高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

吉林一次极端降水发生发展动热力过程的数值模拟分析

迟静 周玉淑 冉令坤 周括 沈新勇

迟静, 周玉淑, 冉令坤, 等. 2021. 吉林一次极端降水发生发展动热力过程的数值模拟分析[J]. 大气科学, 45(X): 1−15 doi: 10.3878/j.issn.1006-9895.2011.20183
引用本文: 迟静, 周玉淑, 冉令坤, 等. 2021. 吉林一次极端降水发生发展动热力过程的数值模拟分析[J]. 大气科学, 45(X): 1−15 doi: 10.3878/j.issn.1006-9895.2011.20183
CHI Jing, ZHOU Yushu, RAN Lingkun, et al. 2021. Numerical Simulation Analysis on the Generation and Evolution of the Dynamic and Thermodynamic Processes of an Extreme Rainfall in Jilin Province [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 45(X): 1−15 doi: 10.3878/j.issn.1006-9895.2011.20183
Citation: CHI Jing, ZHOU Yushu, RAN Lingkun, et al. 2021. Numerical Simulation Analysis on the Generation and Evolution of the Dynamic and Thermodynamic Processes of an Extreme Rainfall in Jilin Province [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 45(X): 1−15 doi: 10.3878/j.issn.1006-9895.2011.20183

吉林一次极端降水发生发展动热力过程的数值模拟分析

doi: 10.3878/j.issn.1006-9895.2011.20183
基金项目: 吉林省科技发展计划项目20180201035SF,国家自然科学基金资助项目41975137、41875056、41975054,中国气象局乌鲁木齐沙漠气象研究所专项资金项目IDM2019007,新疆维吾尔自治区2019年高层次柔性人才项目
详细信息
    作者简介:

    迟静,女,1995年出生,硕士研究生,主要从事暴雨诊断及机理分析研究。E-mail: chijing29@126.com

    通讯作者:

    沈新勇,E-mail: shenxy@nuist.edu.cn

  • 中图分类号: P445

Numerical Simulation Analysis on the Generation and Evolution of the Dynamic and Thermodynamic Processes of an Extreme Rainfall in Jilin Province

Funds: Science and Technology Project of Jilin Province (Grant 20190201035SF), National Natural Science Foundation of China (Grants 41975137, 41875056, 41975054), Special Fund Project of Urumqi Institute of Desert Meteorology (Grant IDM2019007), Xinjiang Uygur Autonomous Region 2019 High-level Flexible Talent Project
  • 摘要: 利用ERA-Interim再分析资料、常规气象观测资料、CMORPH(CPC MORPHing technique)融合降水资料以及WRF(Weather Research and Forecasting)高分辨率数值模拟结果,对2017年7月13~14日吉林地区的极端降水天气过程的环流背景和触发机制进行了分析。结果表明:(1)东北冷涡环流控制下,副高北抬与中纬度锋区形成了有利的大尺度环流背景。降水发生在冷涡底部与副高之间的平直纬向环流中,东北冷涡南部的低槽、低空切变线、高低空急流是影响此次降水的重要天气系统;(2)在高层辐散低层辐合的有利动力条件下,极端的水汽输送与吉林地区西低东高地形的阻挡和强迫抬升是极端降水产生的重要原因;(3)中高层有干冷空气入侵,伴随高空动量下传至低空,加强了低空急流发展,低空急流发展至地面附近产生超低空急流后,加强了上升运动。南北经向动量输送交汇加强了低层风辐合切变,切变线上对流发展与永吉附近小地形的抬升作用,诱导永吉县产生极端降水。
  • 图  1  2017年7月13日00:00至14日00:00(协调世界时,下同)24 h累积降水量(单位:mm),虚线为700 m地形

    Figure  1.  24 h accumulative precipitation from 0000 UTC 13 to 0000 UTC on July 14, 2017 (units: mm). The dashed line is for an elevation of 700 m

