高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

1323号台风“菲特”螺旋云带中“列车效应”特征及形成分析

薛煜 李靓靓 朱业 张红蕾 刘瑞 翟国庆

薛煜, 李靓靓, 朱业, 等. 2021. 1323号台风“菲特”螺旋云带中“列车效应”特征及形成分析[J]. 大气科学, 45(2): 379−392 doi: 10.3878/j.issn.1006-9895.2011.20102
引用本文: 薛煜, 李靓靓, 朱业, 等. 2021. 1323号台风“菲特”螺旋云带中“列车效应”特征及形成分析[J]. 大气科学, 45(2): 379−392 doi: 10.3878/j.issn.1006-9895.2011.20102
XUE Yu, LI Liangliang, ZHU Ye, et al. 2021. Analysis of Characteristics and Formation of 'Train Effect' in the Spiral Cloud Belts of Typhoon 'Fitow' (No. 1323) [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 45(2): 379−392 doi: 10.3878/j.issn.1006-9895.2011.20102
Citation: XUE Yu, LI Liangliang, ZHU Ye, et al. 2021. Analysis of Characteristics and Formation of "Train Effect" in the Spiral Cloud Belts of Typhoon "Fitow" (No. 1323) [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 45(2): 379−392 doi: 10.3878/j.issn.1006-9895.2011.20102

1323号台风“菲特”螺旋云带中“列车效应”特征及形成分析

doi: 10.3878/j.issn.1006-9895.2011.20102
基金项目: 国家自然科学基金项目41930967,41575042
详细信息
    作者简介:

    薛煜,1995年出生,硕士,主要从事台风暴雨研究。E-mail: 21738001@zju.edu.cn

    通讯作者:

    翟国庆,E-mail: zhaigq@zju.edu.cn

  • 中图分类号: P445

Analysis of Characteristics and Formation of "Train Effect" in the Spiral Cloud Belts of Typhoon "Fitow" (No. 1323)

Funds: National Natural Science Foundation of China (NSFC) (Grants 41930967, 41575042)
  • 摘要: 本文针对1323号强台风“菲特”螺旋云带中出现“列车效应”的特征及形成开展了分析研究。研究发现,浙江钱塘江湾南岸持续性降水中具有“列车效应”特征,按照雨带的稳定位置,将其分为两次“列车效应”过程,时间跨度都在3~4小时左右,空间跨度在1~2个经度距离;暴雨区呈现出带状特征,降水效率高,每小时降水超过25 mm并向前线性传播;台风螺旋云带中强度在35 dBZ以上的雷达回波平均反射率也呈现线性带状结构;降水带走向和雷达回波运动方向与台风中心运动方向产生了大致在25°以上的向右偏离。从“列车效应”的形成来看,高空引导气流的方向和地面中尺度扰动辐合带走向与“列车效应”中对流单体运动方向基本一致,为其呈近线性排列提供依据。沿海形成的中尺度扰动辐合或扰动涡旋,为螺旋云带中对流在沿海地区发生或发展提供重要条件,形成了对流云的快速增长和后续发展的启动和维持机制,对于“列车效应”的形成、发展和维持起了重要作用。
  • 图  1  9点滤波算子响应函数(R)曲线

    Figure  1.  Response function (R) curve of nine-point filter operator

    图  2  2013年10月6日08:00(北京时,下同)至7日14:00台风“菲特”登陆前后移动路径(点虚线,虚线下方为日和时)和过程降水量(填色区,单位:mm)。

    Figure  2.  Movement path of typhoon “Fitow” before and after landfall (dotted line, the day and hour below the dotted line) and process precipitation (colored area; unit: mm) from 0800 BT (Beijing time) 6 to 1400 BT 7 in October 2013

    图  3  2013年10月(a)6日20:00、(b)7日02:00 850 hPa位势高度(黑色实线,单位:dagpm)、温度(红色虚线,单位:°C)、水汽通量(填色,单位:g cm−1 hPa−1 s−1)和流场(黑色箭头)分布

    Figure  3.  Geopotential height (black solid line; units: dagpm), temperature(red dotted line; units: °C), water vapor flux (colored area; units: g cm−1 hPa−1 s−1), and flow field (black arrow) at 850 hPa at (a) 2000 BT 6 October 2013 and (b) 0200 BT 7 October 2013

    图  4  2013年10月(a)6日20:00、(b)7日02:00 200 hPa风场(风矢)和水平辐散场(红色等值线,单位:10−5 s−1);2013年10月(c)6日20:00、(d)7日02:00 850 hPa风场(风矢)和925 hPa水平辐合场(黄色等值线,单位:10−5 s−1);(e)2013年10月7日02:00浙江及沿海地区850 hPa风场(风矢),蓝色箭头代表低空急流轴位置。填色区为风速,单位:m s−1

