高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

祁连山春季一次层状云降水的雨滴谱分布及地形影响特征

程鹏 常祎 刘琴 王研峰 李宝梓 陈祺 罗汉

程鹏, 常祎, 刘琴, 等. 2021. 祁连山春季一次层状云降水的雨滴谱分布及地形影响特征[J]. 大气科学, 45(6): 1232−1248 doi: 10.3878/j.issn.1006-9895.2103.20231
引用本文: 程鹏, 常祎, 刘琴, 等. 2021. 祁连山春季一次层状云降水的雨滴谱分布及地形影响特征[J]. 大气科学, 45(6): 1232−1248 doi: 10.3878/j.issn.1006-9895.2103.20231
CHENG Peng, CHANG Yi, LIU Qin, et al. 2021. A Case Study of Raindrop Size Distribution and Orographic Impact Characteristics in Spring Stratiform Precipitation over the Qilian Mountains [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 45(6): 1232−1248 doi: 10.3878/j.issn.1006-9895.2103.20231
Citation: CHENG Peng, CHANG Yi, LIU Qin, et al. 2021. A Case Study of Raindrop Size Distribution and Orographic Impact Characteristics in Spring Stratiform Precipitation over the Qilian Mountains [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 45(6): 1232−1248 doi: 10.3878/j.issn.1006-9895.2103.20231

祁连山春季一次层状云降水的雨滴谱分布及地形影响特征

doi: 10.3878/j.issn.1006-9895.2103.20231
基金项目: 国家重点研发计划项目2019YFC1510302,第二次青藏高原综合科学考察研究项目2019QZKK0104,中国气象局云雾物理环境重点开放实验室开放课题2018Z01603,国家自然基金青年科学基金项目42005070,甘肃省自然科学基金项目20JR10RA455
详细信息
    作者简介:

    程鹏,男,1981年出生,高级工程师,主要从事云降水物理研究。E-mail:tfreefish@163.com

    通讯作者:

    常祎,E-mail: changyi1017@qq.com

  • 中图分类号: P426.62

A Case Study of Raindrop Size Distribution and Orographic Impact Characteristics in Spring Stratiform Precipitation over the Qilian Mountains

Funds: The National Key R&D Program of China (Grant 2019YFC1510300), the Second Tibetan Plateau Scientific Expedition and Research (STEP) Program (Grant 2019QZKK0104), Basic Research Fund of CAMS (Grant 2018Z01603), National Natural Science Foundation of China (Grant 42005070), and Natural Science Foundation of Gansu Province (Grant 20JR10RA455)
  • 摘要: 祁连山是青藏高原东北部重要的生态屏障和冰川与水源涵养生态功能区,是黄河流域重要水源产流地,但针对该地区的云和降水过程研究很少。本文利用祁连山地区11个Parsivel2雨滴谱仪的观测数据,研究了祁连山地区春季一次层状云降水过程的雨滴谱分布及地形影响特征。此次降水过程主要受短波槽影响,降水时空差异较大。雨滴谱观测数据表明,此次降水过程的雨滴等效直径(Dm)较小,雨滴谱数浓度(NT)与Dm随海拔高度升高分别呈增加和减小的趋势,低海拔站点logNwNw为雨滴谱截断参数)和Dm分布有着明显的层状云降水特征,而整个祁连山地区在同样Dm下有着更低的Nw。低海拔站点由于碰并和小雨滴的蒸发,有着更少的小雨滴(<1 mm)和更多的大雨滴,而高海拔站点由于距离云底较近或位于云内,云滴尺度小且浓度大,DmRR为降水强度)增大变化趋势不明显。M-P分布和Gamma分布在低海拔站点的拟合效果要优于高海拔站点,相较于Gamma分布,M-P分布对高海拔站点的小雨滴和大雨滴浓度有一定的高估和低估,因此更适用于高海拔站点雨滴谱的描述。对比于低海拔站点,高海拔站点的μΛμΛ分别为Gamma分布的形状参数和斜率参数)关系与相关研究的结果较为接近,但在Λ较小(<40 mm−1)时拟合结果较为接近。受海拔高度与云底的相对位置和地形的影响,祁连山地区的ZRZ为雷达反射率因子)关系与其他地区或研究有着较大的区别。
  • 图  1  祁连山地形云试验场(a)雨滴谱仪观测站点分布及(b)雨滴谱仪,更详细的站点信息见表1

    Figure  1.  (a) Locations of observational sites, (b) the Parsivel2 disdrometer, more detailed information of all sites is shown by Table 1