    图  2  2017年7月13日(a、b)500 hPa位势高度(等值线,单位:gpm)、温度(虚线,单位:°C)、风场(矢量箭头,单位:m s−1)和200 hPa高空急流(阴影,单位:m s−1)分布以及(c、d)850 hPa位势高度(等值线,单位:gpm)、风场(风羽符号,单位:m s−1)和低空急流(阴影,单位:m s−1)分布:06:00(左列);12:00(右列)

    Figure  2.  (a, b) Distribution of geopotential height (isolines, units: gpm), temperature (dashed lines, units: °C), wind (vectors, units: m s−1) at 500 hPa and high-level jet (shaded, units: m s−1) at 200 hPa; (c, d) distribution of geopotential height (isolines, units: gpm), wind (wind barbs, units: m s−1) and low-level jet (shaded, units: m s−1) at 850 hPa at (a, c) 0600 UTC and (b, d) 1200 UTC on July 13, 2017

    图  3  2017年7月13日06:00(a)925 hPa、(b)700 hPa水汽通量(单位:g cm−1 hPa s−1)以及(c)大气整层水汽通量(单位:kg m−1 s−1

    Figure  3.  Water vapor fluxes at (a) 925 hPa; (b) 700 hPa (units: g cm−1 hPa s−1), and (c) water vapor fluxes of the whole layer (units: kg m−1 s−1) at 0600 UTC on July 13, 2017

    图  4  2017年7月13日(a、b)850 hPa比湿(等值线,单位:g kg−1)、水汽通量散度(阴影,单位:10−7 g cm−2 hPa s−1)分布以及(c、d)比湿(等值线,单位:g kg−1)、水汽通量散度(阴影,单位:10−7 g cm−2 hPa s−1)沿43.5°N的纬向—垂直剖面图:(a、c)00:00;(b、d)12:00。黑色阴影为地形,下同

    Figure  4.  (a, b) Distribution of specific humidity (line, units: g kg−1) and vapor flux divergence (shaded, units: 10−7 g cm−2 hPa s−1) at 850 hPa; (c, d) zonal-vertical cross sections of specific humidity (isolines, units: g kg−1) and vapor flux divergences (shaded, units: 10−7 g cm−2 hPa s−1) along 43.5°N on July 13, 2017: (a, c) 0000 UTC; (b, d) 1200 UTC. Black shading denotes terrain, the same below

    图  5  2017年(a)7月13日06:00吉林省整层大气可降水量(PWAT;图中数字,单位:mm)及小时降水量(阴影,单位mm)分布;(b)吉林站7月1~17日整层大气可降水量时间演变(单位:mm;虚线为平均值)

    Figure  5.  (a) Precipitable water vapor (PWAT; numbers, units: mm) and 1-h accumulated precipitation (shaded, units: mm) in Jilin Province at 0600 UTC on July 13, 2017; (b) time series of PWAT (units: mm., the dashed line is the average) from 1 to July 7 of Jilin station in 2017

    图  6  吉林站(54172站)2012年以来8次日降水量≥50 mm的暴雨过程中(a)整层可降水量(单位:mm)、(b)水汽通量散度(单位:10−8 g cm−2 hPa s−1)和及其平均值(虚线)的对比

    Figure  6.  Comparison diagram between (a) PWAT (units: mm), (b) vapor flux divergences (units: 10−8 g cm−2 hPa s−1) and their average (dashed line) in the eight rainstorms with daily precipitation ≥50 mm since 2012 in Jilin station (54172)

    图  7  2017年7月13日(a、d)06:00、(b、e)12:00和(c、f)18:00(a–c)垂直速度(单位:Pa s−1)以及(d–f)散度(阴影,单位:10−5 s−1)、涡度(等值线,单位:10−5 s−1)沿43.5°N的垂直剖面

    Figure  7.  Vertical cross sections of (a–c) w (units: Pa s−1) and (d–f) divergence (shaded, units: 10−5 s−1), vorticity (contours, units: 10−5 s−1) along 43.5°N at (a, d) 0600 UTC, (b, e) 1200 UTC, and (c, f) 1800 UTC on July 13, 2017

