Airborne Observations of Microphysical Characteristics of Stratiform Cloud Over Eastern Side of Taihang Mountains
-
摘要: 本文利用“太行山东麓人工增雨防雹作业技术试验”的飞机和地面雷达观测数据,重点研究分析了2018年5月21日一次典型西风槽天气系统影响下的层状云微物理特征。结果表明,−5°C层的过冷水含量低于0.05 g m−3,冰粒子数浓度量级101~102 L−1。冰粒子数浓度高值区主要以针状和柱状冰晶为主。这可能低层是Hallett-Mossop机制和其他冰晶繁生机制共同作用下所产生的冰晶碎片在冰面过饱和条件下凝华增长所形成的。冰粒子数浓度低值区的冰晶形状基本以片状或枝状为主。−5°C层的冰雪晶增长主要以凝华和聚并增长为主,凇附过程很弱。零度层附近云水含量峰值区的液态水占比达到70%以上。云水含量峰值区的粒子主要以直径10~50 μm的云滴为主,伴随着少量聚合状冰晶。零度层其他区域的过冷水含量维持在0.05 g m−3左右,冰晶形态主要以聚合状、凇附状及霰粒子为主。液水层则主要以球形液滴及半融化状态的冰粒子为主。垂直探测表明:零度层以上的冰雪晶数浓度呈现随高度递增的趋势。在发展稳定的层状云内,混合层的过冷水含量很低,冰粒子主要通过凝华和聚并过程增长,云体冰晶化程度较高。而在发展较为旺盛的层状云区里过冷水含量也较高,大量液滴的存在也表明混合层冰-液相之间的转化不充分。不同温度层的粒子谱显示,冷水含量高值区的冰粒子平均浓度比过冷水低值区高,但平均直径比过冷水低值区小。Abstract: Based on the observation data obtained by the “Rainfall Enhancement and Hail Suppression Project on the Eastern Side of Taihang Mountains” in this paper, we analyze the microphysical characteristics of the stratiform cloud induced by the upper-level westerly trough on May 21, 2018. The results indicate that the supercooled liquid water content in the −5°C layer is less than 0.05 g m−3, and the concentrations of supercooled cloud droplets range from 10–102 L−1. Needle-like and columnar ice crystals are often observed in regions with high number concentrations of ice crystals, which may be related to ice crystal fragments produced by the Hallett–Mossop mechanism and other mechanisms, which are then deposited under super-saturated ice conditions. Ice crystal habits are predominantly planar and dendritic in regions with low ice-crystal number concentrations. Ice and snow crystals mainly grow via deposition and coalescence processes, with a weak rimming process. The liquid water content accounts for more than 70% in regions with a peak cloud water content near the 0°C layer. These particles are mainly cloud droplets with diameters ranging from 10 μm to 50 μm, accompanied by a few aggregates. The supercooled water content is about 0.05 g m−3 in other regions near the 0°C layer, with the ice crystal habits being predominantly aggregates, rimed snow, and graupel. Most of the particles are spherical droplets and melting ice crystals in the liquid water layer. Vertical observations indicate that the ice- and snow-crystal number concentrations increase with height above the 0°C layer. The supercooled-liquid-water content of the mixed layer is much lower in a stable stratiform cloud. Most particles mainly grow by deposition and coalescence, and the degree of ice crystallization is much higher. The existence of liquid droplets indicates that the transformation between the liquid and ice phases is not sufficient in strongly developed stratiform cloud regions where supercooled liquid water is relatively abundant. The particle size distributions at different temperature levels indicate that the average number concentration of ice particles in regions with an abundant supercooled-liquid-water content is higher than those with a low supercooled-liquid-water content. However, the average diameter of ice particles in regions with low supercooled-liquid-water content is larger.