    图  2  GS001站点雨滴谱数据质量控制示意图,其中色块表示雨滴谱仪观测到的粒子数量,实线和虚线分别表示经验公式确定的曲线和经验公式±60%确定的曲线范围,落在虚线范围之外的粒子将被剔除

    Figure  2.  Quality control of the disdrometer data derived from GS001. The color blocks show the number of raindrops and the solid line and dotted lines respectively indicate the empirical equation between the diameter and the falling speed of raindrops and the range of ±60% around the empirical quotation. The raindrops that fall out of the dotted line region will be treated as error data and removed

    图  3  2020年5月6日00:00(北京时,下同)(a)700 hPa、(b)500 hPa天气形势以及(c)FY2G卫星红外云图,图中蓝绿框表示祁连山地区范围,洋红色框表示本文观测研究区域。(a、b)中等值线为位势高度(单位:gpm),箭头为水平风场(单位:m s−1),填色表示位势涡度(单位:10−6 K m2 kg−1 s−1),(c)中填色表示黑体温度(单位:K)。

    Figure  3.  Synoptic conditions of (a) 700 hPa, (b) 500 hPa, and (c) the infrared image of FY2G satellite at 0000 BJT (Beijing time) May 6, 2020. The solid lines, arrows, and color maps in (a) and (b) denote the geopotential height, horizontal wind, and geopotential vorticity, respectively. The color map in (c) shows the black body temperature (uints: K). The cyan and magenta rectangles denote the region of the Qilian Mountains and the research area.

    图  4  2020年5月5日18:00至6日06:00期间雨滴谱(填色)和降水强度(黑实线)的时间变化。其中(a、b)为中西部走廊内GS001、GS009两个站点,(c–f)为中西部祁连山区GS010、W2127、W2128、W2129四个站点,(g–k)为中东部GS003、GS004、GS006、GS008、GS011五个站点

    Figure  4.  Temporal variation of raindrop size distribution and rain rate from 1800 BJT May 5 to 0600 BJT on May 6, 2020. The color map and solid line denote the raindrop size distribution and rain rate, respectively. The two sites (GS001, GS009) in the corridor, the four sites (GS010, W2127, W2128, W2129) in the central-western Qilian Mountains, and the five sites (GS003, GS004, GS006, GS008, GS011) in the central-eastern Qilian Mountains are shown by (a, b), (c–f) , and (g–k), respectively

    图  5  2020年5月5日18时至5月6日06:00期间质量等效直径$ {D}_{\mathrm{m}} $(黑色实线)、雨滴谱数浓度$ {N}_{\mathrm{T}} $(蓝色实线)和雨水含量$ {q}_{w} $(红色实线)的时间变化。其中(a)和(b)为中西部走廊内GS001、GS009两个站点,(c)至(f)为中西部祁连山区GS010、W2127、W2128、W2129四个站点,(g)至(k)为中东部GS003、GS004、GS006、GS008、GS011五个站点

    Figure  5.  Temporal variation of equivalent mass diameter ($ {D}_{m} $, black lines), total raindrop concentration ($ {N}_{T} $, blue lines), and liquid water content ($ {q}_{w} $, red lines) from 1800 May 5 to 0600 May 6. The two sites (GS001, GS009) in the corridor, the four sites (GS010, W2127, W2128, W2129) in the central-western Qilian Mountains, and the five sites (GS003, GS004, GS006, GS008, GS011) in the central-eastern Qilian Mountains are shown by (a, b), (c–f), and (g–k), respectively

    图  6  2020年5月5~6日降水过程期间GS009和W2128站点logNwDm的分布情况

    Figure  6.  Histograms of logNw and Dm of site GS009 and W2128 during May 5–6, 2020

    图  7  2020年5月5~6日降水过程期间,观测区域内站点平均logNwDm的分布情况。GS009和W2128站点对应点的水平、垂直线分别为Dm、logNw的标准差;洋红色虚线为此次所有站点平均Dm与logNw的线性拟合曲线,拟合结果为$ {\mathrm{l}\mathrm{o}\mathrm{g}N}_{\mathrm{w}}=-2.242{D}_{\mathrm{m}}+ $$ 6.021 $;图中黑色斜虚线为Bringi et al.(2003)观测确定的层状云平均logNwDm分布位置;上下灰色方框区域分别为海洋性和大陆性对流云的平均logNwDm分布位置

    Figure  7.  Scatter plot of logNw and Dm of all sites during May 5–6, 2020. The standard deviations (±σ) of logNw and Dm for GS009 and W2128 are also presented by solid lines, and the liner fitting result of all sites is shown by the magenta dotted line. The outlined rectangles correspond to the maritime and continental convective clusters reported by Bringi et al. (2003), and the dotted line is for their stratiform cases