    图  8  模式模拟区域(阴影表示地形高度,单位:m)

    Figure  8.  Model domains. The shading denotes the terrain (units: m)

    图  9  (a、c)CMORPH资料实况与(b、d)WRF模拟的2017年7月13日(a、b)07:00~12:00 6 h累积降水量(彩色阴影,单位:mm)和(c、d)12:00 1 h累积降水量分布(彩色阴影,单位:mm)。图中灰阶阴影区域表示地形(单位:m)

    Figure  9.  Distribution of (a, b) 6-h (0700 UTC–1200 UTC) and (c, d) 1-h (1200 UTC) accumulated precipitation (colored shade, units: mm) on July 13, 2017: (a, c) Observed from CMORPH data; (b) simulated by WRF model. The monochrome shaded areas are indicated as terrain (units: m)

    图  10  2017年7月13日00:00长春站(a)实况与(b)模拟的探空曲线,其中黑色实线表示环境温度,蓝色实线表示环境露点温度

    Figure  10.  (a) Observed and (b) simulated sounding at Changchun station on 0000 UTC July 13, 2017. Solid red line indicates ambient temperature curve and solid blue line indicates environmental dew point temperature curve

    图  11  2017年7月(a)12日22:00和(b)13日11:00模拟的雷达组合反射率(彩色阴影,单位:dBZ)和700 hPa风场(风向标,单位:m s−1)分布

    Figure  11.  Distribution of simulated radar reflectivity (colored shade, units: dBZ) and wind bars (units: m s−1) at 700 hPa on (a) 2200 UTC July 12 and (b) 1100 UTC July 13, 2017

    图  12  模拟的2017年7月13日(a)05:00、(b)07:00、(c)09:00和(d)11:00风速(阴影,单位:m s−1)和风矢量(箭头, 单位:m s−1)沿图11b中黑色实线的垂直分布(灰色柱状图表示1 h累积降水)

    Figure  12.  Vertical cross sections along the solid black line (shown in Fig. 11b) of simulated wind velocity (shaded, units: m s−1) and wind vectors (units: m s−1) at (a) 0500 UTC, (b) 0700 UTC, (c) 0900 UTC, and (d) 1100 UTC on July 13, 2017. The gray bar denotes 1-h accumulated precipitation

    图  13  方程(2)右端的(a)经向动量的局地变化项(阴影,单位:10−3 kg m−2 s−2)、(b)经向动量通量散度项(阴影,单位:10−3 kg m−2 s−2)、(c)科氏力项(阴影,单位:10−3 kg m−2 s−2)和(d)气压经向梯度(阴影,单位:10−3 Pa m−1)2017年7月13日11:00沿126.3°E的经向—垂直分布。灰色阴影区为地形,黑色实线表示模拟的1 h累积降水量(单位:mm)

    Figure  13.  Meridional–vertical sections of (a) local changes in meridional momentum (shaded, units: 10−3 kg m−2 s−2), (b) divergence of meridional momentum flux (shaded, units: 10−3 kg m−2 s−2), (c) Coriolis force term (shaded, units: 10−3 kg m−2 s−2), and (d) meridional gradient of pressure (shaded, units: 10−3 Pa m−1) along 126.3°E at 1100 UTC on July 13, 2017. The gray shading denotes terrain, and the black line denotes the simulated 1 h precipitation (units: mm)

    图  14  2017年7月13日(a)07:00、(b)09:00、(c)11:00 UTC经向动量(阴影,单位:kg m−2 s−2)和经向动量通量(箭头,单位:kg m−2 s−2)沿126.3°E的经向—垂直分布。灰色阴影区为地形,黑色实线表示模拟的1 h累积降水量(单位:mm)

