高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于雷达资料四维变分同化和三维云模式对一次超级单体风暴发展维持热动力机制的模拟分析

陈明轩 王迎春 肖现 高峰

陈明轩, 王迎春, 肖现, 高峰. 基于雷达资料四维变分同化和三维云模式对一次超级单体风暴发展维持热动力机制的模拟分析[J]. 大气科学, 2012, 36(5): 929-944. doi: 10.3878/j.issn.1006-9895.2012.11132
引用本文: 陈明轩, 王迎春, 肖现, 高峰. 基于雷达资料四维变分同化和三维云模式对一次超级单体风暴发展维持热动力机制的模拟分析[J]. 大气科学, 2012, 36(5): 929-944. doi: 10.3878/j.issn.1006-9895.2012.11132
CHEN Mingxuan, WANG Yingchun, XIAO Xian, GAO Feng. A Case Simulation Analysis on Thermodynamical Mechanism of Supercell Storm Development Using 3-D Cloud Model and 4-D Variational Assimilation on Radar Data[J]. Chinese Journal of Atmospheric Sciences, 2012, 36(5): 929-944. doi: 10.3878/j.issn.1006-9895.2012.11132
Citation: CHEN Mingxuan, WANG Yingchun, XIAO Xian, GAO Feng. A Case Simulation Analysis on Thermodynamical Mechanism of Supercell Storm Development Using 3-D Cloud Model and 4-D Variational Assimilation on Radar Data[J]. Chinese Journal of Atmospheric Sciences, 2012, 36(5): 929-944. doi: 10.3878/j.issn.1006-9895.2012.11132

基于雷达资料四维变分同化和三维云模式对一次超级单体风暴发展维持热动力机制的模拟分析

doi: 10.3878/j.issn.1006-9895.2012.11132
基金项目: 公益性行业 (气象) 科研专项项目GYHY200706004,国家科技支撑计划课题2008BAC37B03,北京市科技计划课题Z090506016609001

A Case Simulation Analysis on Thermodynamical Mechanism of Supercell Storm Development Using 3-D Cloud Model and 4-D Variational Assimilation on Radar Data

