高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

北京地区一次飑线的组织化过程及热动力结构特征

雷蕾 孙继松 陈明轩 秦睿 荆浩

雷蕾, 孙继松, 陈明轩, 等. 2021. 北京地区一次飑线的组织化过程及热动力结构特征[J]. 大气科学, 45(2): 1−13 doi: 10.3878/j.issn.1006-9895.2005.19198
引用本文: 雷蕾, 孙继松, 陈明轩, 等. 2021. 北京地区一次飑线的组织化过程及热动力结构特征[J]. 大气科学, 45(2): 1−13 doi: 10.3878/j.issn.1006-9895.2005.19198
LEI Lei, SUN Jisong, CHEN Mingxuan, et al. 2021. Organization Process and Thermal Dynamic Structure of a Squall Line in Beijing [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 45(2): 1−13 doi: 10.3878/j.issn.1006-9895.2005.19198
Citation: LEI Lei, SUN Jisong, CHEN Mingxuan, et al. 2021. Organization Process and Thermal Dynamic Structure of a Squall Line in Beijing [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 45(2): 1−13 doi: 10.3878/j.issn.1006-9895.2005.19198

北京地区一次飑线的组织化过程及热动力结构特征

doi: 10.3878/j.issn.1006-9895.2005.19198
基金项目: 国家自然科学基金项目41575050,公益性行业(气象)科研专项GYHY201506006,中央级公益性科研院所专项基金项目UMKY201606
详细信息
    作者简介:

    雷蕾,女,1983年出生,正高级工程师,主要从事天气预报和强对流、暴雨天气机理研究。E-mail: fyrd1234@126.com

    通讯作者:

    孙继松,E-mail: sunjs@cma.gov.cn

  • 中图分类号: P458.3

Organization Process and Thermal Dynamic Structure of a Squall Line in Beijing

Funds: National Natural Science Foundation of China (Grant 41575050), Meteorological Special Funds for Scientific Research on Public Causes (Grant GYHY201506006), Central Institute Special Funds for Scientific Research on Public Causes (Grant UMKY201606)
  • 摘要: 2015年8月7日华北西北部的一次断线状对流系统向东南方向移动,并与平原地区多单体雷暴合并、组织,最终形成强飑线,造成北京地区出现较大范围的风雹和局地短时强降水天气。基于多源资料的研究结果表明:(1)飑线形成有三个阶段:上游线状对流发展移动、平原多个单体雷暴的新生和合并、线状对流并入本地多单体后组织成飑线。第二阶段中,城区北部边缘地面热力分布不均,配合局地风场辐合,触发了雷暴。雷暴冷池范围不断扩大,温度梯度区向南扩展,造成新生对流向南传播。(2)飑线的组织化过程,呈现出两支强入流为典型特征的动力结构:一支位于雷暴冷池后侧中层(4500~5000 m),另一支位于低层飑线前侧,由强辐合区垂直于飑线指向云内。这两支强入流分别构成飑线前侧和后侧两个独立的顺时针垂直环流圈。后侧入流和前侧入流在同时加强,造成飑线前侧垂直环流不断加强,与之对应的环境垂直风切变也同步增强。这一动力过程形成了有利于飑线组织化的中尺度垂直切变环境,垂直风切变增大的本质实际上是飑线发展反馈的结果,同时也是驱动飑线快速向前移动和发展的重要因素。当后侧中层入流消失,前侧垂直环流也随之逐渐减弱,预示着飑线从成熟开始减弱消亡。(3)从热力结构看,下山的线状对流冷池与平原地区多单体雷暴的冷池合并,形成了扰动温度低于−8°C、厚度加深到1.5 km的强冷池,其前沿的β中尺度锋面附近的辐合上升运动加强,进一步促进了飑线在平原地区发展加强,并出现阵风锋。
  • 图  1  2015年8月7日15~21时(北京时,下同)逐小时飑线位置(等值线表示40 dBZ以上雷达组合反射率因子,不同颜色代表不同时次;虚线为不同时次飑线位置示意)

    Figure  1.  The hourly position of the squall line from 1500 BJT to 2100 BJT (Beijing time) 7 Aug 2015. The contours show the radar composite reflectivity above 40 dBZ, and the colors correspond to time; dashed lines denote the squall line position