    Figure  14.  Meridional-vertical sections of meridional momentum (shaded, units: kg m−2 s−2) and its fluxes (arrows, units: kg m−2 s−2) at (a) 07:00 UTC on July 13, 2017; (b) 09:00 UTC on July 13, 2017; (c) 11:00 UTC on July 13, 2017

    表  1  模式主要参数列表

    Table  1.   Model configuration for simulation

    参数化方案
    边界层方案YSU(Hong et al., 2006
    长波辐射方案RRTMG(Iacono et al., 2008
    短波辐射方案RRTMG(Iacono et al., 2008
    近地面层方案Revised MM5 (Jiménez et al., 2012)
    陆面过程方案Noah (Alapaty et al., 2008)
    云微物理方案New Thompson (Thompson et al., 2008)
    下载: 导出CSV
  • [1] Alapaty Kiran, Niyogi Dev, Chen Fei, et al. 2008. Development of the flux-adjusting surface data assimilation system for mesoscale models [J]. Journal of Applied Meteorology and Climatology, 47(9): 2331−2350. doi: 10.1175/2008jamc1831.1
    [2] 蔡雪薇, 谌芸, 沈新勇, 等. 2019. 冷涡背景下不同类型强对流天气的成因对比分析 [J]. 气象, 45(5): 621−631. doi: 10.7519/j.issn.1000-0526.2019.05.003

    Cai Xuewei, Chen Yun, Shen Xinyong, et al. 2019. Cause analysis of different types of severe convective weather under cold vortex background [J]. Meteor. Mon. (in Chinese), 45(5): 621−631. doi: 10.7519/j.issn.1000-0526.2019.05.003
    [3] Chen Q S. 1982. The instability of the gravity–inertia wave and its relation to low-level jet and heavy rainfall [J]. J. Meteor. Soc. Japan, 60(5): 1041−1057. doi: 10.2151/jmsj1965.60.5_1041
    [4] 陈立亭, 孙永罡, 白人海. 2000. 松花江、嫩江流域1998年夏季暴雨过程天气分析 [J]. 气象, 26(10): 19−23. doi: 10.3969/j.issn.1000-0526.2000.10.004

    Chen Liting, Sun Yonggang, Bai Renhai. 2000. The analysis of weather pattern in the heavy rain process over Songhuajiang and Nenjiang in 1998 [J]. Meteor. Mon. (in Chinese), 26(10): 19−23. doi: 10.3969/j.issn.1000-0526.2000.10.004
    [5] 耿全震, 黄荣辉. 1996. 辐散风和瞬变的涡度通量的异常对定常波年际异常的强迫作用 [J]. 气象学报, 54(2): 132−141. doi: 10.11676/qxxb1996.014

    Geng Quanzhen, Huang Yonghui. 1996. The forcing of anomalous divergent wind and transient vorticity fluxes to the anomaly of stationary waves [J]. Acta Meteor. Sinica (in Chinese), 54(2): 132−141. doi: 10.11676/qxxb1996.014
    [6] Jiménez, Pedro A, Dudhia Jimy, et al. 2012. A revised scheme for the WRF surface layer formulation [J]. Monthly Weather Review, 140(3): 898−918. doi: 10.1029/2008jd009944
    [7] 李霞, 张广兴. 2003. 天山可降水量和降水转化率的研究 [J]. 中国沙漠, 23(5): 509−513. doi: 10.3321/j.issn:1000-694X.2003.05.007

    Li Xia, Zhang Guangxing. 2003. Research on Precipitable water and precipitation conversion efficiency around Tianshan Mountain area [J]. Journal of Desert Research, 23(5): 509−513. doi: 10.3321/j.issn:1000-694X.2003.05.007
    [8] 李爽, 丁治英, 戴萍, 等. 2016. 东北冷涡的最新研究进展 [J]. 干旱气象, 34(1): 13−19. doi: 10.11755/j.issn.1006-7639(2016)-01-0013

