu, et al. 2009. Comparative analysis of the time series of surface air temperature over China for the last 100 years [J]. Advances in Climate Change Research (in Chinese), 5(2): 71−78. doi: 10.3969/j.issn.1673-1719.2009.02.002 [35] Tibaldi S, Molteni F. 1990. On the operational predictability of blocking [J]. Tellus, 42A(3): 343−365. doi: 10.3402/tellusa.v42i3.11882 [36] Ulbrich U, Christoph M. 1999. A shift of the NAO and increasing storm track activity over Europe due to anthropogenic greenhouse gas forcing [J]. Climate Dynamics, 15: 551−559. doi: 10.1007/s003820050299 [37] Wallace J M, Gutzler D S. 1981. Teleconnections in the geopotential height field during the Northern Hemisphere winter [J]. Mon. Wea. Rev., 109(4): 784−812. doi:10.1175/1520-0493(1981)109<0784:TITGHF>2.0.CO;2 [38] Wang H J. 2001. The weakening of the Asian monsoon circulation after the end of 1970’s [J]. Adv. Atmos. Sci., 18(3): 376−386. doi: 10.1007/BF02919316 [39] Wang L, Chen W. 2014. The East Asian winter monsoon: Re-amplification in the mid-2000s [J]. Chinese Science Bulletin, 59(4): 430−436. doi: 10.1007/s11434-013-0029-0 [40] Wang L, Chen W, Zhou W, et al. 2010. Effect of the climate shift around mid 1970s on the relationship between wintertime Ural blocking circulation and East Asian climate [J]. Int. J. Climatol., 30(1): 153−158. doi: 10.1002/joc.1876 [41] 武丽梅, 陈璐, 王凯, 等. 2016. 中国大陆1983~2012年年极端气温时空变化特征 [J]. 干旱气象, 34(6): 945−951. doi: 10.11755/j.issn.1006-7639(2016)-06-0945Wu Limei, Chen Lu, Wang Kai, et al. 2016. Temporal and spatial variation characteristics of annual extreme temperature in the mainland of China during 1983-2012 [J]. Journal of Arid Meteorology (in Chinese), 34(6): 945−951. doi: 10.11755/j.issn.1006-7639(2016)-06-0945 [42] 翟盘茂, 潘晓华. 2003. 中国北方近50年温度和降水极端事件变化 [J]. 地理学报, 58(S1): 1−10. doi: 10.3321/j.issn:0375-5444.2003.z1.001Zhai Panmao, Pan Xiaohua. 2003. Change in extreme temperature and precipitation over northern China during the second half of the 20th century [J]. Acta Geographica Sinica (in Chinese), 58(S1): 1−10. doi: 10.3321/j.issn:0375-5444.2003.z1.001 [43] 张金玲, 王冀. 2007. 我国极端气温指数的时空变化与分区研究 [C]//2007年中国气象学会年会论文集. 广州: 中国气象学会年会, 403−411.Zhang Jinling, Wang Yi. 2007. Temporal and spatial changes and zoning of extreme temperature index in China [C]//Proceedings of Meteorological Society Annual Meeting (in Chinese), 403−411. [44] 张颖娴, 丁一汇, 李巧萍. 2012. 北半球温带气旋活动和风暴路径的年代际变化 [J]. 大气科学, 36(5): 912−918. doi: 10.3878/j.issn.1006-9895.2012.11158Zhang Yingxian, Ding Yihui, Li Qiaoping. 2012. Interdecadal variations of extratropical cyclone activities and storm tracks in the Northern Hemisphere [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 36(5): 912−918. doi: 10.3878/j.issn.1006-9895.2012.11158 [45] 周星妍, 朱伟军, 顾聪. 2015. 冬季北大西洋风暴轴异常对我国寒潮活动的可能影响 [J]. 大气科学, 39(5): 978−990. doi: 10.3878/j.issn.1006-9895.1501.14259Zhou Xingyan, Zhu Weijun, Gu Cong. 2015. Possible influence of the variation of the northern Atlantic storm track on the activity of cold waves in China during winter [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 39(5): 978−990. doi: 10.3878/j.issn.1006-9895.1501.14259 -