    图  2  2015年8月7日(a)16~22时北京地区降雨量(单位:mm)和降雹位置(黑色三角);(b)14~22时京津冀地区极大风风速(单位:m s−1)分布

    Figure  2.  Distributions of (a) the precipitation (contours and shaded area, units: mm) and hail location (black tangle) in the Beijing area from 1600 BJT to 2200 BJT; (b) extreme wind speed (units: m s−1) in Beijing–Tianjin–Hebei from 1400 BJT to 2200 BJT on 7 Aug 2015

    图  3  2015年8月7日17:05~20:00朝阳区金盏站气温(单位:°C),气压(单位:hPa)和极大风风速(单位:m s−1)(实线表示气压,点线表示气温,虚线表示极大风风速)

    Figure  3.  Temperature (dotted line, units: °C), pressure (line, units: hPa), and extreme wind speed (dash line, units: m s−1) at Jinzhan (JZ) auto-weather-station in Beijing from 1705 BJT to 2000 BJT on 7 Aug 2015

    图  4  2015年8月7日(a)08时500 hPa位势高度(实线,间隔4 dgpm,“D”表示低压中心,粗黑线表示槽线)、温度(虚线,间隔2 °C,单位:°C)及风场(单位:m s−1);(b)14时850 hPa位势高度(实线,间隔1 dgpm,“D”表示低压中心,粗黑线表示槽线、切变线)、温度(虚线,间隔2 °C,单位:°C)及风场(单位:m s−1);(c)14时北京观象台探空(图中线条从左向右依次为相对湿度、露点、层结曲线、状态曲线;红色表示正浮力-CAPE、蓝色表示负浮力);(d)14时FY2G可见光图像

    Figure  4.  (a) Distribution of geopotential height (contoured at 40-gpm intervals, units: gpm, the trough line denoted by the black bold lines and the low pressure center by “D”, temperature (dashed line at 2 °C intervals, units: °C), and wind field (units: m s−1) at 500 hPa at 0800 BJT; (b) as in fig. (a), but for 850 hPa (at 10-gpm intervals,the trough line and wind shear line denoted by the black bold lines) at 1400 BJT; (c) sounding at Guanxiangtai station (GXT) in Beijing at 1400 BJT (lines in the chart are relative humidity, dew point, stratification curve, and state curve from left to right; red shading indicates positive buoyancy-CAPE and blue shading indicates negative buoyancy); (d) FY2G visible spectrum image at 1400 BJT 7 Aug 2015

    图  5  2015年8月7日飑线组织化过程中不同时段雷达组合反射率(单位:dBZ)分布:(a)16:35;(b)16:47;(c)17:35;(d)18:06;(e)19:18;(f)19:42

    Figure  5.  Distribution of the composite radar reflectivity (units: dBZ) of the squall line in its different stages on 7 Aug 2015: (a) 1635 BJT; (b) 1647 BJT; (c) 1735 BJT; (d) 1806 BJT; (e) 1918 BJT; (f) 1942 BJT

    图  6  2015年8月7日飑线不同阶段TBB(单位:°C)分布:(a)17:00(发展期);(b)18:00(成熟期);(c)20:00(消亡期)

    Figure  6.  Distribution of the black body temperature (TBB, units: °C) of the squall line at its different stages on 7 Aug 2015: (a) 1700 BJT (development period); (b) 1800 BJT (mature period); (c) 2000 BJT (decay period)

    图  7  2015年8月7日14时(a)假相当位温$ {\theta }_{\rm{se}} $(黑色实线,单位:K)、比湿(灰度填色,单位:g kg−1)及水汽通量辐合(黑色虚线,单位:g cm−2 hPa−1 s−1)剖面;(b)垂直速度(等值线,负值表示上升运动,单位:Pa s−1)和流场剖面(沿116.375°E,黑色三角表示北京位置)

    Figure  7.  (a) Equivalent temperature ($ {\theta }_{\rm{se}} $, black solid line, units: K), specific humidity (gray shaded area, units: g kg−1) and water vapor flux convergence (black dashed line, units: g cm−2 hPa−1 s−1); (b) the vertical velocity (contour, units: Pa s−1, negative value denotes upward motion), and flow field (along 116.375°E, black tangle indicates the location of Beijing) at 1400 BJT on 7 Aug 2015

