Observational Comparison of Two Torrential Rainfall Events in Beijing
-
摘要: 本文针对2012年(“7·21”)和2016年(“7·20”)北京两次特大暴雨过程,利用多源观测和再分析数据,结合多种分析方法,从多个角度,较为系统地对比揭示了两次特大暴雨过程的差异,结果指出:两次过程降水总量相近,但降水历时和小时雨强不同,“7·21”历时更短、雨势更强;两次过程主导天气系统和演变、对流系统演变以及局地探空条件明显不同,“7·21”主降水时段对流有效位能显著,暖区对流性强降水主导,而“7·20”主降水时段对流有效位能小,以低涡系统性降水为主;两次过程小时雨强和短历时降水事件统计差异显著,“7·20”中等强度小时雨量站点数占比显著,而“7·21”短时强降水站点数占比明显,两次过程短历时降水事件累积雨量、持续时间、5分钟和1小时最大雨量差异明显,“7·21”短历时强降水事件占比达一半以上(小时雨量50 mm以上的短历时极强降水事件占比明显),最大5分钟和1小时降水量分别高达20.4 mm和103.6 mm,极端性显著,而“7·20”短历时中等强度降水事件占比最大,最大5分钟和1小时降水量仅为10.7和59.3 mm,“7·21”降水极端性更强、致灾性更大;两次过程水汽来源和源区定量贡献差异明显,来自中国中东部及沿海地区的水汽贡献在两次过程中均最大,但“7·21”过程上述水汽源区的贡献最突出,而“7·20”过程中,印度半岛—孟加拉湾—中南半岛、中国南海和西北太平洋及日本海等区域的贡献也较为明显。上述结论有助于深入理解和认识两次特大暴雨过程致灾程度不同的原因。Abstract: In this paper, the two torrential rain processes in Beijing on July 21, 2012 (hereinafter referred to as “7.21”) and July 20, 2016 (hereinafter referred to as “7.20”) are analyzed to compare and reveal their differences from multiple perspectives using multisource observation and reanalysis data combined with various analysis methods. The results show that the total amount of precipitation for the two processes is similar, but the precipitation duration and hourly rainfall intensity are different, indicating that the duration of “7.21” is shorter and the rainfall intensity is stronger, which corresponds to the dominant weather system and evolution, convective system evolution and local sounding conditions of the two processes. The convective effective potential energy is significant in “7.21” main precipitation period resulting in the dominant convective heavy precipitation in a warm area, whereas the convective effective potential energy is small in “ 7.20” main precipitation period and is dominated by low vortex systematic precipitation. Therefore, significant differences are observed in the statistics of hourly rainfall intensity and short-duration rainfall events between the two processes. The proportion of medium intensity hourly rainfall stations of “7.20” is significant, whereas the proportion of short-duration heavy rainfall stations “7.21” is obvious. The differences in accumulated rainfall, duration, 5 min, and 1 h maximum rainfall between the two short-duration precipitation events are significant. The “7.21” short-duration heavy rainfall events (the short-duration extremely heavy rainfall events with an hourly rainfall of more than 50 mm accounted for a significant proportion) exceeded half, as well as the maximum 5 min and 1 h precipitation were 20.4 and 103.6 mm, respectively. While the short-duration medium intensity precipitation events of “7.20” accounted for the largest proportion, the maximum 5 min and 1 h precipitation of only 10.7 and 59.3 mm. Compared with “7.20”, “7.21” is more disastrous. The contribution of water vapor from central and eastern China as well as coastal areas is the largest in both processes, with “7.21” being more pronounced. However, the contributions of the Indian Peninsula–Bay of Bengal–Central South Peninsula, South China Sea, Northwest Pacific, and the Sea of Japan are also obvious in the “7.20”. The above conclusions contribute to understanding the reasons for the different disasters of the two torrential rain processes.
-
图 2 累积降水量(彩色阴影,单位:mm)分布:(a)2012年7月21日06时至22日04时;(b)2012年7月21日06至20时;(c)2012年7月21日20时至22日04时;(d)2016年7月19日01时至21日08时;(e)2016年7月19日01时至20日01时;(f)2016年7月20日01时至21日08时。灰色线为200 m地形等高线;图(a)和(d)中黑色圆点分别代表两次过程中过程累积雨量最大站点(龙泉站和东山村站)
Figure 2. Distribution of the cumulated precipitation (shaded, units: mm): (a) from 0600 BST 21 to 0400 BST 22 July 2012; (b) from 0600 BST to 2000 BST 21 July 2012; (c) from 2000 BST 21 to 0400 BST 22 July 2012; (d) from 0100 BST 19 to 0800 BST 21 July 2016; (e) from 0100 BST 19 to 0100 BST 20 July 2016; (f) from 0100 BST 20 to 0800 BST 21 July 2016. Thick gray line denotes the 200-m terrain elevation. Black dots represent the stations of (a) Longquan station, (b) Dongshancun station with the largest accumulated precipitation
图 3 (a)“7·21”(2012年7月21日降水过程)和(b)“7·20”(2016年7月20日降水过程)暴雨过程全市平均小时降水量(单位:mm)演变;(c)龙泉站和(d)东山村站逐小时雨量(单位:mm)演变