-
图 2 2018年5月21日20时(北京时,下同)欧洲中期天气预报中心再分析资料(a)500 hPa和(b)850 hPa位势高度(黑色等值线)、温度(红色等值线,单位:°C)、风场(箭头)及风云2F卫星VISSR反演云顶亮温(阴影,单位:K,简称CTT)分布
Figure 2. Geopotential height (black contour line), temperature (red contour line), and wind field data reanalysed by the European Center for Medium-range Weather Forecasts ERA-interim and Cloud Top Temperature (CTT, units: K) retrieved by the FY2F satellite VISSR at 2000 BT 21 May 2018: (a) 500 hPa; (b) 850 hPa
图 4 2018年5月21日飞行轨迹(红色实线,AB和CD代表垂直探测区域),石家庄S波段雷达0.5°仰角反射率(阴影)分布以及SA雷达(黑色圆点)、机场位置(黑色矩形)
Figure 4. Flight path (red lines, AB and CD indicate vertical observation areas) on 21 May 2018, radar reflectivity measured by Shijiazhuang S-band radar at an elevation of 0.5° (shading area), black dots indicates location of SA radar and black rectangle indicates airport
图 6 2018年5月21日5600 m高度的飞行轨迹(红色实线,图5中DE)对应的S波段雷达反射率剖面(观测时间:21:33~22:01;温度范围:−5.1°C~−4.9°C)
Figure 6. Cross section of S band radar reflectivity overlapped by flight path (red line) with horizontal observations performed at 5600-m level (DE in Fig.5) on 21 May 2018 (Observation from 2133 BT to 2201 BT; temperature: −5.1°C– −4.9°C)
图 7 2018年5月21日飞机5600 m(图5中DE)微物理量的水平分布特征:(a)总水含量及温度;(b)Hotwire、Nevzorov含水量仪测量的液态水含量;(c)CDP、CIP和CIP(D>100 μm)粒子数浓度;(d)雷达反射率(R);(e)CDP粒子谱分布;(f)CIP粒子谱分布(D >100 μm)
Figure 7. Microphysical characteristics recorded by aircraft with horizontal observations at a height of 5600 m (DE in Fig.5) on 21 May 2018: (a) Total water content (TWC); (b) liquid water content (LWC) by Hotwire and Nevzorov sensor; (c) number concentrations by CDP (Cloud droplet probe), CIP (Cloud imaging probe), and CIP (D>100 μm); (d) radar reflectivity (R); (e) size distribution of CDP; (f) size distribution of CIP (D > 100 μm)
图 9 2018年5月21日4300 m高度的飞行轨迹(红色实线,图5中FG)对应的S波段雷达反射率剖面(观测时间:22:29~22:36;温度范围:−0.5°C~0.5°C)
Figure 9. Cross section of S band radar reflectivity overlapped by flight path (red line) with horizontal observations performed at 4300 m (FG in Fig.5) on 21 May 2018 (Observation from 2229 to 2236 BT; temperature: −0.5°C–−05°C)
图 10 2018年5月21日飞机4300 m(图5中FG)微物理量的水平分布特征:(a)总水含量及温度;(b)Hotwire、Nevzorov含水量仪测量的液态水含量;(c)CDP、CIP和CIP(D>100 μm)粒子数浓度;(d)雷达反射率(R);(e)CDP粒子谱分布;(f)CIP粒子谱分布(D >100 μm)
Figure 10. Microphysical characteristics recorded by aircraft with horizontal observations at a height of 4300 m (FG in Fig.5) on 21 May 2018: (a) Total water content (TWC); (b) liquid water content (LWC) by Hotwire and Nevzorov sensor; (c) number concentrations of CDP (Cloud droplet probe),CIP (Cloud imaging probe) and CIP (D>100 μm); (d) radar reflectivity (R); (e) size distribution of CDP; (f) size distribution of CIP (D>100 μm)
图 12 2018年5月21日3000 m高度的飞行轨迹(红色实线,图5中HI)对应的S波段雷达反射率剖面(观测时间:22:47~22:56;温度范围:5.4°C~5.6°C)
Figure 12. Cross section of S band radar reflectivity overlapped by flight path (red line) with horizontal observations performed at 3000-m level(HI in Fig.5) on 21 May 2018 (Observations from 2247 to 2256, BT; temperature: 5.4°C–5.6°C)
图 13 2018年5月21日飞机3000 m(图5中HI)微物理量的水平分布特征:(a)总含水量及温度;(b)Hotwire、Nevzorov含水量仪测量的液态水含量;(c)CDP、CIP和CIP(D>100 μm)粒子数浓度;(d)雷达反射率(R);(e)CDP粒子谱分布;(f)CIP粒子谱分布(D>100 μm)