    Figure  4.  Wind (wind vectors; units: m s−1) and horizontal divergence (red contours; units: m s−1) at 200 hPa at (a) 2000 BT 6 October 2013 and (b) 0200 BT 7 October 2013. Wind (wind vectors; units: m s−1) at 850 hPa and horizontal divergence (red contours; units: m s−1) at 925 hPa at (c) 2000 BT 6 October 2013 and (d) 0200 BT 7 October 2013. (e) The 850-hPa wind field in Zhejiang and coastal areas (blue arrow represents the position of the jet stream axis; filling area represents wind speed). Shaded areas show the wind speed, units: m s−1

    图  5  2013年10月7日01:00~09:00(a)8小时降水量(填色,单位:mm)分布和(b)宁波多普勒雷达8小时平均反射率(填色,单位:dBZ)分布。(a)中黑色点线为台风中心路径,(b)灰色阴影是200米以上地形

    Figure  5.  The distribution of (a) 8-h precipitation (shaded; units: mm) and (b) 8-h average reflectance (shaded; units: dBZ) of the Ningbo Doppler radar from 0100 BT 7 to 0900 BT 7 on October 2013. The black dotted line in (a) is the central path of the typhoon. The gray shade in (b) represents the terrain above 200 m

    图  6  2013年10月7日(a)第一次01:00~04:00和(b)第二次05:00~09:00“列车效应”每小时降水量分布(左列;等值线,单位:mm)以及雷达平均反射率(右列;填色,单位:dBZ)。(a)中红色、蓝色、绿色实线分别代表01:00~02:00、02:00~03:00、03:00~04:00时段的每小时大于25 mm降水量,(c)中红色、紫色、蓝色、绿色分别代表05:00~06:00、06:00~07:00、07:00~08:00、08:00~09:00时段每小时大于25 mm的降水量

    Figure  6.  The distribution of hourly precipitation (left column; contours, units: mm) and the average radar reflectance (right column, units: dBZ) of (a) the first “train effect” from 0100 BT 7 to 0400 BT 7 in October 2013 and (c) the second “train effect” from 0500 BT 7 to 0900 BT 7 in October 2013. (a) Red, blue, and green lines represent hourly precipitation greater than 25 mm during the periods of 0100 BT–0200 BT, 0200 BT–0300 BT, and 0300 BT–0400 BT. (c) Red, purple, blue, and green lines represent hourly precipitation greater than 25 mm during the period of 0500 BT–0600 BT, 0600 BT–0700 BT, 0700 BT–0800 BT, and 0800 BT–0900 BT

    图  7  2013年10月(a)6日20:00、(b)7日02:00和(c)08:00 925 hPa散度场(填色区,单位:10−4s−1)和500 hPa风场(风矢)分布

    Figure  7.  The distribution ofdivergence disturbance (shaded; units: 10−4 s−1) at 925 hPa and wind (wind vectors; units: m s−1) at 500 hPa at (a) 2000 BT 6, (b) 0200 BT 7, and (c) 0800 BT 7 in October 2013

    图  8  2013年10月7日01:00~09:00雷达回波快速加强区分布(填色,单位:增长次数),A、B、C、D和E代表5条带状回波运动轨迹。灰色阴影区为海拔100 m以上地形

    Figure  8.  Radar echo enhancement area distribution (shaded; units: number of times of increase)from 0100 BT 7 to 0900 BT 7 in October 2013. Number A, B, C, D, E represent the movement trajectory of five stripe echoes. The gray shaded area represents the terrain above 100 m

    图  9  2013年10月7日(a、c)01:00和(b、d)04:00地面流场(黑色箭头)和散度场(填色,单位:10−4):(a、b)未滤波场;(c、d)进行滤波处理后的滤波场

    Figure  9.  Ground flow field (black arrow) and divergence (shaded; units: 10−4) at (a, c) 0100 BT 7 and (b, d) 0400 BT 7 in October 2013: (a, b) Unfiltered fields; (c, d) filtered fields after filtering

    图  10  2013年10月7日(a–d)第一次和(e–h)第二次“列车效应”雷达回波演变(填色,单位:dBZ)及地面扰动场分布:(a)00:45;(b)00:51;(c)00:57分;(d)01:14;(e)04:14;(f)04:31;(g)04:42;(h)04:48