    图  8  (a)Dm、(b)NwR的幂次拟合结果,拟合公式分别为$ {D}_{m}={aR}^{b} $$ {N}_{w}={aR}^{b} $,其中$ a $$ b $分别为拟合结果的两个参数。图中颜色表示各个站点的海拔高度

    Figure  8.  Power fitting results of $ {D}_{m}­R $ (a) and $ {N}_{w}­R $ (b) using the equations of $ {D}_{m}={aR}^{b} $ and $ {N}_{w}={aR}^{b} $. The colors of each site indicate the altitude above the sea level

    图  9  (a)Dm、(b)NwR的分布及拟合结果。图中蓝色‘○’与红色‘+’分别表示GS009与W2128站点的观测结果,蓝绿色和洋红色虚线分别为两个站点的拟合结果曲线

    Figure  9.  Observations (scatter plots) and fitting results (dotted lines) of DmR and NwR for GS009 (blue circles for observations, dotted cyan line for fitting result) and W2128 (red crosses for observations, dotted red line for fitting result), respectively

    图  10  GS009与W2128站点此次天气过程的平均雨滴谱(实心圆点)及由Gamma分布(点线)、M-P分布(虚线)的拟合结果

    Figure  10.  Average raindrop size distributions (solid circles), results of Gamma distribution (dotted lines), and M-P distribution (dash lines) for site GS009 (blue) and W2128 (red)

    图  11  GS009与W2128两个站点μΛ分布(散点)与拟合(虚线)情况,其中GS009站点为淡蓝色点与蓝绿色虚线,W2128站点为橙色点与洋红色虚线。图中黑色实线为由$ \varLambda =0.0365{\mu }^{2}+0.735\mu + $$ 1.935$确定的μΛ关系;灰色虚线为由$\varLambda {D}_{m}=4+\mu$确定的μΛ关系(Ulbrich, 1983),从上到下依次为${D}_{m}=0.5\;{\rm{mm}}$、1 mm和1.5 mm

    Figure  11.  Scatter plots and fitting results of the μΛ relationship of GS009 (blue dots and cyan line) and W2128 (orange dots and magenta line). The solid black line denotes the μΛ relationship of $ \varLambda =    0.0365{\mu }^{2}+0.735\mu +1.935 $ and the gray dotted lines represent the relationships determined by the equation of $ \varLambda {D}_{m}= 4 +\mu $ when $ {D}_{m}=0.5\;{\rm{mm}} $, 1 mm, and 1.5 mm (Ulbrich, 1983)

    图  12  GS009与W2128两个站点ZR关系分布(散点)与拟合(虚线)情况,其中GS009站点为淡蓝色点与蓝绿色虚线,W2128站点为橙色点与洋红色虚线;图中红、蓝、绿、黄色虚线分别代表大陆性层状云(Marshall and Palmer, 1948; $ Z=200{R}^{1.6} $)、业务天气雷达中应用(Fulton et al., 1998; $ Z=300{R}^{1.4} $)、热带天气系统(Rosenfeld et al., 1993; $ Z=250{R}^{1.2} $)以及梅雨期间对流云 (Chen et al., 2013; $ Z=368{R}^{1.21} $)对应的ZR关系

    Figure  12.  Scatter plots and fitting results for ZR relationship of site GS009 (blue dots and cyan line) and W2128 (orange dots and magenta line). The red, blue, green, and yellow lines denote the ZR relationships for continental stratiform precipitation (Marshall and Palmer, 1948; $ Z=200{R}^{1.6} $), application in the operational synoptic radar system (Fulton et al., 1998; $ Z=300{R}^{1.4} $), tropical synoptic weather system (Rosenfeld et al., 1993; $ Z=250{R}^{1.2} $), and convective precipitation during the Meiyu season (Chen et al., 2013; $ Z=368{R}^{1.21} $), respectively

    表  1  祁连山地形云试验场雨滴谱仪观测站点编号、经纬度及海拔高度情况

    Table  1.   Site number, latitude, longitude, and altitude (above sea level) of each observational site in the experimental field of Qilian Mountains