    Li Shuang, Ding Zhiying, Dai Ping, et al. 2016. Recent advances in research on Northeast China cold vortex [J]. Journal of Arid Meteorology (in Chinese), 34(1): 13−19. doi: 10.11755/j.issn.1006-7639(2016)-01-0013
    [9] 刘景涛, 孟亚里, 康玲, 等. 2000. 1998年汛期嫩江松花江流域大暴雨成因分析 [J]. 气象, 26(2): 20−24. doi: 10.3969/j.issn.1000-0526.2000.02.005

    Liu Jingtao, Meng Yali, Kang Ling, et al. 2000. An analysis of macro-scale circulation characteristics and synoptic scale system with the storm rainfall occuring in the Nenjiang–SonghuaJiang River basin during 1998 flood period [J]. Meteor. Mon. (in Chinese), 26(2): 20−24. doi: 10.3969/j.issn.1000-0526.2000.02.005
    [10] 刘晶, 周雅蔓, 杨莲梅, 等. 2019. 2016年伊犁河谷大气可降水量变化特征及其与降水的关系 [J]. 干旱气象, 37(4): 565−576. doi: 10.11755/j.issn.1006-7639(2019)-04-0565

    Liu Jing, Zhou Yaman, Yang Lianmei, et al. 2019. Temporal variation characteristics of precipitable water vapor based on GPS data and its relation with precipitation at Yili River valley in 2016 [J]. Journal of Arid Meteorology (in Chinese), 37(4): 565−576. doi: 10.11755/j.issn.1006-7639(2019)-04-0565
    [11] Michael J. Iacono Jennifer S. Delamere Eli J, et al 2008. Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models [J]. Journal of Geophysical Research, 113(D13). doi: 10.1029/2008jd009944
    [12] 沈艳, 潘旸, 宇婧婧, 等. 2013. 中国区域小时降水量融合产品的质量评估 [J]. 大气科学学报, 36(1): 37−46. doi: 10.3969/j.issn.1674-7097.2013.01.005

    Shen Yan, Pan Yang, Yu Jingjing, et al. 2013. Quality assessment of hourly merged precipitation product over China [J]. Trans. Atmos. Sci. (in Chinese), 36(1): 37−46. doi: 10.3969/j.issn.1674-7097.2013.01.005
    [13] 孙继松. 2005. 北京地区夏季边界层急流的基本特征及形成机理研究 [J]. 大气科学, 29(3): 445−452. doi: 10.3878/j.issn.1006-9895.2005.03.12

    Sun Jisong. 2005. A study of the basic features and mechanism of boundary layer jet in Beijing area [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 29(3): 445−452. doi: 10.3878/j.issn.1006-9895.2005.03.12
    [14] 孙力, 安刚, 沈柏竹. 2000. “98.8.9.”嫩江流域东北冷涡暴雨过程的中尺度滤波分析 [J]. 暴雨·灾害(1): 99−110.

    Sun Li, An Gang, Shen Baizhu. 2000. Mesoscale filtering analysis of a Northeast cold vortex heavy rain case over Nenjiang River basin in summer 1998 [J]. Torrential Rain·Disaster (in Chinese)(1): 99−110.
    [15] 孙力, 安刚, 高枞亭, 等. 2002. 1998年夏季嫩江和松花江流域东北冷涡暴雨的成因分析 [J]. 应用气象学报, 13(2): 156−162. doi: 10.3969/j.issn.1001-7313.2002.02.003

    Sun Li, An Gang, Gao Zongting, et al. 2002. A composite diagnostic study of heavy rain caused by the Northeast cold vortex over Songhuajiang–Nenjiang River basin in summer of 1998 [J]. J. Appl. Meteor. Sci. (in Chinese), 13(2): 156−162. doi: 10.3969/j.issn.1001-7313.2002.02.003
    [16] 陶诗言. 1980. 中国之暴雨[M]. 北京: 科学出版社, 1–10.

