高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

寿县不同强度雾的微物理特征及其与能见度的关系

张浩 石春娥 杨军 倪婷

张浩, 石春娥, 杨军, 等. 2021. 寿县不同强度雾的微物理特征及其与能见度的关系[J]. 大气科学, 45(5): 1−15 doi: 10.3878/j.issn.1006-9895.2103.20230
引用本文: 张浩, 石春娥, 杨军, 等. 2021. 寿县不同强度雾的微物理特征及其与能见度的关系[J]. 大气科学, 45(5): 1−15 doi: 10.3878/j.issn.1006-9895.2103.20230
ZHANG Hao, SHI Chun’ e, YANG Jun, et al. 2021. Microphysical Characteristics of Fog with Different Intensities and Their Relationship with Visibility in Shouxian County [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 45(5): 1−15 doi: 10.3878/j.issn.1006-9895.2103.20230
Citation: ZHANG Hao, SHI Chun’ e, YANG Jun, et al. 2021. Microphysical Characteristics of Fog with Different Intensities and Their Relationship with Visibility in Shouxian County [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 45(5): 1−15 doi: 10.3878/j.issn.1006-9895.2103.20230

寿县不同强度雾的微物理特征及其与能见度的关系

doi: 10.3878/j.issn.1006-9895.2103.20230
基金项目: 国家自然科学基金项目41875171、41675135,安徽省重点研究和开发计划项目1804a0802215
详细信息
    作者简介:

    张浩,男,1982年出生,高级工程师,主要从事大气环境和大气成分变化研究。Email: hero-1225@163.com

    通讯作者:

    石春娥,Email: shichune@sina.com

  • 中图分类号: P426

Microphysical Characteristics of Fog with Different Intensities and Their Relationship with Visibility in Shouxian County

Funds: National Natural Science Foundation of China (Grants 41875171, 41675135), Key Research and Development Project of Anhui Province (Grant 1804a0802215)
  • 摘要: 雾对交通运输有不利影响,尤其是强浓雾。本文利用2019年1月上中旬在寿县国家气候观象台应用FM-100型雾滴谱仪测量的雾滴谱数据和常规气象观测数据,分析了不同强度雾的微物理特征,以及能见度与含水量、雾滴数浓度、相对湿度之间的关系,在此基础上建立了能见度参数化方案。结果表明:(1)随着雾的强度增强,雾中含水量显著增大,大雾、浓雾和强浓雾阶段含水量平均值分别为0.003 g m−3、0.01 g m−3和0.09 g m−3;当含水量大于0.02 g m−3,出现强浓雾的比例高达95%。(2)雾滴数浓度、雾滴尺度随着雾强度增强而增大,从大雾到浓雾,雾滴数浓度显著增加(增幅67%),而从浓雾到强浓雾,雾滴尺度显著增大,平均直径、平均有效半径分别增加62%、135%;当雾滴有效半径大于4.7 μm,出现强浓雾的比例高达95%。(3)强浓雾、浓雾、大雾雾滴数浓度谱分布均为双峰结构,谱分布整体偏向小粒子一端,强浓雾谱型为Deirmendjian分布,浓雾、大雾均为Junge分布;强浓雾的雾水质量浓度谱呈现多峰特征,最大峰值出现在21.5 μm处,浓雾雾水质量浓度谱为双峰分布,大雾为单峰型,最大峰值均出现在5 μm处。(4)含水量、数浓度与能见度均呈反相关关系,含水量对能见度的影响最为显著;分别采用全样本和分段方式建立了四种能见度参数化方案,评估检验结果表明,基于含水量的能见度分段拟合方案对能见度的估算效果最好。
  • 图  1  2019年1月寿县雾综合观测期间(a)能见度(V)和相对湿度(RH)、(b)含水量(L)和数浓度(N)、(c)平均直径、(d)有效半径、(e)风速(WV)和气温(T)随时间的变化

    Figure  1.  Temporal variations of (a) visibility (V) and relative humidity (RH), (b) liquid water content (L) and number concentration (N), (c) mean diameter, (d) effective radius, (e) wind speed (WV) and temperature (T) in Shouxian County during fog comprehensive observation in January 2019

    图  2  2019年1月寿县雾综合观测期间大雾(Fog)、浓雾(Dense fog)、强浓雾(ExDense fog)阶段(a)雾滴数浓度、(b)含水量、(c)有效半径(Re)分布箱线图。上下两个横线分别表示最大值和最小值;长方形中的横线表示中值,实心圆表示均值;长方形的下、上边分别表示第一、三四分位值