    编号站名经度纬度海拔高度/m
    GS001山丹张掖山丹101.08°E38.80°N1765.5
    GS003焦家乡金昌永昌101.84°E38.27°N2116.0
    GS004永昌金昌永昌101.97°E38.23°N2093.9
    GS006六坝乡金昌永昌102.14°E38.16°N1817.0
    GS008皇城水关张掖肃南102.03°E37.84°N2357.0
    GS009临泽张掖临泽100.17°E39.15°N1453.7
    GS010肃南张掖肃南99.62°E38.83°N2311.8
    GS011乌鞘岭武威天祝102.87°E37.20°N3045.1
    W2127海潮坝水库张掖民乐100.65°E38.39°N2613.5
    W2128海潮音寺张掖民乐100.62°E38.36°N2719.5
    W2129卜里沟张掖民乐100.67°E38.40°N2454.5
    下载: 导出CSV

    表  2  2020年5月5~6日降水过程期间各个站点降水量统计情况

    Table  2.   Total precipitation of each disdrometer site during May 5–6, 2020

    站号P/mmRmax/mm h−1Ravg/mm h−1Qmax/g m−3Qavg/g m−3
    GS00111.213.381.070.790.15
    GS0034.823.440.821.240.20
    GS0042.34.960.670.320.11
    GS0061.44.050.410.270.08
    GS0082.34.731.040.350.14
    GS00910.89.570.830.450.12
    GS01012.68.523.430.470.09
    GS0114.054.692.512.550.15
    W212716.515.123.230.860.14
    W212814.013.194.220.711.11
    W212919.612.123.500.740.19
    注:累积降水量P,单位:mm;最大雨强Rmax,单位:mm h−1;平均雨强Ravg,单位:mm h−1;最大液态含水量Qmax,平均液态含水量Qavg,单位:g m−3
    下载: 导出CSV

    表  3  2020年5月5~6日降水过程期间各个站点海拔高度以及$N_{\rm{T}} $$D_{\rm{m}} $的最大值、平均值及中位值

    Table  3.   Maximum, average, and median values of $N_{\rm{T}} $ and $D_{\rm{m}} $ of each site during May 5–6, 2020

    站点
    编号
    海拔
    高度/m
    NT/m−3Dm/mm
    最大值平均值中位值最大值平均值中位值
    GS0011765.510093392931.770.970.98
    GS0032116.012113843411.881.131.11
    GS0042093.96172732392.791.171.09
    GS0061817.05962532451.911.040.99
    GS0082357.011565324701.280.940.93
    GS0091453.77382512442.461.181.17
    GS0102311.812683033002.171.020.91
    GS0113045.122643131952.381.101.00
    W21272613.517605944541.750.870.85
    W21282719.521815134092.880.860.85
    W21292454.523047715842.010.910.88
    下载: 导出CSV

    表  4  11个站点平均雨滴谱Gamma分布与M-P分布的拟合结果

    Table  4.   Fitting results of the Gamma distribution and M-P distribution for 11 sites

    站号Gamma分布M-P分布
    N0/$ \mu $Λ/mm−1N0/m−3 mm−1Λ/mm−1
    GS001603472.815.4854483.26
    GS00383670.953.5245672.92
    GS004280−1.851.2520882.75
    GS006218371.765.0743303.60
    GS0082817303.056.96110654.00
    GS00931010.543.0723392.77
    GS0101927−0.302.8630493.21
    GS011871−0.901.8820382.56
    W2127988512.095.93114593.97
    W21283658−0.443.2285403.92
    W2129421201.174.93142623.94
    下载: 导出CSV

    表  5  11个站点$\;\mu-\varLambda$关系拟合结果

    Table  5.   Fitting results for the $\;\mu-\varLambda $ relationship of 11 sites

    站号$\varLambda =a{\mu }^{2}+b\mu +c$
    $ a $$ b $$ c $
    GS0010.00571.565−0.028
    GS0030.01051.0372.070
    GS0040.01381.0212.796
    GS0060.01101.1712.491
    GS008−0.00881.5431.910
    GS0090.00231.3271.237
    GS0100.00351.5481.923
    GS0110.00601.1692.418
    W21270.01771.2792.329
    W21280.02681.1792.855
    W21290.02681.0542.897
    下载: 导出CSV