Figure 13. Microphysical characteristics recorded by aircraft with horizontal observations at a height of 3000 m (HI in Fig.5) on 21 May 2018: (a) Total water content (TWC); (b) liquid water content (LWC) by Hotwire and Nevzorov sensor; (c) number concentrations of CDP (Cloud droplet probe),CIP (Cloud imaging probe) and CIP(D>100 μm); (d) radar reflectivity (R); (e) size distribution of CDP; (f) size distribution of CIP (D> 100 μm)
图 15 2018年5月21日20:30~20:36飞机在AB区(图5中AB)盘旋上升飞行轨迹(黑色实线)与雷达回波分布(阴影区域)以及典型CPI粒子图像
Figure 15. Cross sections of radar reflectivity (shading area) overlapped by flight path (black line) during spiral ascent in AB area from 2030 BT to 2036 BT on 21 May 2018 and typical particle images collected by CPI(Cloud particle imager)
图 16 2018年5月21日2023~20:41飞机在AB区盘旋上升探测:(a)环境温度;(b)液态水含量;(c)云滴及冰雪晶数浓度(蓝色点代表CDP,红色点代表CIP);(d)云滴谱;(e)冰雪晶粒子谱(前3档数据剔除)
Figure 16. Data from airborne instruments during spiral ascent in AB area from 2023 BT to 2041 BT on 21 May 2018: (a) Temperature; (b) LWC; (c) particle number concentrations (blue points are from CDP, red points from CIP); (d) size distribution of cloud droplets measured by CDP; (e) size distributions of large particles measured by CIP (the data of first three bins removed)
图 17 2018年5月21日21:18~21:24飞机在CD区(图5中CD)盘旋上升飞行轨迹(黑色实线)与雷达回波分布(阴影区域)以及典型CPI粒子图像
Figure 17. Cross sections of radar reflectivity (shading area) overlapped by flight path (black line) during spiral ascent in CD area (CD in Fig.5) from 2118 BT to 2124 BT on 21 May 2018 and typical particle images collected by CPI(Cloud particle imager)
图 18 2018年5月21日21:13~2133飞机在CD区盘旋上升探测:(a)环境温度;(b)液态水含量;(c)云滴及冰雪晶数浓度(蓝色点代表CDP,红色点代表CIP);(d)云滴谱;(e)冰雪晶粒子谱(前3档数据剔除)
Figure 18. Data from airborne instruments during spiral ascent in CD area from 2113 BT to 2133 BT on 21 May 2018: (a) Temperature, (b) LWC, (c) particle number concentrations (blue points from CDP, red from CIP), (d) size distribution of cloud droplets measured by CDP, and (e) size distributions of large particles measured by CIP (the data of first three bins removed)
表 1 机载云微物理探测系统及主要参数
Table 1. Cloud microphysical detection system and main parameters
探头名称 设备厂家 测量范围 分辨率 用途 被动腔气溶胶分光仪PCASP-100X(Passive Cavity Aerosol Spectrometer Probe) DMT 30通道,0.1~3 μm 0.1 μm 用于大气气溶胶粒子谱的监测。 快速云滴谱探头FCDP(Fast Cloud Droplet Probe) SPEC 21通道,2~50 μm 3 μm 云粒子谱 云滴谱探头CDP(Cloud Droplet Probe) DMT 30通道,2~50 μm 云粒子谱 二维冰晶粒子探头CIP(Cloud Imaging Probe) DMT 62通道,25~1550 μm 25 μm 用于取得高清晰云冰雪晶粒子谱及粒子二维图像。 二维降水粒子探头PIP(Precipitation Imaging Probe) DMT 62通道,100~6200 μm 100 μm 用于取得降水粒子谱及图像。 云粒子成像探头CPI(Cloud Particle Imager) SPEC 10~2000 μm 2.3 μm 用于取得云滴、冰雪晶、雨滴图像 二维立体成像光列阵探头2DS(2D-SOptical) SPEC 10~1280 μm 100 μm 用于取得云滴、冰雪晶、雨滴图像 高体积降雨分光仪HVPS(High Volume Precipitation Spectrometer) SPEC 150~19200 μm 150 μm 用于取得清晰的降水粒子谱及其粒子二维图像。 液态水含量仪LWC DMT 0~3 g m−3 云水含量 总含水量传感器TWC Nevzorov 0.005~3 g m−3 液水含量、冰雪晶含水量 综合气象测量系统AIMMS-20 Aventech 温度:−50~50°C
垂直气流速度:0~50 m s−1
海拔:0~13.7 km温度:0.3°C
速度:0.75 m s−1
海拔:18.3 m用于测量大气温压湿风和飞机运动参数。 表 2 两次垂直探测过程中各温度层云物理量平均值