    Figure  2.  Box plots of the (a) droplet number concentration, (b) liquid water content, and (c) effective radius (Re) for fog, dense fog, extremely dense fog (ExDense fog) in Shouxian County during fog comprehensive observation in January 2019. The upper transverse line: maximum, the lower transverse line: minimum; transverse line within the rectangles: median; solid circle within the rectangles: mean; the upper and lower borders of the rectangles: 25th and 75th percentiles

    图  3  2019年1月寿县雾综合观测期间不同强度雾雾滴(a)数浓度谱、(b)雾水质量浓度谱分布

    Figure  3.  Distributions of (a) the droplet number concentration spectrum and (b) liquid water mass concentration spectrum for different fog intensities in Shouxian County during fog comprehensive observation in January 2019

    图  4  2019年1月寿县雾综合观测期间雾含水量与雾滴数浓度散点图

    Figure  4.  Scatter plot between the liquid water content and number concentration of fog droplets in Shouxian County during fog comprehensive observation in January 2019

    图  5  2019年1月寿县雾综合观测期间(a)含水量、(b)数浓度、(c)含水量×数浓度、(d)相对湿度与能见度的关系

    Figure  5.  Relationships between (a) liquid water content, (b) number concentration, (c) liquid water content×number concentration, (d) relative humidity and the visibility in Shouxian County during fog comprehensive observation in January 2019

    图  6  2019年1月寿县雾综合观测期间不同参数化方案拟合能见度与观测能见度对比

    Figure  6.  Comparison between fitting visibilities by different parameterization schemes and observed visibility in Shouxian County during fog comprehensive observation in January 2019

    表  1  2019年1月寿县雾综合观测期间不同强度雾过程起止时间

    Table  1.   Start and end time of fog processes with different intensities in Shouxian County during fog comprehensive observation in January 2019

    起止时间
    大雾浓雾强浓雾
    雾天气过程17日22:01至8日06:598日07:00~08:45
    8日08:46~11:43
    雾天气过程212日01:13~07:51
    雾天气过程313日02:42~03:4213日03:43~10:43
    雾天气过程413日19:42~21:2013日21:21~22:48
    13日22:49至14日01:1414日01:15~02:35
    14日02:36~05:2314日05:24~06:20
    14日06:21~08:29
    下载: 导出CSV

    表  2  2019年1月寿县雾综合观测期间雾微物理特征及与其他地区的比较

    Table  2.   Comparisons of microphysical characteristics of fog in Shouxian County during fog comprehensive observation in January 2019 and other areas

    观测地点、日期雾等级或阶段能见度/m数浓度/cm−3含水量/g m−3平均直径D/μm最大直径Dmax/μm
    平均值范围平均值范围平均值范围平均值范围
    本研究大雾500~998113.1612.57~250.920.0029380.000179~0.0259952.972.57~4.7027.839.0~48.5
    浓雾219~498189.2689.33~305.150.0102970.002684~0.0291853.622.71~4.8241.8013.0~48.5
    强浓雾68~195195.5533.30~527.630.0904550.004154~0.3798505.883.07~8.2635.7221.5~48.5
    济南
    2017年1月3~4日(王庆等, 2019
    形成阶段600~10182.061.39~3.310.0001100.000060~0.00034012.00
    发展阶段100~800112.281.26~806.320.0355100.000040~0.21985046.00
    成熟阶段50~70155.787.84~1238.250.0420900.001750~0.37345050.00
    天津市气象局
    2016年12月31日至2017年1月1日(高雅, 2019
    形成、发展阶段303~10012.381.04~14.290.0007280.000053~0.0076765.944.43~9.13
    成熟阶段65~53122.291.63~181.080.0130000.000344~0.0550008.225.21~14.20
    河北涿州
    2011年12月4日(方春刚和郭学良, 2019
    形成阶段500~10000~200~0.0100002.50~4.0015.0~30.0
    发展阶段100~400100~5000.010000~0.0800004.00~5.0020.0~40.0
    成熟阶段70 m左右100~7000.020000~0.2700004.00~5.6030.0~50.0
    南京信息工程大学
    2006年12月24~27日(刘端阳等, 2009
    形成阶段150~50025.042.17~667.500.0005000.000011~0.0332802.041.34~3.1223.5011.5~23.5
    发展阶段15~150580.65104.46~858.900.2238000.038280~0.6296005.852.81~8.1040.9730.5~46.5
    成熟阶段15 m以下488.6595.85~786.690.3474000.032700~0.8996005.813.85~8.0248.3330.5~49.5
    注:天津、济南的观测仪器为FM-120型雾滴谱仪,其他地区为FM-100型雾滴谱仪。
    下载: 导出CSV