    表  6  11个站点$Z-R $关系拟合结果

    Table  6.   Fitting results of $Z-R $ relationship for 11 sites

    站号$ Z={aR}^{b} $
    $ a $$ b $
    GS0011891.26
    GS0031781.56
    GS0041682.55
    GS0062861.03
    GS0081861.08
    GS0093661.19
    GS0101102.14
    GS0111571.63
    W21271011.46
    W21281321.37
    W2129 881.43
    下载: 导出CSV
  • [1] Atlas D, Srivastava R C, Sekhon R S. 1973. Doppler radar characteristics of precipitation at vertical incidence [J]. Rev. Geophys., 11(1): 1−35. doi: 10.1029/RG011i001p00001
    [2] Bringi V N, Chandrasekar V, Hubbert J, et al. 2003. Raindrop size distribution in different climatic regimes from disdrometer and dual-polarized radar analysis [J]. J. Atmos. Sci., 60(2): 354−365. doi:10.1175/1520-0469(2003)060<0354:RSDIDC>2.0.CO;2
    [3] Calheiros A J P, Machado L A T. 2014. Cloud and rain liquid water statistics in the CHUVA campaign [J]. Atmospheric Research, 144: 126−140. doi: 10.1016/j.atmosres.2014.03.006
    [4] Cao Q, Zhang G F, Brandes E, et al. 2008. Analysis of video disdrometer and polarimetric radar data to characterize rain microphysics in Oklahoma [J]. Journal of Applied Meteorology and Climatology, 47(8): 2238−2255. doi: 10.1175/2008JAMC1732.1
    [5] Chakravarty K, Raj P E. 2013. Raindrop size distributions and their association with characteristics of clouds and precipitation during monsoon and post-monsoon periods over a tropical Indian station [J]. Atmospheric Research, 124: 181−189. doi: 10.1016/j.atmosres.2013.01.005
    [6] Chang W Y, Wang TC C, Lin P L. 2009. Characteristics of the raindrop size distribution and drop shape relation in typhoon systems in the western Pacific from the 2D video disdrometer and NCU C-band polarimetric radar [J]. J. Atmos. Oceanic Technol., 26(10): 1973−1993. doi: 10.1175/2009JTECHA1236.1
    [7] 陈宝君, 李子华, 刘吉成, 等. 1998. 三类降水云雨滴谱分布模式 [J]. 气象学报, 56(4): 506−512. doi: 10.11676/qxxb1998.046

    Chen Baojun, Li Zihua, Liu Jicheng, et al. 1998. Model of raindrop size distribution in three types of precipitation [J]. Acta Meteorologica Sinica, 56(4): 506−512. doi: 10.11676/qxxb1998.046
    [8] Chen B J, Hu W, Pu J P. 2011. Characteristics of the raindrop size distribution for freezing precipitation observed in southern China [J]. J. Geophys. Res. :Atmos., 116: D06201. doi: 10.1029/2010JD015305
    [9] Chen B J, Yang J, Pu J P. 2013. Statistical characteristics of raindrop size distribution in the Meiyu season observed in eastern China [J]. J. Meteor. Soc. Japan, 91(2): 215−227. doi: 10.2151/jmsj.2013-208
    [10] Chen B J, Hu Z Q, Liu L P, et al. 2017. Raindrop size distribution measurements at 4, 500 m on the Tibetan Plateau during TIPEX-III [J]. J. Geophys. Res.: Atmos., 122(20): 11092−11106. doi: 10.1002/2017JD027233
    [11] 陈磊, 陈宝君, 杨军, 等. 2013. 2009–2010年梅雨锋暴雨雨滴谱特征 [J]. 大气科学学报, 36(4): 481−488. doi: 10.3969/j.issn.1674-7097.2013.04.011

    Chen Lei, Chen Baojun, Yang Jun, et al. 2013. Characteristics of raindrop size distribution of rainstorm on Meiyu front during 2009–2010 [J]. Transactions of Atmospheric Sciences, 36(4): 481−488. doi: 10.3969/j.issn.1674-7097.2013.04.011
    [12] 陈少勇, 徐科展, 董安祥, 等. 2010. 祁连山积雨云的时空分布及其环流特征 [J]. 干旱区研究, 27(1): 114−120. doi: 10.13866/j.azr.2010.01.005

    Chen Shaoyong, Xu Kezhan, Dong Anxiang, et al. 2010. Analysis on spatial distribution of cumulonimbus and its circulation characteristics over the Qilian Mountains [J]. Arid Zone Research, 27(1): 114−120. doi: 10.13866/j.azr.2010.01.005
    [13] 陈添宇, 郑国光, 陈跃, 等. 2010. 祁连山夏季西南气流背景下地形云形成和演化的观测研究 [J]. 高原气象, 29(1): 152−163.

    Chen Tianyu, Zheng Guoguang, Chen Yue, et al. 2010. Observational experiment on generation and development of summer orographic cloud during the southwest air current pattern in Qilian Mountain [J]. Plateau Meteorology, 29(1): 152−163.
    [14] 丁晓东, 黄建平, 李积明, 等. 2012. 基于主动卫星遥感研究西北地区云层垂直结构特征及其对人工增雨的影响 [J]. 干旱气象, 30(4): 529−538.