    图  8  2015年8月7日16:20和16:40北京区域自动站地面风(单位:m s−1)和气温的分布(单位:°C):(a)16:20;(b)16:40。灰度表示地形高度(单位:m)

    Figure  8.  Distribution of the surface wind (units: m s−1) and temperature (units: °C) at (a) 1620 BJT and (b) 1640 BJT on 7 Aug 2015 (gray shaded area indicates topography height, units: m)

    图  9  2015年8月7日(a)18:30和(b)19:00 的0~6 km高度垂直风切变(灰度填色,单位:m s−1),0~3 km高度垂直风切变(箭头为风切变矢量,单位:m s−1,虚线表示风速切变大小)和大于40 dBZ的京津冀雷达拼图组合反射率(等值线,单位:dBZ

    Figure  9.  Vertical wind shear above 0–6 km (grey shaded area, units: m s−1) and 0–3 km (arrows denote wind shear vectors, units: m s−1, dotted line indicates wind shear value), and the Beijing–Tianjin–Hebei radar composition reflectivity (isogram, ≥40 dBZ)at 1830 BJT and 1900 BJT 7 Aug 2015

    图  10  (a1–d1)2015年8月7日京津冀雷达拼图组合反射率(填色,单位:dBZ)叠加四维变分同化系统(VDRAS)反演的200 m高度风场(箭头,单位:m s−1)和散度场(等值线,负值表示辐合,单位:10−5 s−1),图中黑直线表示剖面位置;(a2–d2)沿(a1–d1)中黑直线位置的垂直流场、扰动温度(等值线,单位:°C)和上升速度(填色,单位:Pa s−1)。(a1, a2)16:29,(b1, b2)18:29,(c1, c2)19:05,(d1, d2)19:23

    Figure  10.  (a1–d1) The Beijing–Tianjin–Hebei combined composite reflectivity (units: dBZ), retrieved wind field at 200 m (vector, units: m s−1) and divergence (contour, negative value denotes convergence, units: 10−5 s−1) by VDRAS (Variational Doppler Radar Analysis System); (a2–d2) vertical flow fields, perturbation temperature (contour, units: °C), and the upward speed (shaded area, units: Pa s−1) along the black line on the(a1-d1)on 7 Aug 2015. (a1, a2) 1629 BJT, (b1, b2) 1829 BJT, (c1, c2) 1905 BJT, (d1, d2) 1923 BJT

    图  11  2015年8月7日飑线上雷暴发展的热动力结构概念模型

    Figure  11.  Conceptual model of thermal dynamic structural of the thunderstorm in developing squall line on 7 Aug 2015

  • [1] Bluestein H B, Jain M H. 1985. Formation of mesoscale lines of pirecipitation: Severe squall lines in Oklahoma during the spring [J]. J. Atmos. Sci., 42(16): 1711−1732. doi:10.1175/1520-0469(1985)042<1711:FOMLOP>2.0.CO;2
    [2] 蔡则怡, 李鸿洲, 李焕安. 1988. 华北飑线系统的结构与演变特征 [J]. 大气科学, 12(2): 191−199. doi: 10.3878/j.issn.1006-9895.1988.02.11

    Cai Zeyi, Li Hongzhou, Li Huanan. 1988. Structure and evolution of squall line systems in North China [J]. Chinese Journal of Atmospheric Sciences(Scientia Atmospherica Sinica) (in Chinese), 12(2): 191−199. doi: 10.3878/j.issn.1006-9895.1988.02.11
    [3] 陈明轩, 王迎春. 2012. 低层垂直风切变和冷池相互作用影响华北地区一次飑线过程发展维持的数值模拟 [J]. 气象学报, 70(3): 371−386. doi: 10.11676/qxxb2012.033

    Chen Mingxuan, Wang Yingchun. 2012. Numerical simulation study of interactional effects of the low-level vertical wind shear with the cold pool on a squall line evolution in North China [J]. Acta Meteor. Sinica (in Chinese), 70(3): 371−386. doi: 10.11676/qxxb2012.033
    [4] Chen M X, Sun J Z, Wang Y. 2007. A frequent-updating high-resolution analysis system based on radar data for the 2008 summer Olympics[C]//Proceedings ofthe 33rd International Conference on Radar Meteorology. Cairns, Australia: Amer Meteor Soc.
    [5] 陈明轩, 王迎春, 高峰, 等. 2011. 基于雷达资料4DVar的低层热动力反演系统及其在北京奥运期间的初步应用分析 [J]. 气象学报, 69(1): 64−78. doi: 10.11676/qxxb2011.006

