高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

用WRF模式中不同云微物理参数化方案对华南一次暴雨过程的数值模拟和性能分析

朱格利 林万涛 曹艳华

朱格利, 林万涛, 曹艳华. 用WRF模式中不同云微物理参数化方案对华南一次暴雨过程的数值模拟和性能分析[J]. 大气科学, 2014, 38(3): 513-523. doi: 10.3878/j.issn.1006-9895.2013.13202
引用本文: 朱格利, 林万涛, 曹艳华. 用WRF模式中不同云微物理参数化方案对华南一次暴雨过程的数值模拟和性能分析[J]. 大气科学, 2014, 38(3): 513-523. doi: 10.3878/j.issn.1006-9895.2013.13202
ZHU Geli, LIN Wantao, CAO Yanhua. Numerical Simulation of a Rainstorm Event over South China by Using Various Cloud Microphysics Parameterization Schemes in WRF Model and Its Performance Analysis[J]. Chinese Journal of Atmospheric Sciences, 2014, 38(3): 513-523. doi: 10.3878/j.issn.1006-9895.2013.13202
Citation: ZHU Geli, LIN Wantao, CAO Yanhua. Numerical Simulation of a Rainstorm Event over South China by Using Various Cloud Microphysics Parameterization Schemes in WRF Model and Its Performance Analysis[J]. Chinese Journal of Atmospheric Sciences, 2014, 38(3): 513-523. doi: 10.3878/j.issn.1006-9895.2013.13202

用WRF模式中不同云微物理参数化方案对华南一次暴雨过程的数值模拟和性能分析

doi: 10.3878/j.issn.1006-9895.2013.13202
基金项目: 中国科学院战略性先导科技专项XDA01020304

Numerical Simulation of a Rainstorm Event over South China by Using Various Cloud Microphysics Parameterization Schemes in WRF Model and Its Performance Analysis