    表  3  2019年1月寿县雾综合观测期间不同强度雾阶段含水量的变异系数、平均值±1倍标准差的样本数占总样本的比例

    Table  3.   Variation coefficients and proportion of sample number (within mean ± one times standard deviation) to the total sample number for liquid water content in different fog intensity stages in Shouxian County during fog comprehensive observation in January 2019

    变异系数平均值±1倍标准差样本数占总样本的比例
    大雾 0.89788.9%
    浓雾 0.67878.6%
    强浓雾0.65477.4%
    下载: 导出CSV

    表  4  2019年1月寿县雾综合观测期间能见度与不同微物理量之间的拟合关系式

    Table  4.   Fitting relationships between visibility and different fog microphysical parameters in Shouxian County during fog comprehensive observation in January 2019

    参数化方案参数拟合方式拟合关系式相关系数
    方案1含水量(L所有建模样本V=0.0504L−0.4040.965
    V<200 mV=0.063L−0.1930.617
    V≥200 mV=0.0923−0.3330.948
    方案2数浓度(N所有建模样本V=4.799N−0.5070.821
    V<200 mV=0.1398N−0.0570.162
    V≥200 mV=3.7925N−0.3660.911
    方案3含水量×数浓度(L×N所有建模样本V=0.3632/(L×N)0.2360.927
    V<200 mV=0.1287/(L×N)0.0840.451
    V≥200 mV=0.5334/(L×N)0.1770.939
    方案4相对湿度(RH)所有建模样本V=69.12-14.84×ln(RH)0.724
    下载: 导出CSV

    表  5  2019年1月寿县雾综合观测期间不同能见度参数化方案验证结果

    Table  5.   Verification results of different visibility parameterization schemes in Shouxian County during fog comprehensive observation in January 2019

    参数化方案拟合方式相关系数能见度平均
    相对误差
    能见度均方
    根误差/km
    方案1所有样本拟合0.94822.2%0.355
    分段拟合0.95416.6%0.285
    方案2所有样本拟合0.88260.6%0.595
    分段拟合0.93021.3%0.365
    方案3所有样本拟合0.92634.8%0.498
    分段拟合0.94818.1%0.309
    方案4所有样本拟合0.723141.1%0.655
    下载: 导出CSV

    表  6  2019年1月寿县雾综合观测期间不同等级能见度评估检验结果

    Table  6.   Evaluation and inspection results of visibility at different levels in Shouxian County during fog comprehensive observation in January 2019

    方案1方案2方案3
    STRFARMIFBSTRFARMIFBSTRFARMIFB
    0.5 km≤V<1 km0.5940.3440.1371.3160.5420.4430.0451.7160.5740.3920.0901.498
    0.2 km≤V<0.5 km0.3770.2890.5550.6260.0490.0000.9510.0490.2930.2160.6810.407
    V<0.2 km0.8750.0990.0331.0730.8750.0990.0331.0730.8750.0990.0331.073
    注:粗体表示各级能见度不同检验指标的最优值。
    下载: 导出CSV
  • [1] 鲍宝堂, 束家鑫, 朱炳权. 1995. 上海城市雾理化特性的研究 [J]. 南京气象学院学报, 18(1): 114−118. doi: 10.13878/j.cnki.dqkxb.1995.01.017