    Ding Xiaodong, Huang Jianping, Li Jiming, et al. 2012. Study on cloud vertical structure feature over Northwest China based on active satellite remote sensing and its influence on precipitation enhancement [J]. Journal of Arid Meteorology, 30(4): 529−538.
    [15] 房彬, 班显秀, 郭学良, 等. 2010. 雷达—雨量计—粒子激光探测仪联合估算降水量 [J]. 大气科学, 2010, 34(3): 513−519. doi: 10.3878/j.issn.1006-9895.2010.03.05

    Fang Bin, Ban Xianxiu, Guo Xueliang, et al. 2010. Area rainfall estimation by using radar, raingauge, and particle laser-based optical measurement instrument [J]. Chinese Journal of Atmospheric Sciences, 2010, 34(3): 513−519. doi: 10.3878/j.issn.1006-9895.2010.03.05
    [16] Friedrich K, Higgins S, Masters F J, et al. 2013. Articulating and stationary PARSIVEL disdrometer measurements in conditions with strong winds and heavy rainfall [J]. J. Atmos. Oceanic Technol., 30(9): 2063−2080. doi: 10.1175/JTECH-D-12-00254.1
    [17] 傅云飞, 曹爱琴, 李天奕, 等. 2012. 星载测雨雷达探测的夏季亚洲对流与层云降水雨顶高度气候特征 [J]. 气象学报, 70(3): 436−451. doi: 10.11676/qxxb2012.037

    Fu Yunfei, Cao Aiqin, Li Tianyi, et al. 2012. Climatic characteristics of the storm top altitude for the convective and stratiform precipitation in summer Asia based on measurements of the TRMM Precipitation Radar [J]. Acta Meteorologica Sinica, 70(3): 436−451. doi: 10.11676/qxxb2012.037
    [18] Fulton R A, Breidenbach J P, Seo D J, et al. 1998. The WSR-88D rainfall algorithm [J]. Wea. Forecasting, 13(2): 377−395. doi:10.1175/1520-0434(1998)013<0377:TWRA>2.0.CO;2
    [19] 宫福久, 刘吉成, 李子华. 1997. 三类降水云雨滴谱特征研究 [J]. 大气科学, 21(5): 607−614. doi: 10.3878/j.issn.1006-9895.1997.05.12

    Gong Fujiu, Liu Jicheng, Li Zihua. 1997. Study of the raindrop size distributions for three types of precipitation [J]. Chinese Journal of Atmospheric Sciences, 21(5): 607−614. doi: 10.3878/j.issn.1006-9895.1997.05.12
    [20] Ji L, Chen H N, Li L, et al. 2019. Raindrop size distributions and rain characteristics observed by a PARSIVEL disdrometer in Beijing, northern China [J]. Remote Sensing, 11(12): 1479. doi: 10.3390/rs11121479
    [21] 贾星灿, 牛生杰. 2008. 空中、地面雨滴谱特征的观测分析 [J]. 南京气象学院学报, 31(6): 865−870. doi: 10.3969/j.issn.1674-7097.2008.06.015

    Jia Xingcan, Niu Shengjie. 2008. Observational analysis of raindrop size distributions measured at surface and cloud [J]. Journal of Nanjing Institute of Meteorology, 31(6): 865−870. doi: 10.3969/j.issn.1674-7097.2008.06.015
    [22] 金祺, 袁野, 刘慧娟, 等. 2015. 江淮之间夏季雨滴谱特征分析 [J]. 气象学报, 73(4): 778−788. doi: 10.11676/qxxb2015.036

    Jin Qi, Yuan Ye, Liu Huijuan, et al. 2015. Analysis of microphysical characteristics of the raindrop spectrum over the area between the Yangtze River and the Huaihe River during summer [J]. Acta Meteorologica Sinica, 73(4): 778−788. doi: 10.11676/qxxb2015.036
    [23] 李典, 白爱娟, 薛羽君, 等. 2014. 青藏高原和四川盆地夏季对流性降水特征的对比分析 [J]. 气象, 40(3): 280−289. doi: 10.7519/j.issn.1000-0526.2014.03.003

    Li Dian, Bai Aijuan, Xue Yujun, et al. 2014. Comparative analysis on characteristics of summer convective precipitation over Tibetan Plateau and Sichuan Basin [J]. Meteorological Monthly, 40(3): 280−289. doi: 10.7519/j.issn.1000-0526.2014.03.003
    [24] 李慧, 银燕, 单云鹏, 等. 2018. 黄山层状云和对流云降水不同高度的雨滴谱统计特征分析 [J]. 大气科学, 42(2): 268−280. doi: 10.3878/j.issn.1006-9895.1705.16291