    Chen Mingxuan, Wang Yingchun, GaoFeng, et al. 2011. A low-level thermo-dynamical retrieval system based on the radar data 4Dvar and a preliminary analysis of its applications in support of the Beijing 2008 Olympics [J]. Acta Meteor. Sinica (in Chinese), 69(1): 64−78. doi: 10.11676/qxxb2011.006
    [6] 陈双, 王迎春, 张文龙, 等. 2011. 复杂地形下雷暴增强过程的个例研究 [J]. 气象, 37(7): 802−813. doi: 10.7519/j.issn.1000-0526.2011.7.004

    Chen Shuang, Wang Yingchun, Zhang Wenlong, et al. 2011. Intensifying mechanism of the convective storm moving from the mountain to the plain over Beijing area [J]. Meteorological Monthly (in Chinese), 37(7): 802−813. doi: 10.7519/j.issn.1000-0526.2011.7.004
    [7] 陈明轩, 肖现, 高峰, 等. 2016. 基于雷达四维变分分析系统的强对流高分辨率模拟个例分析和批量检验 [J]. 气象学报, 74(3): 421−441. doi: 10.11676/qxxb2016.031

    Chen Mingxuan, Xiao Xian, Gaofeng, et al. 2016. A case study and batch verification on high resolution numerical simulations of severe convective events using an analysis system based on rapid-refresh 4-D variational radar data assimilation [J]. Acta Meteor. Sinica (in Chinese), 74(3): 421−441. doi: 10.11676/qxxb2016.031
    [8] 丁青兰, 刘武, 朱晓虎, 等. 2008. 一次飑线天气过程多普勒雷达产品分析及临近预报 [J]. 气象科技, 36(2): 160−163. doi: 10.3969/j.issn.1671-6345.2008.02.007

    Ding Qinglan, Liu Wu, Zhu Xiaohu, et al. 2008. Analysis and nowcasting of a squall line using dopper radar products [J]. Meteorological Science and Technology (in Chinese), 36(2): 160−163. doi: 10.3969/j.issn.1671-6345.2008.02.007
    [9] 付丹红, 郭学良. 2007. 积云并合在强对流系统形成中的作用 [J]. 大气科学, 31(4): 636−644. doi: 10.3878/j.issn.1006-9895.2007.04.08

    Fu Danhong, Guo Xueliang. 2007. The role of cumulus merger in a severe mesoscale convective system [J]. Chinese Journal of Atmospheric Sciences(in Chinese), 31(4): 636−644. doi: 10.3878/j.issn.1006-9895.2007.04.08
    [10] Fujita T. 1955. Results of detailed synoptic studies of squall lines [J]. Tellus, 7(4): 405−436. doi: 10.1111/j.2153-3490.1955.tb01181.x
    [11] 黄荣, 王迎春, 张文龙. 2012. 复杂地形下北京一次局地雷暴新生和增强机制初探 [J]. 暴雨灾害, 31(3): 232−241.

    Huang Rong, Wang Yingchun, Zhang Wenlong. 2012. Initiating and intensifying mechanism of a local thunderstorm over complex terrain ofBeijing [J]. Torrential Rain and Disasters(in Chinese), 31(3): 232−241.
    [12] 梁建宇, 孙建华. 2012. 2009年6月一次飑线过程灾害性大风的形成机制 [J]. 大气科学, 36(2): 316−336. doi: 10.3878/j.issn.1006-9895.2011.11017

    Liang Jianyu, Sun Jianhua. 2012. The formation mechanism of damaging surface wind during the squall line in June 2009 [J]. Chinese Journal of Atmospheric Sciences(in Chinese), 36(2): 316−336. doi: 10.3878/j.issn.1006-9895.2011.11017
    [13] 刘香娥, 郭学良. 2012. 灾害性大风发生机理与飑线结构特征的个例分析模拟研究 [J]. 大气科学, 36(6): 1150−1164. doi: 10.3878/j.issn.1006-9895.2012.11212