    Bao Baotang, Shu Jiaxin, Zhu Binquan. 1995. Study on physicochemical properties of urban fog in Shanghai [J]. J. Nanjing Inst. Meteor. (in Chinese), 18(1): 114−118. doi: 10.13878/j.cnki.dqkxb.1995.01.017
    [2] Benjamin S G, Dévényi D, Weygandt S S, et al. 2004. An hourly assimilation–forecast cycle: The RUC [J]. Mon. Wea. Rev., 132(2): 495−518. doi:10.1175/1520-0493(2004)132<0495:AHACTR>2.0.CO;2
    [3] Brenguier J L, Pawlowska H, Schüller L, et al. 2000. Radiative properties of boundary layer clouds: Droplet effective radius versus number concentration [J]. J. Atmos. Sci., 57(6): 803−821. doi:10.1175/1520-0469(2000)057<0803:RPOBLC>2.0.CO;2
    [4] Eldridge R G. 1961. A few fog drop–size distributions [J]. J. Atmos. Sci., 18(5): 671−676. doi:10.1175/1520-0469(1961)018<0671:AFFDSD>2.0.CO;2
    [5] Eldridge R G. 1971. The relationship between visibility and liquid water content in fog [J]. J. Atmos. Sci., 28(7): 1183−1186. doi:10.1175/1520-0469(1971)028<1183:TRBVAL>2.0.CO;2
    [6] Eugster W, Burkard R, Holwerda F, et al. 2006. Characteristics of fog and fog water fluxes in a Puerto Rican Elfin cloud forest [J]. Agric. For. Meteor., 139(3–4): 288−306. doi: 10.1016/j.agrformet.2006.07.008
    [7] 方春刚, 郭学良. 2019. 华北一次浓雾过程爆发性增强的微物理特征 [J]. 应用气象学报, 30(6): 700−709. doi: 10.11898/1001-7313.20190606

    Fang Chungang, Guo Xueliang. 2019. The microphysical structure of a heavy fog event in North China [J]. J. Appl. Meteor. Sci. (in Chinese), 30(6): 700−709. doi: 10.11898/1001-7313.20190606
    [8] Gao S H, Lin H, Shen B, et al. 2007. A heavy sea fog event over the Yellow Sea in March 2005: Analysis and numerical modeling [J]. Adv. Atmos. Sci., 24(1): 65−81. doi: 10.1007/s00376-007-0065-2
    [9] 高雅. 2019. 天津平流雾过程及其空中微物理特征研究 [D]. 南京信息工程大学硕士学位论文.

    Gao Ya. 2019. Advection fog and its aerial microphysical properties in Tianjin [D]. M. S. thesis (in Chinese), Nanjing University of Information Science & Technology.
    [10] Gerber H E. 1981. Microstructure of a radiation fog [J]. J. Atmos. Sci., 38(2): 454−458. doi:10.1175/1520-0469(1981)038<0454:MOARF>2.0.CO;2
    [11] Gultepe I, Isaac G A, Leaitch W R, et al. 1996. Parameterizations of marine stratus microphysics based on in situ observations: Implications for GCMs [J]. J. Climate, 9(2): 345−357. doi:10.1175/1520-0442(1996)009<0345:POMSMB>2.0.CO;2
    [12] Gultepe I, Müller M. D, Boybeyi Z 2006. A new visibility parameterization for warm fog applications in numerical weather prediction models [J]. J. Appl. Meteor. Climatol., 45(11): 1469−1480. doi: 10.1175/JAM2423.1
    [13] Gultepe I, Pearson G, Milbrandt J A, et al. 2009. The fog remote sensing and modeling field project [J]. Bull.Amer. Meteor. Soc., 90(3): 341−360. doi: 10.1175/2008BAMS2354.1
    [14] 侯梦玲, 王宏, 赵天良, 等. 2017. 京津冀一次重度雾霾天气能见度及边界层关键气象要素的模拟研究 [J]. 大气科学, 41(6): 1177−1190. doi: 10.3878/j.issn.1006-9895.1703.16211

    Hou Mengling, Wang Hong, Zhao Tianliang, et al. 2017. A modeling study of the visibility and PBL key meteorological elements during a heavy fog–haze episode in Beijing–Tianjin–Hebei of China [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 41(6): 1177−1190. doi: 10.3878/j.issn.1006-9895.1703.16211
    [15] 黄辉军, 黄健, 刘春霞, 等. 2009. 茂名地区海雾的微物理结构特征 [J]. 海洋学报, 31(2): 17−23. doi: 10.3321/j.issn:0253-4193.2009.02.003

    Huang Huijun, Huang Jian, Liu Chunxia, et al. 2009. Microphysical characteristics of the sea fog in Maoming area [J]. Acta Oceanol. Sinica (in Chinese), 31(2): 17−23. doi: 10.3321/j.issn:0253-4193.2009.02.003
    [16] Koenig L R. 1971. Numerical experiments pertaining to warm fog clearing [J]. Mon. Wea. Rev., 99(3): 227−241. doi:10.1175/1520-0493(1971)099<0227:NEPTWC>2.3.CO;2
    [17] Kunkel B A. 1984. Parameterization of droplet terminal velocity and extinction coefficient in fog models [J]. J. Appl. Meteor. Climatol., 23(1): 34−41. doi:10.1175/1520-0450(1984)023<0034:PODTVA>2.0.CO;2
    [18] 李子华, 吴君. 1995. 重庆市区冬季雾滴谱特征 [J]. 南京气象学院学报, 18(1): 46−51. doi: 10.13878/j.cnki.dqkxb.1995.01.007