  • 摘要: 利用三维云尺度数值模式和雷达资料快速更新循环四维变分同化 (4DVar) 技术,对京津冀地区一次强降水超级单体风暴发展演变的热动力机制进行了数值模拟和结果分析,并结合雷达、加密探空和自动站资料,揭示了快速变化的近风暴大气环境及风暴自身的热动力三维特征对超级单体形成、发展和演变的影响.雷达回波观测分析表明,这是一次由多单体合并加强为“右移”超级单体而后又分裂为多单体的风暴过程.在超级单体形成到发展成熟阶段,风暴前方中低层环境垂直风切变逐渐加强,为超级单体中稳定旋转上升气流和中气旋的形成创造了重要条件.模拟的风矢端图也指示出,风暴前方的低层环境风随高度存在显著的顺时针切变,有利于超级单体风暴的持续发展和右移.与风暴相伴随的冷池以及冷池出流 (阵风锋) 与低层环境风场的辐合均不断增强,风暴前沿的气流上升明显,低层暖湿空气在强的风切变作用下旋转上升进入风暴内,使得超级单体得以维持和加强.在超级单体消散分裂为多单体阶段,模拟的热动力特征均不利于其进一步发展.此时,中低层切变明显减弱,风矢端图具有明显的有利于多单体风暴发展的“直线型”特征.低层扰动温度显示冷池进一步增强并明显扩展,其扩展速度快于风暴的发展移动速度,冷池前沿伸展到风暴前面.低层风场指示冷池出流 (阵风锋) 更加强烈且存在明显的“前冲”特征,并开始“脱离”风暴前沿.风暴前方的辐合上升也明显减弱.基于模拟结果计算了与超级单体发展密切相关的风暴相对环境螺旋度 (SREH) 、风暴整体理查森数 (SBRN) 和风暴强度 (SS).结果显示,在超级单体形成和发展成熟阶段,SREH>150 m2/s2,SBRN<45,SS>0.4,而在超级单体形成之前和接近消散阶段,SREH<150 m2/s2,SBRN>45,SS<0.4.上述结果与前人研究结论基本一致,反映出模拟的SREH、SBRN和SS对该超级单体风暴过程具有明显指示意义.
  • [1] Barnes S L. 1964. A technique for maximizing details in numerical weather map analysis [J]. J. Appl. Meteor., 3 (4): 395-409.
    [2] Brooks H E, Wilhelmson R B. 1993. Hodograph curvature and updraft intensity in numerically modeled supercells [J]. J. Atmos. Sci., 50 (12): 1824-1833.
    [3] Browning K A. 1962. Cellular structures of convective storms [J]. Meteor. Mag., 91 (1085): 341-350.
    [4] Charba J. 1974. Application of gravity current model to analysis of squall-line gust front [J]. Mon. Wea. Rev., 102 (2): 140-156.
    [5] 陈明轩, 王迎春. 2012. 低层垂直风切变和冷池相互作用影响华北地区一次飑线过程发展维持的数值模拟 [J]. 气象学报, 70 (3): 371-386.
    [6] Chen Mingxuan, Wang Yingchun. 2011. Numerical simulation study of interactional effect of low-level vertical wind shear and cold pool on a squall line evolution in North China [J]. Acta Meteorologica Sinica (in Chinese), 70 (3): 371-386.
    [7] Chen M X, Sun J, Wang Y C. 2007. A frequent-updating high-resolution analysis system based on radar data for the 2008 summer Olympics [C]//Preprints, the 33rd International Conference on Radar Meteorology. Cairns, Australia: American Meteorological Society, 4A. 7.
    [8] 陈明轩, 高峰, 孔荣, 等. 2010. 自动临近预报系统及其在北京奥运期间的应用 [J]. 应用气象学报, 21 (4): 395-404. Chen Mingxuan, Gao Feng, Kong Rong, et al. 2010. Introduction of auto-nowcasting system for convective storm and its performance in Beijing Olympics meteorological service [J]. Journal of Applied Meteorological Science (in Chinese), 21 (4): 395-404.
    [9] 陈明轩, 王迎春, 高峰, 等. 2011. 基于雷达资料4DVar的低层热动力反演系统及其在北京奥运期间的初步应用分析 [J]. 气象学报, 69 (1): 64-78. Chen Mingxuan, Wang Yingchun, Gao Feng, et al. 2011. A low-level thermo-dynamical retrieval system based on the radar data 4DVar and a preliminary analysis of its applications in support of the Beijing 2008 Olympics [J]. Acta Meteorologica Sinica (in Chinese), 69 (1): 64-78.
    [10] Corfidi S F. 2003. Cold pools and MCS propagation: Forecasting the motion of downwind-developing MCSs [J]. Wea. Forecasting, 18 (6): 997-1017.
    [11] Davies-Jones R, Burgess D, Foster M. 1990. Test of helicity as a tornado forecast parameter [C]//Preprints, 16th Conference on Severe Local Storms. Kananaskis, AB, Canada: American Meteorological Society, 588-592.
    [12] 刁秀广, 朱君鉴, 刘志红. 2009. 三次超级单体风暴雷达产品特征及气流结构差异性分析 [J]. 气象学报, 67 (1): 133-146. Diao Xiuguang, Zhu Junjian, Liu Zhihong. 2009. Analysis of three supercell storms with Doppler weather radar data [J]. Acta Meteorologica Sinica (in Chinese), 67 (1): 133-146.
    [13] Droegemeier K K, Wilhelmson R B. 1985. Three-dimensional numerical modeling of convection produced by interacting thunderstorm outflows. Part I: Control simulation and low-level moisture variations [J]. J. Atmos. Sci., 42 (22): 2381-2403.
    [14] Droegemeier K K, Wilhelmson R B. 1987. Numerical simulation of thunderstorm outflow dynamics. Part 1: Outflow sensitivity experiments and turbulence dynamics [J]. J. Atmos. Sci., 44 (8): 1180-1210.