    Liu Xiang’e, Guo Xueliang. 2012. Analysis and numerical simulation research on severe surface wind formation mechanism and structuralcharacteristics of a squall line case [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 36(6): 1150−1164. doi: 10.3878/j.issn.1006-9895.2012.11212
    [14] 刘淑媛, 孙健, 杨引明. 2007. 上海2004年7月12日飑线系统中尺度分析研究 [J]. 气象学报, 65(1): 84−93. doi: 10.11676/qxxb2007.008

    Liu Shuyuan, Sun Jian, Yang Yinming. 2007. Structural analysis of meso-scale convective systems in thesquall line process on 12 July 2004 in Shanghai [J]. Acta Meteor. Sinica(in Chinese), 65(1): 84−93. doi: 10.11676/qxxb2007.008
    [15] 刘莲, 王迎春, 陈明轩. 2015. 京津冀一次飑线过程的精细时空演变特征分析 [J]. 气象, 41(12): 1433−1446. doi: 10.7519/j.issn.1000-0526.2015.12.001

    Liu Lian, Wang Yingchun, Chen Mingxuan. 2015. Spatio-temporal evolution characteristics of a squall line in Beijing–Tianjin–Hebei region [J]. Meteorological Monthly (in Chinese), 41(12): 1433−1446. doi: 10.7519/j.issn.1000-0526.2015.12.001
    [16] Meng Z Y, Yan D C, Zhang Y J. 2013. General features of squall lines in East China [J]. Mon. Wea. Rev., 141(5): 1629−1647. doi: 10.1175/MWR-D-12-00208.1
    [17] Newton C W. 1950. Structure and mechanism of the prefrontal squall line [J]. J. Meteor., 7(3): 210−222. doi:10.1175/1520-0469(1950)007<0210:SAMOTP>2.0.CO;2
    [18] Ogura Y, Liou M T. 1980. The structure of a midlatitude squall line: A case study [J]. J. Atom. Sci., 37(3): 553−567. doi:10.1175/1520-0469(1980)037<0553:TSOAMS>2.0.CO;2
    [19] 潘玉洁, 赵坤, 潘益农, 等. 2012. 用双多普勒雷达分析华南一次飑线系统的中尺度结构特征 [J]. 气象学报, 70(4): 736−751. doi: 10.11676/qxxb2012.060

    Pan Yujie, Zhao Kun, Pan Yinong, et al. 2012. Dual-Doppler analysis of a squall line in southern China [J]. Acta Meteor. Sinica (in Chinese), 70(4): 736−751. doi: 10.11676/qxxb2012.060
    [20] Parker M D, Johnson R H. 2000. Organizational modes of midlatitude mesoscale convective systems [J]. Mon. Wea. Rev., 128(10): 3413−3416. doi:10.1175/1520-0493(2001)129<3413:OMOMMC>2.0.CO;2
    [21] Rotunno R, Klemp J B, Weisman M L. 1988. A theory for strong, long-lived squall lines [J]. J. Atom. Sci., 45(3): 463−485. doi:10.1175/1520-0469(1988)045<0463:ATFSLL>2.0.CO;2
    [22] Sun J Z, Crook N A. 2001. Real-time low-level wind and temperature analysis using single WSR-88D data [J]. Wea Forecasting, 16(1): 117−132. doi:10.1175/1520-0434(2001)016<0117:RTLLWA>2.0.CO;2
    [23] 孙靖, 程光光. 2017. 北京城区热动力条件对雷暴下山后强度的影响 [J]. 高原气象, 36(1): 207−218. doi: 10.7522/j.issn.1000-0534.2016.00007

    Sun Jing, ChengGuangguang. 2017. Influence of thermal and dynamical conditions over Beijing city area on strength of down-to-hill thunderstorms [J]. Plateau Meteorology (in Chinese), 36(1): 207−218. doi: 10.7522/j.issn.1000-0534.2016.00007
    [24] Sun J Z, Chen M X, Wang Y C. 2010. A frequent-updating analysis system based on radar, surface, and mesoscale model data for the Beijing 2008 forecast demonstration project [J]. Wea. Forecasting, 25(6): 1715−1735. doi: 10.1175/2010WAF2222336.1
    [25] Thorpe A J, Miller M J, Moncrieff M W. 1982. Two-dimensional convection in non-constant shear: A model of mid-latitude squall lines [J]. Quart. J. Roy. Meteor. Soc., 108(458): 739−762. doi: 10.1002/qj.49710845802
    [26] 王俊, 朱君鉴, 任钟冬. 2007. 利用双多普勒雷达研究强飑线过程的三维风场结构 [J]. 气象学报, 65(2): 241−251. doi: 10.3321/j.issn:0577-6619.2007.02.010