    Li Zihua, Wu Jun. 1995. Wintekfog fog droplet spectrum features in urban area of Chongqing [J]. J. Nanjing Inst. Meteor. (in Chinese), 18(1): 46−51. doi: 10.13878/j.cnki.dqkxb.1995.01.007
    [19] 林艳, 杨军, 鲍艳松, 等. 2010. 山西省冬季雾中能见度的数值模拟研究 [J]. 南京信息工程大学学报(自然科学版), 2(5): 436−444. doi: 10.3969/j.issn.1674-7070.2010.05.011

    Lin Yan, Yang Jun, Bao Yansong, et al. 2010. The numerical simulation of visibility during the fog in Shanxi Province in winter [J]. J. Nanjing Univ. Inf. Sci. Technol. (Nat. Sci. Ed.) (in Chinese), 2(5): 436−444. doi: 10.3969/j.issn.1674-7070.2010.05.011
    [20] 刘端阳, 濮梅娟, 杨军, 等. 2009. 2006年12月南京连续4天浓雾的微物理结构及演变特征 [J]. 气象学报, 67(1): 147−157. doi: 10.3321/j.issn:0577-6619.2009.01.015

    Liu Duanyang, Pu Meijuan, Yang Jun, et al. 2009. Microphysical structure and evolution of four-day persistent fogs around Nanjing in December 2006 [J]. Acta Meteor. Sinica (in Chinese), 67(1): 147−157. doi: 10.3321/j.issn:0577-6619.2009.01.015
    [21] Ma C J, Kasahara M, Tohno S. 2003. Application of polymeric water absorbent film to the study of drop size-resolved fog samples [J]. Atmos. Environ., 37(26): 3749−3756. doi: 10.1016/S1352-2310(03)00318-2
    [22] 孟蕾, 周奇越, 牛生杰, 等. 2010. 降水对雾中能见度参数化的影响 [J]. 大气科学学报, 33(6): 731−737. doi: 10.3969/j.issn.1674-7097.2010.06.012

    Meng Lei, Zhou Qiyue, Niu Shengji, et al. 2010. Effect of rainfall on parameterization of fog visibility [J]. Trans. Atmos. Sci. (in Chinese), 33(6): 731−737. doi: 10.3969/j.issn.1674-7097.2010.06.012
    [23] Meyer M B, Jiusto J E, Lala G G. 1980. Measurements of visual range and radiation—Fog (haze) microphysics [J]. J. Atmos. Sci., 37(3): 622−629. doi:10.1175/1520-0469(1980)037<0622:MOVRAR>2.0.CO;2
    [24] Reid J S, Hobbs P V, Rangno A L, et al. 1999. Relationships between cloud droplet effective radius, liquid water content, and droplet concentration for warm clouds in Brazil embedded in biomass smoke [J]. J. Geophys. Res., 104(D6): 6145−6153. doi: 10.1029/1998JD200119
    [25] 荣昕. 2013. 基于WRF-CHEM模式的连续雾霾过程数值模拟及其能见度参数化 [D]. 南京信息工程大学硕士学位论文.

    Rong Xin. 2013. Numerical simulation of continuous fog–haze process and visibility parameterization based on WRF-CHEM model [D]. M. S. thesis (in Chinese), Nanjing University of Information Science & Technology.
    [26] Shi C E, Roth M, Zhang H, et al. 2008. Impacts of urbanization on long-term fog variation In Anhui Province, China [J]. Atmos. Environ., 42(36): 8484−8492. doi: 10.1016/j.atmosenv.2008.08.002
    [27] Stoelinga M T, Warner T T. 1999. Nonhydrostatic, mesobeta-scale model simulations of cloud ceiling and visibility for an east coast winter precipitation event [J]. J. Appl. Meteor. Climatol., 38(4): 385−404. doi:10.1175/1520-0450(1999)038<0385:NMSMSO>2.0.CO;2
    [28] 王庆, 李季, 樊明月, 等. 2019. 济南一次平流辐射雾的微物理结构及演变特征 [J]. 气象, 45(9): 1299−1309. doi: 10.7519/j.issn.1000-0526.2019.09.010