    Figure  10.  (a–d) First and (e–h) second “train effect” radar echo evolution (shadeded; units: dBZ) and ground disturbance field on 7 October 2013: (a) 0045 BT, (b) 0051 BT, (c) 0057 BT, (d) 0114 BT, (e) 0414 BT, (f) 0431 BT, (g) 0442 BT, and (h) 0448 BT

    图  11  2013年10月7日(a)01:00~04:00、(b)05:00~09:00平均流场(黑色箭头)、辐合带平均扰动场(填色,单位:10−4 s−1)和雷达平均反射率(红色等值线代表平均强度在40 dBZ以上,单位:dBZ),灰色阴影是100 m以上地形

    Figure  11.  Average flow field (black arrow), average divergence disturbed field (filling; units: 10−4 s−1), and radar average reflectivity (red contour line represents average intensity above 40 dBZ; units: dBZ) from (a) 0100 BT to 0400 BT and (b) 0500 BT to 0900 BT on October 7, 2013. The gray shadow represents the terrain above 100 m

    图  12  “菲特”台风螺旋云带中“列车效应”特大暴雨概念模型

    Figure  12.  Conceptual model of the “train effect” rainstorm in the spiral cloud belts of typhoon “Fitow”

  • [1] Aylward R P, Dyer J L. 2010. Synoptic environments associated with the training of convective cells [J]. Wea. Forecasting, 25(2): 446−464. doi: 10.1175/2009WAF2222275.1
    [2] 蔡小辉, 杨仁勇, 周过海, 等. 2012. 1117号强台风“纳沙”引发海南岛特大暴雨过程分析 [J]. 气象研究与应用, 33(2): 5−8. doi: 10.3969/j.issn.1673-8411.2012.02.002

    Cai Xiaohui, Yang Renyong, Zhou Guohai, et al. 2012. Analysis on heavy rainfall process caused by 1117 strong typhoon “Neuchatel”in Hainan Island [J]. J. Meteor. Res. Appl. (in Chinese), 33(2): 5−8. doi: 10.3969/j.issn.1673-8411.2012.02.002
    [3] 陈华宣, 黄淑娟, 唐毓勇. 2011. 平果县2008年11月致洪暴雨天气成因分析 [J]. 气象研究与应用, 32(1): 34−36, 39. doi: 10.3969/j.issn.1673-8411.2011.01.008

    Chen Huaxuan, Huang Shujuan, Tang Yuyong. 2011. Analysis on the torrential rain of Pingguo County in Nov. 2008 [J]. J. Meteor. Res. Appl. (in Chinese), 32(1): 34−36, 39. doi: 10.3969/j.issn.1673-8411.2011.01.008
    [4] 陈见, 赖珍权, 罗小莉, 等. 2014. “尤特”超强台风残留低涡引发的广西特大暴雨成因分析 [J]. 暴雨灾害, 33(1): 19−25. doi: 10.3969/j.issn.1004-9045.2014.01.003

    Chen Jian, Lai Zhenquan, Luo Xiaoli, et al. 2014. Cause analysis of a torrential rain event induced by residual vortex from super severe typhoon Utor in Guangxi [J]. Torrential Rain Disaster. (in Chinese), 33(1): 19−25. doi: 10.3969/j.issn.1004-9045.2014.01.003
    [5] 陈联寿, 孟智勇. 2001. 我国热带气旋研究十年进展 [J]. 大气科学, 25(3): 420−432. doi: 10.3878/j.issn.1006-9895.2001.03.11

    Chen Lianshou, Meng Zhiyon. 2001. An overview on tropical cyclone research progress in China during the past ten years [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 25(3): 420−432. doi: 10.3878/j.issn.1006-9895.2001.03.11
    [6] Corfidi S F. 2003. Cold pools and MCS propagation: Forecasting the motion of downwind-developing MCSs [J]. Wea. Forecasting, 18(6): 997−1017. doi:10.1175/1520-0434(2003)018<0997:CPAMPF>2.0.CO;2
    [7] Davis R S. 2001. Flash flood forecast and detection methods [J]. Meteor. Monogr., 28(50): 481−526. doi: 10.1175/0065-9401-28.50.481
    [8] Durkee J D, Campbell L, Berry K, et al. 2012. A synoptic perspective of the record 1–2 May 2010 Mid-south heavy precipitation event [J]. Bull. Amer. Meteor. Soc., 93(5): 611−620. doi: 10.1175/BAMS-D-11-00076.1
    [9] Galarneau, Bosart LF, Schumacher R S, et al. 2010. Predecessor rain events ahead of tropical cyclones [J]. Mon. Wea. Rev., 138(8): 3272−3297. doi: 10.1175/2010MWR3243.1
    [10] 黄小玉, 胡文东, 孙弘, 等. 2009. “碧利斯”与“圣帕”引发湘东南特大暴雨雷达回波对比分析 [J]. 高原气象, 28(03): 626−633.