    Tao Shiyan. 1980. Heavy Rainstorm in China (in Chinese) [M]. Beijing: Science Press, 1–10.
    [17] Thompson Gregory, Field Paul R, Rasmussen Roy M, et al. 2008. Explicit Forecasts of Winter Precipitation Using an Improved Bulk Microphysics Scheme. Part II: Implementation of a New Snow Parameterization [J]. Monthly Weather Review, 136(12): 5095−5115. doi: 10.1175/2008MWR2387.1
    [18] 王思慜. 2014. 台风近海活动对2014年7月8日到9日山西省区域暴雨的影响分析[C]//第31届中国气象学会年会S2 灾害天气监测、分析与预报论文集. 北京: 中国气象学会, 2628–2633.

    Wang Simin. 2014. Analysis of the impact of tyhoon offshore activities on regional rainstorms in Shanxi Province from July 8th to 9th, 2014 [C]//The 31st Annual Meeting of the Chinese Meteorological Society S2 Severe Weather Monitoring, Analysis and Forecast (in Chinese). Beijing: Chinese Meteorological Society, 2628–2633.
    [19] 王东海, 钟水新, 刘英, 等. 2007. 东北暴雨的研究 [J]. 地球科学进展, 22(6): 549−560. doi: 10.3321/j.issn:1001-8166.2007.06.001

    Wang Donghai, Zhong Shuixin, Liu Ying, et al. 2007. Advances in the study of rainstorm in Northeast China [J]. Advances in Earth Science (in Chinese), 22(6): 549−560. doi: 10.3321/j.issn:1001-8166.2007.06.001
    [20] 王宁, 徐祥德, 徐洪雄, 等. 2014. 一次东北冷涡暴雨的水汽输送特征和位涡分析 [J]. 地理科学, 34(2): 211−219. doi: 10.13249/j.cnki.sgs.2014.02.211

    Wang Ning, Xu Xiangde, Xu Hongxiong, et al. 2014. Water vapor transport features and potential vorticity analysis of a Northeast cold vortex rainstorm [J]. Scientia Geographica Sinica (in Chinese), 34(2): 211−219. doi: 10.13249/j.cnki.sgs.2014.02.211
    [21] 吴伟杰, 何金海, Hyo-Sang, 等. 2006. 夏季东亚高空急流与天气尺度波动的气候特征之间的联系 [J]. 气候与环境研究, 11(04): 525−534. doi: 10.3969/j.issn.1006-9585.2006.04.009

    Wu Weijie, He Jinhai, Hyo-Sang, et al. 2006. The relationship between the East Asian Up-tropopheric jet stream in summer and climatic characteristics of synoptic-scale disturbance [J]. Climatic and Environmental Research (in Chinese), 11(04): 525−534. doi: 10.3969/j.issn.1006-9585.2006.04.009
    [22] 杨红梅, 葛润生, 徐宝祥. 1998. 用单站探空资料分析对流层气柱水汽总量 [J]. 气象, 24(9): 8−11. doi: 10.7519/j.issn.1000-0526.1998.09.002

    Yang Hongmei, Ge Runsheng, Xu Baoxiang. 1998. Analysing troposphere air moisture content with single radiosonde station data [J]. Meteor. Mon. (in Chinese), 24(9): 8−11. doi: 10.7519/j.issn.1000-0526.1998.09.002
    [23] 袁美英, 关月, 胡好莉, 等. 2014. 2011年“7·31”东北冷涡外围中尺度涡旋暴雨分析 [J]. 自然灾害学报, 23(2): 181−189. doi: 10.13577/j.jnd.2014.0222

    Yuan Meiying, Guan Yue, Hu Haoli, et al. 2014. Analysis of meso-scale vortex rainstorm at periphery of Northeast cold vortex in July 31, 2011 [J]. Journal of Natural Disasters (in Chinese), 23(2): 181−189. doi: 10.13577/j.jnd.2014.0222
    [24] 张玲, 李泽椿. 2003. 1998年8月嫩江流域一次大暴雨的成因分析 [J]. 气象, 29(8): 7−12. doi: 10.3969/j.issn.1000-0526.2003.08.002