Table 2. Average microphysical properties in different temperature layers in two vertical observations
T/°C AB区域 CD区域 Nevzorov
LWC/g m−3NCIP/L−1
(D>100 μm)NCDP/
L−1DCIP/μm
(D>100 μm)Nevzorov
LWC/g m−3NCIP/L−1
(D>100 μm)NCDP/
L−1DCIP/μm
(D>100 μm)−5~0 0.01 0.03 637.2 4123.5 19.5 12.6 646.8 741.0 0~5 0.05 0.04 7734.0 2704.5 4.1 4.2 519.5 435.8 注: NCIP表示CIP探头测量的直径100 μm以上的冰粒子数浓度;NCDP表示CDP探头测量的云滴数浓度;DCIP表示直径100 μm以上的冰粒子平均直径。 -
[1] Carey L D, Niu J G, Yang P, et al. 2008. The vertical profile of liquid and ice water content in midlatitude mixed-phase altocumulus clouds [J]. Journal of Applied Meteorology and Climatology, 47(9): 2487−2495. doi: 10.1175/2008jamc1885.1 [2] Crosier J, Choularton T W, Westbrook C D, et al. 2014. Microphysical properties of cold frontal rainbands [J]. Quart. J. Roy. Meteor. Soc., 140(681): 1257−1268. doi: 10.1002/qj.2206 [3] Evans A G, Locatelli J D, Stoelinga M T, et al. 2005. The IMPROVE-1 storm of 1–2 February 2001. Part II: Cloud structures and the growth of precipitation [J]. J. Atmos. Sci., 62(10): 3456−3473. doi: 10.1175/JAS3547.1 [4] Guo X L, Fu D H, Li X Y, et al. 2015. Advances in cloud physics and weather modification in China [J]. Adv. Atmos. Sci., 32(2): 230−249. doi: 10.1007/s00376-014-0006-9 [5] Heymsfield A J, Bansemer A, Field P R, et al. 2002. Observations and parameterizations of particle size distributions in deep tropical cirrus and stratiform precipitating clouds: Results from in situ observations in TRMM Field campaigns [J]. J. Atmos. Sci., 59(24): 3457−3491. doi:10.1175/1520-0469(2002)059<3457:OAPOPS>2.0.CO;2 [6] Hobbs P V, Matejka T J, Herzegh P H, et al. 1980. The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. I: A case study of a cold front [J]. J. Atmos. Sci., 37(3): 568−596. doi:10.1175/1520-0469(1980)037<0568:TMAMSA>2.0.CO;2 [7] Hogan R J, Field P R, Illingworth A J, et al. 2002. Properties of embedded convection in warm-frontal mixed-phase cloud from aircraft and polarimetric radar [J]. Quart. J. Roy. Meteor. Soc., 128(580): 451−476. doi: 10.1256/003590002321042054 [8] 洪延超. 2012. 层状云结构和降水机制研究及人工增雨问题讨论 [J]. 气候与环境研究, 17(6): 937−950. doi: 10.3878/j.issn.1006-9585.2012.06.31Hong Yanchao. 2012. Research progress of stratiform cloud structure and precipitation mechanism and discussion on artificial precipitation problems [J]. Climatic and Environmental Research (in Chinese), 17(6): 937−950. doi: 10.3878/j.issn.1006-9585.2012.06.31 [9] 洪延超, 黄美元, 王首平. 1984. 梅雨云系中亮带不均匀性的理论探讨 [J]. 大气科学, 8(2): 197−204. doi: 10.3878/j.issn.1006-9895.1984.02.10Hong Yanchao, Huang Meiyuan, Wang Shouping. 1984. A theoretical study on inhomogeneity of bright band in Mei–Yu frontal cloud system [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 8(2): 197−204. doi: 10.3878/j.issn.1006-9895.1984.02.10 [10] 侯团结, 胡朝霞, 雷恒池. 2011. 吉林一次降水层状云的结构和物理过程研究 [J]. 气象学报, 69(3): 508−520. doi: 10.11676/qxxb2011.044Hou Tuanjie, Hu Zhaoxia, Lei Hengchi. 2011. A study of the structure and microphysical processes of a precipitating stratiform cloud in Jilin [J]. Acta Meteor. Sinica (in Chinese), 69(3): 508−520. doi: 10.11676/qxxb2011.044 [11] Houze Jr R A, Hobbs P V, Herzegh P H, et al. 1979. Size distributions of precipitation particles in frontal clouds [J]. J. Atmos. Sci., 36(1): 156−162. doi:10.1175/1520-0469(1979)036<0156:SDOPPI>2.0.CO;2 [12] 黄美元, 洪延超. 1984. 