    Huang Xiaoyu, Hu Wending, Sun Hong, et al. 2009. Analysis on torrential rain caused by “Bilis” and “Sepat” in south–east of Hunan using Doppler radar data [J]. Plateau Meteorology (in chinese), 28(03): 626−633.
    [11] 柯文华, 俞小鼎, 林伟旺, 等. 2012. 一次由“列车效应”造成的致洪暴雨分析研究 [J]. 气象, 38(5): 552−560. doi: 10.7519/j.issn.1000-0526.2012.5.005

    Ke Wenhua, Yu Xiaoding, Lin Weiwang, et al. 2012. The analysis of the heavy rainstorm caused by “Train Effect” [J]. Meteor. Mon. (in Chinese), 38(5): 552−560. doi: 10.7519/j.issn.1000-0526.2012.5.005
    [12] 李启华, 陆汉城, 钟玮, 等. 2018. 双台风条件下水汽的中尺度输送特征与收支诊断 [J]. 物理学报, 67(3): 039201. doi: 10.7498/aps.67.20170455

    Li Qihua, Lu Hancheng, Zhong Wei, et al. 2018. Meso-scale transport characteristics and budget diagnoses of water vapor in binary typhoons [J]. Acta Phys. Sinica (in Chinese), 67(3): 039201. doi: 10.7498/aps.67.20170455
    [13] 李英, 王继志, 陈联寿, 等. 2007. 台风麦莎(Matsa)的波状降水特征研究 [J]. 科学通报, 52(7): 972−983. doi: 10.1007/s11434-007-0129-9

    Li Ying, Wang Jizhi, Chen Lianshou, et al. 2007. Study on wavy distribution of rainfall associated with typhoon Matsa (2005) [J]. Chinese Sci. Bull., 52(7): 972−983. doi: 10.1007/s11434-007-0129-9
    [14] Markowski P, Richardson Y. 2010. Mesoscale Meteorology in Midlatitudes [M].Hoboken: Wiley, 155–169. doi: 10.1002/qj.817
    [15] 孟智勇, 徐祥德, 陈联寿. 2002. 9406号台风与中纬度系统相互作用的中尺度特征 [J]. 气象学报, 60(1): 31−39. doi: 10.3321/j.issn:0577-6619.2002.01.003

    Meng Zhiyong, Xu Xiangde, Chen Lianshou. 2002. Mesoscale characteristics of the interaction between TC TIM (9406) and mid-latitude circulation [J]. Acta Meteor. Sinica (in Chinese), 60(1): 31−39. doi: 10.3321/j.issn:0577-6619.2002.01.003
    [16] Peters J M, Roebber P J. 2014. Synoptic control of heavy-rain-producing convective training episodes [J]. Mon. Wea. Rev., 142(7): 2464−2482. doi: 10.1175/MWR-D-13-00263.1
    [17] 覃丹宇. 2010. 用滤波方法进行MαCS云团形态差异的个例分析 [J]. 大气科学, 34(1): 154−162. doi: 10.3878/j.issn.1006-9895.2010.01.14

    Qin Danyu. 2010. A case study of Meso-α-scale convective system shape differences using filtering analysis [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 34(1): 154−162. doi: 10.3878/j.issn.1006-9895.2010.01.14
    [18] 陶诗言, 1980. 中国之暴雨 [J]. 北京: 科学出版社, 6–10.

    Tao Shiyan, 1980. Rainstrom of China [J]. Beijing: Science Press.
    [19] 沈晓玲, 孙琦旻. 2014. “菲特”台风暴雨成因分析 [J]. 气象与环境科学, 37(4): 33−39. doi: 10.3969/j.issn.1673-7148.2014.04.005

    Shen Xiaoling, Sun Qimin. 2014. Rainstorm cause analysis of the “Fitow” Typhoon [J]. Meteor. Environ. Sci. (in Chinese), 37(4): 33−39. doi: 10.3969/j.issn.1673-7148.2014.04.005
    [20] 寿绍文. 2003. 中尺度气象学 [M]. 北京: 气象出版社, 56–62.