    Li Hui, Yin Yan, Shan Yunpeng, et al. 2018. Statistical characteristics of raindrop size distribution for stratiform and convective precipitation at different altitudes in Mt. Huangshan [J]. Chinese Journal of Atmospheric Sciences, 42(2): 268−280. doi: 10.3878/j.issn.1006-9895.1705.16291
    [25] 李娟, 游来光, 胡志晋, 等. 2006. 黄河上游玛曲地区雨滴谱特征的观测研究 [J]. 高原气象, 25(5): 942−949. doi: 10.3321/j.issn:1000-0534.2006.05.023

    Li Juan, You Laiguang, Hu Zhijin, et al. 2006. Analysis on raindrop-size distribution characteristics of Maqu region in upper reach of Yellow River [J]. Plateau Meteorology, 25(5): 942−949. doi: 10.3321/j.issn:1000-0534.2006.05.023
    [26] 柳臣中, 周筠珺, 谷娟, 等. 2015. 成都地区雨滴谱特征 [J]. 应用气象学报, 26(1): 112−121. doi: 10.11898/1001-7313.20150112

    Liu Chenzhong, Zhou Yunjun, Gu Juan, et al. 2015. Characteristics of raindrop size distribution in Chengdu [J]. Journal of Applied Meteorological Science, 26(1): 112−121. doi: 10.11898/1001-7313.20150112
    [27] Marshall J S, Palmer W M K. 1948. The distribution of raindrops with size [J]. J. Atmos. Sci., 5(4): 165−166. doi:10.1175/1520-0469(1948)005<0165:TDORWS>2.0.CO;2
    [28] 牛生杰, 安夏兰, 桑建人. 2002. 不同天气系统宁夏夏季降雨谱分布参量特征的观测研究 [J]. 高原气象, 21(1): 37−44. doi: 10.3321/j.issn:1000-0534.2002.01.007

    Niu Shengji, An Xialan, Sang Jianren. 2002. Observational research on physical feature of summer rain dropsize distribution under synoptic systems in Ningxia [J]. Plateau Meteorology, 21(1): 37−44. doi: 10.3321/j.issn:1000-0534.2002.01.007
    [29] Niu S J, Jia X C, Sang J R, et al. 2010. Distributions of raindrop sizes and fall velocities in a semiarid plateau climate: Convective versus stratiform rains [J]. Journal of Applied Meteorology and Climatology, 49(4): 632−645. doi: 10.1175/2009JAMC2208.1
    [30] 潘晓, 傅云飞. 2015. 夏季青藏高原深厚及浅薄降水云气候特征分析 [J]. 高原气象, 34(5): 1191−1203. doi: 10.7522/j.issn.1000-0534.2014.00112

    Pan Xiao, Fu Yunfei. 2015. Analysis on climatological characteristics of deep and shallow precipitation cloud in summer over Qinghai–Xizang Plateau [J]. Plateau Meteorology, 34(5): 1191−1203. doi: 10.7522/j.issn.1000-0534.2014.00112
    [31] Rosenfeld D, Wolff D B, Atlas D. 1993. General probability-matched relations between radar reflectivity and rain rate [J]. Journal of Applied Meteorology and Climatology, 32(1): 50−72. doi:10.1175/1520-0450(1993)032<0050:GPMRBR>2.0.CO;2
    [32] Rosenfeld D, Ulbrich C W. 2003. Cloud microphysical properties, processes, and rainfall estimation opportunities [J]. Meteor. Monogr., 30(52): 237−258. doi:10.1175/0065-9401(2003)030<0237:CMPPAR>2.0.CO;2
    [33] 阮征, 葛润生, 吴志根. 2002. 风廓线仪探测降水云体结构方法的研究 [J]. 应用气象学报, 13(3): 330−338. doi: 10.3969/j.issn.1001-7313.2002.03.008

    Ruan Zheng, Ge Runsheng, Wu Zhigen. 2002. Method for detecting rain cloud structure with wind profilers [J]. Journal of Applied Meteorological Science, 13(3): 330−338. doi: 10.3969/j.issn.1001-7313.2002.03.008
    [34] 邵元亭, 刘奇俊, 荆志娟. 2013. 祁连山夏季地形云和降水宏微观结构的数值模拟 [J]. 干旱气象, 31(1): 18−23. doi: 10.11755/j.issn.1006-7639(2013)-01-0018