在梅雨锋云系内层状云回波结构及其降水的不均匀性 [J]. 气象学报, 42(1): 80−87. doi: 10.11676/qxxb1984.008Huang Meiyuan, Hong Yanchao. 1984. The Inhomogeneous features of the precipitation and the echo structure of stratiform cloud in Mei-Yu frontal cloud system [J]. Acta Meteor. Sinica (in Chinese), 42(1): 80−87. doi: 10.11676/qxxb1984.008 [13] Jourdan O, Mioche G, Garrett T J, et al. 2010. Coupling of the microphysical and optical properties of an arctic nimbostratus cloud during the ASTAR 2004 experiment: Implications for light-scattering modeling [J]. J. Geophys. Res., 115(D23): D23206. doi: 10.1029/2010jd014016 [14] Korolev A. 2007. Reconstruction of the sizes of spherical particles from their shadow images. Part I: Theoretical considerations [J]. J. Atmos. Oceanic Technol., 24(3): 376−389. doi: 10.1175/jtech1980.1 [15] Korolev A, Emery E, Creelman K. 2013. Modification and tests of particle probe tips to mitigate effects of ice shattering [J]. J. Atmos. Oceanic Technol., 30(4): 690−708. doi: 10.1175/jtech-d-12-00142.1 [16] 李照荣, 李荣庆, 李宝梓. 2003. 兰州地区秋季层状云垂直微物理特征分析 [J]. 高原气象, 22(6): 583−589. doi: 10.3321/j.issn:1000-0534.2003.06.008Li Zhaorong, Li Rongqing, Li Baozi. 2003. Analyses on vertical microphysical Characteristics of autumn stratiform cloud in Lanzhou region [J]. Plateau Meteorology (in Chinese), 22(6): 583−589. doi: 10.3321/j.issn:1000-0534.2003.06.008 [17] 刘健, 李茂仑, 蒋彤, 等. 2005. 吉林省春季降水性层状云基本结构及降水潜力的初步研究 [J]. 气象科学, 25(6): 609−616. doi: 10.3969/j.issn.1009-0827.2005.06.007Liu Jian, Li Maolun, Jiang Tong, et al. 2005. The preliminary study of the basic structure of precipitating stratus and precipitation potential in spring in Jilin Province [J]. Scientia Meteorologica Sinica (in Chinese), 25(6): 609−616. doi: 10.3969/j.issn.1009-0827.2005.06.007 [18] McFarquhar G M, Black R A. 2004. Observations of particle size and phase in tropical cyclones: Implications for mesoscale modeling of microphysical processes [J]. J. Atmos. Sci., 61(4): 422−439. doi:10.1175/1520-0469(2004)061<0422:oopsap>2.0.co;2 [19] 庞朝云, 张丰伟, 张建辉, 等. 2016. 甘肃夏季不同天气系统层状云的微物理结构特征 [J]. 兰州大学学报(自然科学版), 52(2): 227−234. doi: 10.13885/j.issn.0455-2059.2016.02.011Pang Zhaoyun, Zhang Fengwei, Zhang Jianhui, et al. 2016. The microphysical structure of stratiform cloud in different weather systems in Gansu in summer [J]. Journal of Lanzhou University (Natural Sciences) (in Chinese), 52(2): 227−234. doi: 10.13885/j.issn.0455-2059.2016.02.011 [20] Parsons D B, Hobbs P V. 1983. The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. VII: Formation, development, interaction and dissipation of rainbands [J]. J. Atmos. Sci., 40(3): 559−579. doi:10.1175/1520-0469(1983)040<0559:TMAMSA>2.0.CO;2 [21] Patade S, Shete S, Malap N, et al. 2016. Observational and simulated cloud microphysical features of rain formation in the mixed phase clouds observed during CAIPEEX [J]. Atmospheric Research, 169: 32−45. doi: 10.1016/j.atmosres.2015.09.018 [22] Stark D, Colle B A, Yuter S E. 2013. Observed microphysical evolution for two east coast winter storms and the associated snow bands [J]. Mon. Wea. Rev., 141(6): 2037−2057. doi: 10.1175/mwr-d-12-00276.1 [23] Stith J L, Dye J E, Bansemer A, et al. 2002. Microphysical observations of tropical clouds [J]. J. Appl. Meteor., 41(2): 97−117. doi:10.1175/1520-0450(2002)041<0097:MOOTC>2.0.CO;2 [24] 孙可富, 游来光. 1965. 