    [15] Droegemeier K K, Lazarus S M, Davies-Jones R. 1993. The influence of helicity on numerically simulated convective storms [J]. Mon. Wea. Rev., 121 (7): 2005-2029.
    [16] Goff R C. 1976. Vertical structure of thunderstorm outflows [J]. Mon. Wea. Rev., 104 (11): 1429-1440.
    [17] Houze R A Jr, Smull B F, Dodge P. 1990. Mesoscale organization of springtime rainstorms in Oklahoma [J]. Mon. Wea. Rev., 118 (3): 613-654.
    [18] James C N, Houze R A Jr. 2001. A real-time four-dimensional Doppler dealiasing scheme [J]. J. Atmos. Oceanic Technol., 18 (10): 1674-1683.
    [19] Kerr B W, Darkow G L. 1996. Storm-relative winds and helicity in the tornadic thunderstorm environment [J]. Wea. Forecasting, 11 (4): 489-505.
    [20] Klemp J B. 1987. Dynamics of tornadic thunderstorms [J]. Annual Review of Fluid Mechanics, 19: 369-402.
    [21] Klemp J B, Wilhelmson R B, Ray P S. 1981. Observed and numerically simulated structure of a mature supercell thunderstorm [J]. J. Atmos. Sci., 38 (8): 1558-1580.
    [22] Lemon L R. 1998. The radar“Three-Body Scatter Spike”: An operational large hail signature [J]. Wea. Forecasting, 13 (2): 327-340.
    [23] 刘术艳, 肖辉, 杜秉玉, 等. 2004. 北京一次强单体雹暴的三维数值模拟 [J]. 大气科学, 28 (3): 455-470. Liu Shuyan, Xiao Hui, Du Bingyu, etal. 2004. Three-dimensional numerical simulation of a strong convective storm in Beijing [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 28 (3): 455-470.
    [24] Maddox R A. 1976. An evaluation of tornado proximity wind and stability data [J]. Mon. Wea. Rev., 104 (2): 133-142.
    [25] Marwitz J D. 1972a. The structure and motion of severe hailstorms. Part I: Supercell storms [J]. J. Appl. Meteor., 11 (1): 166-179.
    [26] Marwitz J D. 1972b. The structure and motion of severe hailstorms. Part II: Multi-cell storms [J]. J. Appl. Meteor., 11 (1): 180-188.
    [27] Marwitz J D. 1972c. The structure and motion of severe hailstorms. Part III: Severely sheared storms [J]. J. Appl. Meteor., 11 (1): 189-201.
    [28] McCaul E W Jr, Weisman M L. 1996. Simulations of shallow supercell storms in landfalling hurricane environments [J]. Mon. Wea. Rev., 124 (3): 408-429.
    [29] McCaul E W Jr, Weisman M L. 2001. The sensitivity of simulated supercell structure and intensity to variations in the shapes of environmental buoyancy and shear profiles [J]. Mon. Wea. Rev., 129 (4): 664-687.
    [30] Moller A R, Doswell C A III, Przybylinski R. 1990. High-precipitation supercells: A conceptual model and documentation [C]//Preprints, 16th Conf. on Severe Local Storms. Kananaskis Park, Alberta, Canada: American Meteorological Society, 52-57.
    [31] Moller A R, Doswell C A III, Foster M P, et al. 1994. The operational recognition of supercell thunderstorm environments and storm structures [J]. Wea. Forecasting, 9 (3): 327-347.
    [32] Moncrieff M W, Green J S A. 1972. The propagation and transfer properties of steady convective overturning in shear [J]. Quart. J. Roy. Meteor. Soc., 98 (416): 336-352.
    [33] 潘玉洁, 赵坤, 潘益农. 2008. 一次强飑线内强降水超级单体风暴的单多普勒雷达分析 [J]. 气象学报, 66 (4): 621-636. Pan Yujie, Zhao Kun, Pan Yinong. 2008. Single-Doppler radar observation of a heavy precipitation supercell on a severe squall line [J]. Acta Meteorologica Sinica (in Chinese), 66 (4): 621-636.
    [34] Parker M D, Johnson R H. 2000. Organizational modes of midlatitude mesoscale convective systems [J]. Mon. Wea. Rev., 128 (10): 3413-3436.
    [35] Rotunno R, Klemp J B. 1982. The influence of the shear-induced pressure gradient on thunderstorm motion [J]. Mon. Wea. Rev., 110 (2): 136-151.
    [36] Rotunno R, Klemp J B. 1985. On the rotation and propagation of simulated supercell thunderstorms [J]. J. Atmos. Sci., 42 (3): 271-292.