    Shou Shaowen. 2003. Mesoscale Meteorology (in Chinese) [M]. Beijing: China Meteorological Press, 56–62
    [21] 寿绍文. 2019. 中国暴雨的天气学研究进展 [J]. 暴雨灾害, 38(5): 450−463. doi: 10.3969/j.issn.1004-9045.2019.05.007

    Shou Shaowen. 2019. Progress of synoptic studies for heavy rain in China [J]. Torrential Rain Disaster. (in Chinese), 38(5): 450−463. doi: 10.3969/j.issn.1004-9045.2019.05.007
    [22] 孙继松, 何娜, 郭锐, 等. 2013. 多单体雷暴的形变与列车效应传播机制 [J]. 大气科学, 37(1): 137−148. doi: 10.3878/j.issn.1006-9895.2012.12015

    Sun Jisong, He Na, Guo Rui, et al. 2013. The configuration change and train effect mechanism of multi-cell storms [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 37(1): 137−148. doi: 10.3878/j.issn.1006-9895.2012.12015
    [23] 田洪军, 施春红, 王海宾, 等. 2014. 冷空气入侵与1323号强台风“菲特”登陆上海期间降雨增幅关系的初步分析 [J]. 大气科学研究与应用(2): 102−111.

    Tian Hongjun, Shi Chunhong, Wang Haibin, et al. 2014. Preliminary analysis on enhancement of landfall typhoon rainfall caused by invasion of the cold air into binary typhoons [J]. Atmos. Sci. Res. Appl. (in Chinese)(2): 102−111.
    [24] 王晓, 余晖, 鲍旭炜, 等. 2017. “菲特”(1323)台风降水的极端性分析 [J]. 气象科学, 37(4): 514−521. doi: 10.3969/2016jms.0026

    Wang Xiao, Yu Hui, BaoXuwei, et al. 2017. Analysis on extreme characteristics of the precipitation brought by typhoon “Fitow” (1323) [J]. J. Meteor. Sci. (in Chinese), 37(4): 514−521. doi: 10.3969/2016jms.0026
    [25] 谢惠敏, 任福民, 李国平, 等. 2016. 超强台风丹娜丝对1323号强台风菲特极端降水的作用 [J]. 气象, 42(2): 156−165. doi: 10.7519/j.issn.1000-0526.2016.2.003

    Xie Huimin, Ren Fumin, Li Guoping, et al. 2016. Role of supper typhoon Danas in the extreme precipitation caused by severe typhoon Fitow [J]. Meteor. Mon. (in Chinese), 42(2): 156−165. doi: 10.7519/j.issn.1000-0526.2016.2.003
    [26] 章国材, 矫梅燕, 李延香, 等. 2007.现代天气预报技术和方法 [M]. 北京: 气象出版社, 140–143.

    Zhang Guocai, Jiao Meiyan, Li Yanxiang, et al. 2007. Techniques and Methods of Contemporary Weather Forecast (in Chinese) [M].Beijing: China Meteorological Press, 140–143.
    [27] 郑艳, 蔡亲波, 赵付竹, 等. 2014. 强台风“纳沙”暴雨中尺度特征分析 [J]. 自然灾害学报, 23(4): 134−141. doi: 10.13577/j.jnd.2014.0418

    Zheng Yan, CaiQinbo, Zhao Fuzhu, et al. 2014. Mesoscale characteristic analysis of rainstorm of violent typhoon“Neast” [J]. J. Nat. Disaster. (in Chinese), 23(4): 134−141. doi: 10.13577/j.jnd.2014.0418
    [28] 翟国庆, 俞樟孝, 孙柏民. 1991. 应用雷达回波与地面中尺度扰动场作强对流天气分析 [J]. 科技通报, 7(4): 196−201.

    Zhai Guoqing, Yu Zhangxiao, Sun Bomin. 1991. Analysis of severe convective weather with radar echoes and surface meso-Scale perturbation [J]. Bull. Sci. Technol. (in Chinese), 7(4): 196−201.
    [29] Zhu Y, Zhang H L, Chen Y L, et al. 2019. A modeling study of in homogeneous coastal gales associated with the landfall of typhoon Soudelor (2015) [J]. J. Trop. Meteor., 25(1): 1−10. doi: 10.16555/j.1006-8775.2019.01.001
    [30] 郑庆林, 吴军, 蒋平. 1996. 我国东南海岸线分布对9216号台风暴雨增幅影响的数值研究 [J]. 热带气象学报, 12(04): 17−26.

    Zheng Qinglin, Wu Jun, Jiang ping. 1996. Numerical study on the effect of the distribution of the southeast sealine of China on the amplifying if the torrential tial rain of the landing typhoon 9216 [J]. Journal of tropical meteorology, 12(04): 17−26.
  • 加载中
图(12)
计量
  • 文章访问数:  77
  • HTML全文浏览量:  16
  • PDF下载量:  31
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-10
  • 录用日期:  2020-11-10
  • 网络出版日期:  2020-12-23
  • 刊出日期:  2021-03-18

目录

    /

    返回文章
    返回