1963年4~6月吉林地区降水性层状冷云中的冰晶与雪晶 [J]. 气象学报, 35(3): 265−272. doi: 10.11676/qxxb1965.030Sun Kefu, You Laiguang. 1965. Ice and snow crystals observations in cold layer cloud in Jilin Province during April–June 1963 [J]. Acta Meteor. Sinica (in Chinese), 35(3): 265−272. doi: 10.11676/qxxb1965.030 [25] Taylor J W, Choularton T W, Blyth A M, et al. 2016. Observations of cloud microphysics and ice formation during COPE [J]. Atmospheric Chemistry and Physics, 16(2): 799−826. doi: 10.5194/acp-16-799-2016 [26] 汪学林, 金德镇. 1987. 云雨物理论文 [M]. 北京: 中国科学技术出版社, 38.Wang Xuelin, Jin Dezhen. 1987. Collected Works of Cloud and Precipitation Physics (in Chinese) [M]. Beijing: Science and Technology of China Press, 38. [27] Yang J F, Lei H C, Hou T J, et al. 2017. Observational evidence of high ice concentration in a shallow convective cloud embedded in stratiform cloud over North China [J]. Adv. Atmos. Sci., 34(4): 509−520. doi: 10.1007/s00376-016-6079-x [28] 张佃国, 郭学良, 付丹红, 等. 2007. 2003年8~9月北京及周边地区云系微物理飞机探测研究 [J]. 大气科学, 31(4): 596−610. doi: 10.3878/j.issn.1006-9895.2007.04.05Zhang Dianguo, Guo Xueliang, Fu Danhong, et al. 2007. Aircraft observation on cloud microphysics in Beijing and its surrounding regions during August–September 2003 [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 31(4): 596−610. doi: 10.3878/j.issn.1006-9895.2007.04.05 [29] 张磊, 何晖, 黄梦宇, 等. 2013. 一次降水性层状云微物理过程分析 [J]. 气象科技, 41(4): 742−747. doi: 10.3969/j.issn.1671-6345.2013.04.024Zhang Lei, He Hui, Huang Mengyu, et al. 2013. Analysis of microphysical processes in a stratus cloud precipitation event [J]. Meteorological Science and Technology (in Chinese), 41(4): 742−747. doi: 10.3969/j.issn.1671-6345.2013.04.024 [30] 赵仕雄, 陈文辉, 杭洪宗. 2002. 青海东北部春季系统性降水高层云系微物理结构分析 [J]. 高原气象, 21(3): 281−287. doi: 10.3321/j.issn:1000-0534.2002.03.009Zhao Shixiong, Chen Wenhui, Hang Hongzong. 2002. Analysis on precipitation Altostratus microphysical structure in spring over North–East Qinghai [J]. Plateau Meteorology (in Chinese), 21(3): 281−287. doi: 10.3321/j.issn:1000-0534.2002.03.009 [31] 朱士超, 郭学良. 2014. 华北积层混合云中冰晶形状、分布与增长过程的飞机探测研究 [J]. 气象学报, 72(2): 366−389. doi: 10.11676/qxxb2014.013Zhu Shichao, Guo Xueliang. 2014. Ice crystal habits, distribution and growth process in stratiform clouds with embedded convection in North China: Aircraft measurements [J]. Acta Meteor. Sinica (in Chinese), 72(2): 366−389. doi: 10.11676/qxxb2014.013 [32] Zhu S C, Guo X L, Lu G X, et al. 2015. Ice crystal habits and growth processes in stratiform clouds with embedded convection examined through aircraft observation in Northern China [J]. J. Atmos. Sci., 72(5): 2011−2032. doi: 10.1175/JAS-D-14-0194.1 -