    Wang Qing, Li Ji, Fan Mingyue, et al. 2019. Microphysical structure and evolution characteristics of an advection–radiation fog event in Jinan [J]. Meteor. Mon. (in Chinese), 45(9): 1299−1309. doi: 10.7519/j.issn.1000-0526.2019.09.010
    [29] Wendish M, Mertes S, Heintzenberg J, et al. 1998. Drop size distribution and LWC in Po valley fog [J]. Contrib. Atmos. Phys., 71(1): 87−100.
    [30] 杨军, 王蕾, 刘端阳, 等. 2010. 一次深厚浓雾过程的边界层特征和生消物理机制 [J]. 气象学报, 68(6): 998−1006. doi: 10.11676/qxxb2010.094

    Yang Jun, Wang Lei, Liu Duanyang, et al. 2010. The boundary layer structure and the evolution mechanisms of a deep dense fog event [J]. Acta Meteor. Sinica (in Chinese), 68(6): 998−1006. doi: 10.11676/qxxb2010.094
    [31] 岳岩裕, 牛生杰, 赵丽娟, 等. 2013. 湛江地区近海岸雾产生的天气条件及宏微观特征分析 [J]. 大气科学, 37(3): 609−622. doi: 10.3878/j.issn.1006-9895.2012.12009

    Yue Yanyu, Niu Shengjie, Zhao Lijuan, et al. 2013. Study on the synoptic system and macro–micro characteristics of sea fog along the Zhanjiang coastal area [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 37(3): 609−622. doi: 10.3878/j.issn.1006-9895.2012.12009
    [32] 张舒婷, 牛生杰, 赵丽娟. 2013. 一次南海海雾微物理结构个例分析 [J]. 大气科学, 37(3): 552−562. doi: 10.3878/j.issn.1006-9895.2012.11204

    Zhang Shuting, Niu Shengjie, Zhao Lijuan. 2013. The microphysical structure of fog droplets in a sea fog event in the South China Sea [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 37(3): 552−562. doi: 10.3878/j.issn.1006-9895.2012.11204
    [33] 张曦, 牛生杰, 魏锦成, 等. 2016. 厦门春季海雾天气分类及典型个例宏微观结构分析 [J]. 气象科学, 36(1): 121−127. doi: 10.3969/2014jms.0108

    Zhang Xi, Niu Shengjie, Wei Jincheng, et al. 2016. Classification and case study of macro and micro structures of spring sea fog in Xiamen [J]. Journal of the Meteorological Sciences (in Chinese), 36(1): 121−127. doi: 10.3969/2014jms.0108
    [34] 张浩, 石春娥, 吴必文, 等. 2017. 合肥市能见度与相对湿度、PM2.5质量浓度的定量关系 [J]. 生态环境学报, 26(6): 1001−1008. doi: 10.16258/j.cnki.1674-5906.2017.06.013

    Zhang Hao, Shu Chune, Wu Biwen, et al. 2017. Quantified relationships among the visibility, relative humidity and PM2.5 mass concentration in Hefei City [J]. Ecol. Environ. Sci. (in Chinese), 26(6): 1001−1008. doi: 10.16258/j.cnki.1674-5906.2017.06.013
    [35] 中国气象局. 2007. QX/T 48–2007 地面气象观测规范. 第4部分: 天气现象观测 [S]. 北京: 中国标准出版社.

    China Meteorological Administration. 2007. QX/T 48–2007 Specifications for surface meteorological observation. Part 4: Observation of weather phenomenon (in Chinese) [S]. Beijing: Standards Press of China.
    [36] 中国气象局. 2018. QX/T 414–2018 公路交通高影响天气预警等级 [S]. 北京: 中国气象出版社.

    China Meterological Administration. 2018. QX/T 414–2018 The warning levels of high-impact weather on highway traffic (in Chinese) [S]. Beijing: China Meteorological Press.
    [37] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 2012. GB/T 27964–2011 雾的预报等级 [S]. 北京: 中国标准出版社.

    General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration. 2012. GB/T 27964–2011. Grade of fog forecast (in Chinese) [S]. Beijing: Standards Press of China.
  • 加载中
图(6) / 表(6)
计量
  • 文章访问数:  57
  • HTML全文浏览量:  11
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-19
  • 录用日期:  2021-03-26
  • 网络出版日期:  2021-04-25

目录

    /

    返回文章
    返回