    Wang Jun, Zhu Junjian, Ren Zhongdong. 2007. A study of 3-D wind structure of a strong squall line using dual-Doppler weather radar data [J]. Acta Meteor. Sinica (in Chinese), 65(2): 241−251. doi: 10.3321/j.issn:0577-6619.2007.02.010
    [27] 王国荣, 卞素芬, 王令, 等. 2010. 用地面加密自动观测资料对北京地区一次飑线过程的分析 [J]. 气象, 36(6): 59−65. doi: 10.7519/j.issn.1000-0526.2010.6.009

    Wang Guorong, Bian Sufen, Wang Ling, et al. 2010. Analysis on a typical squall line case with surface automatic weather observations [J]. Meteorological Monthly (in Chinese), 36(6): 59−65. doi: 10.7519/j.issn.1000-0526.2010.6.009
    [28] Weisman M L, Rotunno R. 2004. “A theory for strong long-lived squall lines”revisited [J]. J. Atmos. Sci., 61(4): 361−382. doi:10.1175/1520-0469(2004)061<0361:ATFSLS>2.0.CO;2
    [29] Wilson J W, Feng Y R, Chen M, et al. 2010. Nowcasting challenges during the Beijing Olympics: Successes, failures, and implications for future nowcasting systems [J]. Wea. Forecasting, 25(6): 1691−1714. doi: 10.1175/2010WAF2222417.1
    [30] 吴海英, 陈海山, 蒋义芳, 等. 2013. “090603”强飑线过程动力结构特征的观测与模拟分析 [J]. 高原气象, 32(4): 1084−1094. doi: 10.7522/j.issn.1000-0534.2012.00102

    Wu Haiying, Chen Haishan, Jiang Yifang, et al. 2013. Observation and simulation analyses on dynamical structure features in a severe squall line process on 3 June 2009 [J]. Plateau Meteorology(in Chinese), 32(4): 1084−1094. doi: 10.7522/j.issn.1000-0534.2012.00102
    [31] 肖现, 王迎春, 陈明轩, 等. 2013. 基于雷达资料四维变分同化技术对北京地区一次下山突发性增强风暴热动力机制的模拟分析 [J]. 气象学报, 71(5): 797−816. doi: 10.11676/qxxb2013.077

    Xiao Xian, Wang Yingchun, Chen Mingxuan, et al. 2013. A mechanism analysis of the thermo-dynamical field of a suddenly intensifying storm from mountains in the Beijing area with the radar data 4DVar [J]. Acta Meteor. Sinica (in Chinese), 71(5): 797−816. doi: 10.11676/qxxb2013.077
    [32] 肖现, 陈明轩, 高峰, 等. 2015. 弱天气系统强迫下北京地区对流下山演变的热动力机制 [J]. 大气科学, 39(1): 100−124. doi: 10.3878/j.issn.1006-9895.1403.13318

    Xiao Xian, Chen Mingxuan, Gao Feng, et al. 2015. A thermodynamic mechanism analysis on enhancement or dissipation of convective systems from the mountains under weak synoptic forcing [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 39(1): 100−124. doi: 10.3878/j.issn.1006-9895.1403.13318
    [33] 张哲, 周玉淑, 邓国. 2016. 2013年7月31日京津冀飑线过程的数值模拟与结构分析 [J]. 大气科学, 40(3): 528−540. doi: 10.3878/j.issn.1006-9895.1507.15127

    Zhang Zhe, Zhou Yushu, Deng Guo. 2016. Numerical simulation and structural analysis of a squall line that occurred over the Beijing–Tianjin–Hebei region of China on 31 July 2013 [J]. Chinese Journal of Atmospheric Sciences(in Chinese), 40(3): 528−540. doi: 10.3878/j.issn.1006-9895.1507.15127
  • 加载中
图(11)
计量
  • 文章访问数:  53
  • HTML全文浏览量:  7
  • PDF下载量:  33
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-08-05
  • 录用日期:  2020-07-16
  • 网络出版日期:  2020-07-31

目录

    /

    返回文章
    返回