    Zhang Ling, Li Zechun. 2003. The reason of a heavy rain event in Nenjiang valley in August, 1998 [J]. Meteor. Mon. (in Chinese), 29(8): 7−12. doi: 10.3969/j.issn.1000-0526.2003.08.002
    [25] 张立祥, 李泽椿. 2009. 东北冷涡研究概述 [J]. 气候与环境研究, 14(2): 218−228. doi: 10.3878/j.issn.1006-9585.2009.02.11

    Zhang Lixiang, Li Zechun. 2009. A summary of research on cold vortex over Northeast China [J]. Climatic and Environmental Research (in Chinese), 14(2): 218−228. doi: 10.3878/j.issn.1006-9585.2009.02.11
    [26] 张云, 雷恒池, 钱贞成. 2008. 一次东北冷涡衰退阶段暴雨成因分析 [J]. 大气科学, 32(3): 481−498. doi: 10.3878/j.issn.1006-9895.2008.03.06

    Zhang Yun, Lei Hengchi, Qian Zhencheng. 2008. Analyses of formation mechanisms of a rainstorm during the declining phase of a Northeast cold vortex [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 32(3): 481−498. doi: 10.3878/j.issn.1006-9895.2008.03.06
    [27] 张琳娜, 冉令坤, 李娜, 等. 2018. 雷暴大风过程中对流层中低层动量通量和动能通量输送特征研究 [J]. 大气科学, 42(1): 178−191. doi: 10.3878/j.issn.1006-9895.1707.16238

    Zhang Linna, Ran Lingkun, Li Na, et al. 2018. Analysis of momentum flux and kinetic energy flux transport in the middle and lower troposphere during a thunderstorm event [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 42(1): 178−191. doi: 10.3878/j.issn.1006-9895.1707.16238
    [28] 郑秀雅, 张延治, 白人海. 1992. 东北暴雨[M]. 北京: 气象出版社, 19–43.

    Zheng Xiuya, Zhang Tingzhi, Bai Renhai. 1992. Rainstorm in Northeast China (in Chinese) [M]. Beijing: China Meteorological Press, 19–43.
    [29] 钟中, 元慧慧, 李杰, 等. 2010. 一次高空急流增强过程中的中尺度扰动和动量输送特征 [J]. 气象科学, 30(5): 639−645. doi: 10.3969/j.issn.1009-0827.2010.05.010

    Zhong Zhong, Yuan Huihui, Li Jie, et al. 2010. Characteristics of the Meso-scale perturbations and momentum transportation associated with an intensification process of upper-level jet [J]. Scientia Meteorologica Sinica (in Chinese), 30(5): 639−645. doi: 10.3969/j.issn.1009-0827.2010.05.010
    [30] 钟水新, 王东海, 张人禾, 等. 2013. 一次冷涡发展阶段大暴雨过程的中尺度对流系统研究 [J]. 高原气象, 32(2): 2435−2445. doi: 10.7522/j.issn.1000-0534.2012.00042

    Zhong Shuixin, Wang Donghai, Zhang Renhe, et al. 2013. Study of mesoscale convective system in heavy rainstorm process at a cold vortex development stage [J]. Plateau Meteorology (in Chinese), 32(2): 2435−2445. doi: 10.7522/j.issn.1000-0534.2012.00042
    [31] 邹立尧, 丁一汇. 2010. 1961–2005年东北暴雨气候特征分析 [J]. 高原气象, 29(5): 1314−1321.

    Zhou Liyao, Ding Yihui. 2010. Characteristics of rainstorm in Northeast China in 1961–2005 [J]. Plateau Meteorology (in Chinese), 29(5): 1314−1321.
  • 加载中
图(14) / 表(1)
计量
  • 文章访问数:  68
  • HTML全文浏览量:  9
  • PDF下载量:  41
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-17
  • 录用日期:  2021-01-05
  • 网络出版日期:  2021-03-03

目录

    /

    返回文章
    返回