    Shao Yuanting, Liu Qijun, Jing Zhijuan. 2013. Numerical simulation on macrophysics and microphysics structure of the orographic cloud and precipitation in summer of the Qilian Mountains [J]. Journal of Arid Meteorology, 31(1): 18−23. doi: 10.11755/j.issn.1006-7639(2013)-01-0018
    [35] 石光普, 石圆圆, 郭玉珍, 等. 2012. 气候变暖背景下祁连山区秋季层状云变化特征 [J]. 地理科学进展, 31(5): 609−616. doi: 10.11820/dlkxjz.2012.05.009

    Shi Guangpu, Shi Yuanyuan, Guo Yuzhen, et al. 2012. The changes of autumn stratiform clouds in the Qilian Mts. region under the background of global warming [J]. Progress in Geography, 31(5): 609−616. doi: 10.11820/dlkxjz.2012.05.009
    [36] 史晋森, 张武, 陈添宇, 等. 2008. 2006年夏季祁连山北坡雨滴谱特征 [J]. 兰州大学学报(自然科学版), 44(4): 55−61. doi: 10.3321/j.issn:0455-2059.2008.04.011

    Shi Jinsen, Zhang Wu, Chen Tianyu, et al. 2008. Raindrop-size distribution characteristics of the northern face of Qilian Mountains in the summer of 2006 [J]. Journal of Lanzhou University (Natural Sciences), 44(4): 55−61. doi: 10.3321/j.issn:0455-2059.2008.04.011
    [37] Ulbrich C W. 1983. Natural variations in the analytical form of the raindrop size distribution [J]. Journal of Applied Meteorology and Climatology, 22(10): 1764−1775. doi:10.1175/1520-0450(1983)022<1764:NVITAF>2.0.CO;2
    [38] 许焕斌. 2012. 强对流云物理及其应用 [M]. 北京: 气象出版社. Xu Huanbin. 2012. The Physics of Severe Convective Storms and its Application (in Chinese) [M]. Beijing: China Meteorological Press.
    [39] Yuter S E, Kingsmill D E, Nance L B, et al. 2006. Observations of precipitation size and fall speed characteristics within coexisting rain and wet snow [J]. Journal of Applied Meteorology and Climatology, 45(10): 1450−1464. doi: 10.1175/JAM2406.1
    [40] Zhang G F, Vivekanandan J, Brandes E A, et al. 2003. The shape–slope relation in observed gamma raindrop size distributions: Statistical error or useful information? [J]. Journal of Atmospheric and Oceanic Technology, 20(8): 1106−1119. doi:10.1175/1520-0426(2003)020<1106:TSRIOG>2.0.CO;2
    [41] 张杰, 张强, 田文寿, 等. 2006. 祁连山区云光学特征的遥感反演与云水资源的分布特征分析 [J]. 冰川冻土, 28(5): 722−727. doi: 10.3969/j.issn.1000-0240.2006.05.015

    Zhang Jie, Zhang Qiang, Tian Wenshou, et al. 2006. Remote sensing retrieval and analysis of optical character of cloud in Qilian Mountains [J]. Journal of Glaciology and Geocryology, 28(5): 722−727. doi: 10.3969/j.issn.1000-0240.2006.05.015
    [42] 郑国光, 陈跃, 陈添宇, 等. 2011. 祁连山夏季地形云综合探测试验 [J]. 地球科学进展, 26(10): 1057−1070. doi: 10.11867/j.issn.1001-8166.2011.10.1057

    Zheng Guoguang, Chen Yue, Chen Tianyu, et al. 2011. The observational study of summer orographic clouds structures of Qilian Mountains [J]. Advances in Earth Science, 26(10): 1057−1070. doi: 10.11867/j.issn.1001-8166.2011.10.1057
    [43] 周毓荃, 刘晓天, 周非非, 等. 2001. 河南干旱年地面雨滴谱特征 [J]. 应用气象学报, 12(Z1): 39−47. doi: 10.3969/j.issn.1001-7313.2001.z1.006

    Zhou Yuquan, Liu Xiaotian, Zhou Feifei, et al. 2001. Characteristics of surface raindrop spectra in drought years in Henan Province [J]. Quarterly Journal of Applied Meteorology, 12(Z1): 39−47. doi: 10.3969/j.issn.1001-7313.2001.z1.006
  • 加载中
图(12) / 表(6)
计量
  • 文章访问数:  259
  • HTML全文浏览量:  74
  • PDF下载量:  105
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-20
  • 录用日期:  2021-05-10
  • 网络出版日期:  2021-05-03
  • 刊出日期:  2021-11-25

目录

    /

    返回文章
    返回