  • 摘要: 本文使用中尺度数值模式WRFV3.4中的8种不同云微物理过程参数化方案,模拟2010年5月6~7日华南一次暴雨事件,探讨不同云微物理方案对华南暴雨模拟的影响。结果表明:不同云微物理方案对不同量级降水模拟效果总体较好。WSM3方案对小到大雨和大暴雨的模拟效果最好,对暴雨的模拟最差;WDM5方案对暴雨模拟效果最好。结合TS评分和误差分析结果,整体效果最好的是WSM5方案,最差的是Lin方案。对于同一云微物理参数化方案,不同分辨率的降水模拟结果差异不大,但同一分辨率的不同云微物理参数化方案的降水结果差异较大,这说明云微物理过程比模式分辨率对暴雨模拟的影响更大。
  • [1] 程麟生. 1999. 中尺度大气数值模式发展现状和应用前景[J]. 高原气象, 18: 350-360. Cheng Linsheng. 1999. The current status of mesoscale numerical model development and its application prospects[J]. Plateau Meteorology (in Chinese), 18: 350-360. 崔波, 王建捷, 郭肖容. 1999. MM5 在国家气象中心CRAY-C92的实时预报试验[J]. 应用气象学报, 10 (2): 129-140. Cui Bo, Wang Jianjie, Guo Xiaorong. 1999. Real-time forecast experiments using MM5 in national meteorological center[J]. Journal of Applied Meteorological (in Chinese), 10 (2): 129-140. Colle B A, Garvert M F, Wolfe J B, et al. 2005. The 13-14 December 2001 IMPROVE-2 event. Part Ⅲ: Simulated microphysical budgets and sensitivity studies[J]. J. Atmos. Sci., 62: 3535-3558. Chen F, Dudhia J. 2001. Coupling an advanced land surface-hydrology model with the Penn State-NCAR MM5 modeling system. Part I: Model implementation and sensitivity[J]. Mon. Wea. Rev., 129 (1): 569-585. Chen S H, Sun W Y. 2002. A one-dimensional time dependent cloud model[J]. J. Meteor. Soc. Japan, 80 (1): 99-118. Dudhia J. 1989. Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model[J]. J. Atmos. Sci., 46 (20): 3077-3107. Etherton B, Santos P. 2008. Sensitivity of WRF forecasts for South Florida to initial conditions[J]. Wea. Forecasting, 23: 725-740. Hong S Y, Lim J O J. 2006. The WRF single-moment 6-class microphysics scheme (WSM6)[J]. J. Korean Meteor. Soc., 42: 129-151. Hong S Y, Juang H M H, Zhao Q. 1998. Implementation of prognostic cloud scheme for a regional spectral model[J]. Mon. Wea. Rev., 126 (10): 2621-2639. Hong S Y, Dudhia J, Chen S H. 2004. A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation[J]. Mon. Wea. Rev., 132: 103-120. Hong S Y, Noh Y, Dudhia J. 2006. A new vertical diffusion package with an explicit treatment of entrainment processes[J]. Mon. Wea. Rev., 134 (9): 2318-2341. Jankov I, Gallus J W A, Shaw B, et al. 2004. An investigation of IHOP convective system predictability using a matrix of 19 WRF members[C]// Proceedings of the 84th AMS Annual Meeting, Seattle, U. S. A. Jan. 10-15. Jankov I, Gallus J W A, Segal M, et al. 2005. The impact of different WRF model physical parameterizations and their interactions on warm season MCS rainfall[J]. Wea. Forecasting, 20 (6): 1048-1060. Kain J S, Fritsch J M. 1990. A one-dimensional entraining/detraining plume model and its application in convective parameterization[J]. J. Atmos. Sci., 47: 2784-2802. Kain J S, Fritsch J M. 1993. Convective parameterization in mesoscale models: The Kain-Fritsch scheme[C]// The Representation of Cumulus Convection in Numerical Models. Boston, MA: American Meteorological Society, 24: 165-170. Khain A P, BenMoshe N, Pokrovsky A. 2008. Factors determining the impact of aerosols on surface precipitation from clouds: An attempt at classification[J]. J. Atmos. Sci., 65: 1721-1748. 李安泰, 何宏让. 2011. 不同云微物理参数化方案对舟曲"8.8"暴雨过程模拟的影响[J]. 气象与减灾研究, 34 (3): 9-16. Li Antai, He Hongrang. 2011. Impact of different cloud microphysical parameterization schemes on the numeric simulation results of "8.8" rainstorm process in Zhouqu[J]. Meteorology and Disaster Reduction Research (in Chinese), 34 (3): 9-16. Lim K S S, Hong S Y. 2010. Development of an effective double-moment cloud microphysics scheme with prognostic Cloud Condensation Nuclei (CCN) for weather and climate models[J]. Mon. Wea. Rev., 138: 1587-1612. Lin Y L, Farley R D, Orville H D. 1983. Bulk parameterization of the snow field in a cloud model[J]. J. Climate Appl. Meteor., 22: 1065-1092. 马严枝, 陆昌根, 高守亭. 2012. 8.19华北暴雨模拟中微物理方案的对比试验[J]. 大气科学, 36 (4): 835-850. Ma Yanzhi, Lu Changgen, Gao Shouting. 2012. The effects of different microphysical schemes in WRF on a heavy rainfall in North China during 18-19 August 2010[J]. Chin. J. Atmos. Sci. (in Chinese), 36 (4): 835-850. Mlawer E J, Taubman S J, Brown P D, et al. 1997. Radiative transfer for inhomogeneous atmosphere: RRTM, a validated correlated-k model for the longwave[J]. J. Geophys. Res., 102 (D14): 16663-16682. Mölders N. 2008. Suitability of the Weather Research and Forecasting (WRF) model to predict the June 2005 fire weather for interior Alaska[J]. Wea. Forecasting, 23: 953-973. Ninomiya K. 1986. Mesoscale numerical weather prediction—Numerical prediction of mesoscale severe phenomena in Japan[C]//Short and Medium Range Numerical Weather Prediction. WMO/IUGG NWP Symposium, Tokyo, 517-531. 牛俊丽, 闫之辉. 2007. WRF模式微物理方案对强降水预报的影响[J]. 科技信息, (23): 17-20. Niu Junli, Yan Zhihui. 2007. WRF microphysical model programs on the impact of heavy rainfall forecast[J]. Science and Technology Information (in Chinese), (23): 17-20.Pielke R A. 2002. Mesoscale Meteorological Modeling[M]. New York: Academic Press, 676. Rajeevan M, Kesarkar A, Thampi S B, et al. 2010. Sensitivity of WRF cloud microphysics to simulations of a severe thunder storm event over Southeast India[J]. Ann. Geophys., 28: 603-619. Rutledge S A, Hobbs P V. 1984. The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. Ⅻ: A diagnostic modeling study of precipitation development in narrow cloud-frontal rainbands[J]. J. Atmos. Sci., 41 (20): 2949-2972.Skamarock W, Klemp J B, Dudhia J, et al. 2008. A Description of the Advanced Research WRF Version 3[R]. NCAR Technical Note, NCAR/TN-475+STR. 陶诗言. 1980. 中国之暴雨[M]. 北京: 科学出版社, 225. Tao Shiyan. 1980. Storm in China (in Chinese)[M]. Beijing: China Meteorological Press, 225. Tao W K, Simpson J, Mccumber M. 1989. An ice-water saturation adjustment[J]. Mon. Wea. Rev., 117 (2): 231-235.von Storch H, Zwiers F W. 1999. Statistical Analysis in Climate Research[M]. Cambridge: Cambridge University Press, 484. Wang J, Huang B M, Huang A, et al. 2011. Parallel computation of the Weather Research and Forecast (WRF) WDM5 cloud microphysics on a many-core GPU[C]// Proceedings of the 17th International Conference on Parallel and Distributed Systems (ICPADS). Tainan: IEEE, 1032-1037. 王晓芳, 徐明, 闵爱荣, 等. 2010. 2010年5月我国南方持续性暴雨过程分析[J]. 暴雨灾害, 29 (2): 193-199. Wang Xiaofang, Xu Ming, Min Airong, et al. 2010. Analysis of precipitation and affecting systems features on persistent heavy rain in South China in May 2010[J]. Torrential Rain and Disasters (in Chinese), 29 (2): 193-199. Wicker L J, Wilhelmson R B. 1995. Simulation and analysis of tornado development and decay within a three-dimensional supercell thunderstorm[J]. J. Atmos. Sci., 52 (15): 2675-2703.Yu E T, Wang H J, Sun J Q. 2010. A quick report on a dynamical downscaling simulation over China using the nested model[J]. Atmos. Oceanic Sci. Lett., 3 (6): 325-329. Yih A C, Walsh J E. 1991. Sensitivities of numerical model forecasts of extreme cyclone events[J]. Adv. Atmos. Sci., 8 (1): 51-66. 张宇, 郭振海, 林一骅, 等. 2013. 中尺度模式风电场风速短期预报能力研究[J]. 大气科学, 37 (4): 955-962. Zhang Yu, Guo Zhenhai, Lin Yihua, et al. 2013. Predictive capacity of mesoscale model for short-range wind speed forecasting at wind power farm[J]. Chin. J. Atmos. Sci. (in Chinese), 37 (4): 955-962.
  • 加载中
计量
  • 文章访问数:  5057
  • HTML全文浏览量:  2
  • PDF下载量:  4658
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-06-26
  • 修回日期:  2013-12-18

目录

    /

    返回文章
    返回