    [37] Rotunno R. 1993. Supercell thunderstorm modeling and theory [J]. Geophysical Monograph Series, 79: 57-73.
    [38] Rotunno R, Klemp J B, Weisman M L. 1988. A theory for strong, long-lived squall lines [J]. J. Atmos. Sci., 45 (3): 463-485.
    [39] Snook N, Xue M. 2008. Effects of microphysical drop size distribution on tornadogenesis in supercell thunderstorms [J]. Geophys. Res. Lett., 35: L24803, doi: 10.1029/2008GL035866.
    [40] Sun J Z, Chen M X, Wang Y C. 2010. A frequent-updating analysis system based on radar, surface, and mesoscale model data for the Beijing 2008 forecast demonstration project [J]. Wea. Forecasting, 25 (6): 1715-1735.
    [41] Sun J Z, Crook N A. 1997. Dynamical and microphysical retrieval from Doppler radar observations using a cloud model and its adjoint: I: Model development and simulated data experiments [J]. J. Atmos. Sci., 54 (12): 1642-1661.
    [42] Sun J Z, Crook N A. 1998. Dynamical and microphysical retrieval from Doppler radar observations using a cloud model and its adjoint: II: Retrieval experiments of an observed Florida convective storm [J]. J. Atmos. Sci., 55 (5): 835-852.
    [43] Sun J Z, Crook N A. 2001. Real-time low-level wind and temperature analysis using single WSR-88D data [J]. Wea. Forecasting, 16 (1): 117-132.
    [44] Sun J Z, Zhang Y. 2008. Analysis and prediction of a squall line observed during IHOP using multiple WSR-88D observations [J]. Mon. Wea. Rev., 136 (7): 2364-2388.
    [45] 王俊, 俞小鼎, 邰庆国, 等. 2011. 一次强烈雹暴的三维结构和形成机制的单、双多普勒雷达分析 [J]. 大气科学, 35 (2): 247-285. Wang Jun, Yu Xiaoding, Tai Qingguo, et al. 2011. Analysis on the three-dimensional structure and formation mechanism of a severe hailstorm with single-and dual-Doppler radar data [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 35 (2): 247-258.
    [46] 王秀明, 钟青, 韩慎友. 2009. 一次冰雹天气强对流 (雹) 云演变及超级单体结构的个例模拟研究 [J]. 高原气象, 28 (2): 352-365. Wang Xiuming, Zhong Qing, Han Shenyou. 2009. A numerical case study on the evolution of hail cloud and the three-dimensional structure of supercell [J]. Plateau Meteorology (in Chinese), 28 (2): 335-351.
    [47] 王玉彬, 周海光, 余东昌, 等. 2008. 奥运短时临近预报实时数据处理 [J]. 气象, 34 (7): 75-83. Wang Yubin, Zhou Haiguang, Yu Dongchang, et al. 2008. Real time data processing technique on very short-range and nowcasting for Beijing 2008 Olympic Games [J]. Meteorological Monthly (in Chinese), 34 (7): 75-83.
    [48] Weisman M L, Klemp J B. 1982. The dependence of numerically simulated convective storms on vertical wind shear and buoyancy [J]. Mon. Wea. Rev., 110 (6): 504-520.
    [49] Weisman M L, Klemp J B. 1984. The structure and classification of numerically simulated convective storms in directionally varying wind shears [J]. Mon. Wea. Rev., 112 (12): 2479-2498.
    [50] Weisman M L, Klemp J B. 1986. Characteristics of isolated convective storms [M]//Ray P S, ed. Mesoscale Meteorology and Forecasting. Boston: American Meteorological Society, 331-358.
    [51] Weisman M L, Rotunno R. 2000. The use of vertical wind shear versus helicity in interpreting supercell dynamics [J]. J. Atmos. Sci., 57 (9): 1452-1472.
    [52] Weisman M L, Rotunno R. 2004. “A theory for strong long-lived squall lines”revisited [J]. J. Atmos. Sci., 61 (4): 361-382.
    [53] 俞小鼎, 郑媛媛, 廖玉芳, 等. 2008. 一次伴随强烈龙卷的强降水超级单体风暴研究 [J]. 大气科学, 32 (3): 508-522. Yu Xiaoding, Zheng Yuanyuan, Liao Yufang, et al. 2008. Observational investigation of a Tornadic heavy precipitation supercell storm [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 32 (3): 508-522.
  • 加载中
计量
  • 文章访问数:  4056
  • HTML全文浏览量:  0
  • PDF下载量:  3874
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-07-25
  • 修回日期:  2012-03-16

目录

    /

    返回文章
    返回