Figure 3. Evolution of the average hourly precipitation (units: mm) in the whole city of (a) “7.21” (rainfall process happened on July 21 2012) and (b) “7.20” (rainfall process happened on July 20 2016) rainstorm process; the hourly precipitation (units: mm) at (c) Longquan station and (d) Dongshancun station
图 4 2012年7月21日(a)08时、(b)14时、(c)20时和(d)22日02时,以及2016年7月19日(e)08时、(f)20时和20日(g)08时、(h)20时的500 hPa位势高度(蓝色实线,单位:gpm,蓝色粗实线为5880gpm等高线)、850 hPa风矢量和大于等于12 m s−1的风速(彩色阴影,单位:m s−1)
Figure 4. 500 hPa geopotential height (blue contours, units: gpm, the blue thick lines indicate 5880 gpm), 850 hPa wind field (vector), and wind speed (shaded, ≥12 m s−1) at (a) 0800 BST, (b) 1400 BST, (c) 2000 BST 21 July, (d) 2200 BST 22 July 2012, (e) 0800 BST, (f) 2000 BST 19 July, (g) 0800 BST, (h) 2000 BST 20 July 2016
图 5 “7·21”和“7·20”特大暴雨过程雷达组合反射率演变(彩色阴影,单位:dBZ)。2012年7月21日(a)09时、(b)13时和(c)21时;2016年7月19日(d)09时、20日(c)13时和(f)17时。紫色实线为200 m地形等高线
Figure 5. Radar reflectivity composite (shaded, units: dBZ) observed by Beijing’ s radar site at (a) 0900 BST, (b) 1300 BST, (c) 2100 BST 21 July 2012, (d) 0900 BST 19 July, (e) 1300 BST, (f) 1700 BST 20 July 2016. Purple line denotes the 200-m terrain elevation
图 6 (a)2012年7月21日08时和(b)2016年7月20日08时北京南郊观象台探空。蓝色实线为气块湿度曲线,红色实线为气块温度曲线,黑色实线为层结曲线
Figure 6. Soundings were taken at the Beijing metropolitan region’ s southern observatory at (a) 0800 BST July 21, 2012 and (b) 0800 BST July 20, 2016. Blue solid line, the red one and the black one represent the air block humidity curve, temperature curve, and the stratification curve, respectively
图 7 不同强度等级小时降水量站点数占全市总站点数百分比(直方图,单位:%,左侧纵坐标)的时间演变。其中,黑色虚线为全市平均小时降水量时间演变(单位:mm h−1,右侧纵坐标)。(a)“7·21”, (b)“7·20”
Figure 7. Time evolution of the percentage of hourly precipitation stations of different intensity levels in the total stations of the whole city (histogram, left ordinate) of (a) “7.21” and (b) “7.20”. Black dotted line represents the time evolution of the average hourly precipitation of the whole city (units: mm h−1, right ordinate)
图 8 不同强度短历时降水事件次数占该站点所有短历时降水事件总次数的百分比(饼图):(a,b)短历时弱降水事件;(c,d)短历时中等强度降水事件;(e,f)短历时强降水事件。左列为“7·21”过程,右列为“7·20”过程
Figure 8. Percentage of the number of short-duration (a, b) weak, (c, d) medium, (e, f) heavy rainfall events in the total number of short-duration precipitation events at the station (pie chart) in “7·21” (the left column) and “7·20” (the right column) heavy rainfall process
图 9 不同强度短历时降水事件统计盒须图。(a,b)过程雨量;(c,d)持续时间;(e,f)5分钟最大降水量;(g,h)1小时最大降水量。左列为“7·21”过程,右列为“7·20”过程
Figure 9. Box-and-whisker plot of the statistics of the short-duration precipitation events with varying intensities for (a, b) cumulated rainfall, (c, d) duration, (e, f) the maximum rainfall in 5 minutes, (g, h) the maximum rainfall in 1 hour in “7·21” (the left column) and “7·20” (the right column) heavy rainfall process
图 10 目标气块运动轨迹:(a)2012年7月12日06时至22日06时;(b)2016年7月11日09时至21日09时。轨迹颜色代表气块距离地表的高度(AGL,单位:m),紫色“*”表示气块轨迹的初始位置
Figure 10. Trajectories of the target particles (a) from 0600 BST July 12 to 0600 BST July 22, 2012, and (b) from 0900 BST July 11 to 0900 BST July 21, 2016. Trajectory segments are color-coded according to the associated altitudes AGL (Above Ground Level, units: m). Purple star marks indicate the beginning of the trajectories
图 11 由FLEXPART模式诊断的E-P(彩色阴影, 单位:mm)分布(a)“7·21”和(b)“7·20”。图中区域A–G分别为阿拉伯海(A)、印度半岛—孟加拉湾—中南半岛(B)、中国南海(C)、青藏高原和中国西部及其以西地区(D)、中国中东部及沿海地区(E)、西北太平洋及日本海地区(F)、以及亚洲大陆中高纬度和鄂霍兹克海地区(G)
Figure 11. Values ofE-Pdiagnosed based on output from the FLEXPART model (color shading, units: mm) for (a) “7·21” rainfall process, (b) “7·20” rainfall process. The letters A, B, C, D, E, F, G indicate the Arabian sea, the Indian subcontinent–Bay of Bengal–Indochina Peninsula, the South China Sea, the Tibetan Plateau, and western China, the central and eastern China and coastal areas, the Northwest Pacific and the Sea of Japan, the Middle and high latitudes of the Asian continent and the Okhotsk Sea
图 12 各水汽源区(图11中的黑色方框)对目标降水区域的贡献率:(a)“7·21”过程;(b)“7·20”过程。橘色直方图代表整层大气结果,绿色直方图为边界层内结果
Figure 12. Contribution of each examined moisture source region is denoted by black rectangles (Fig. 10) to the total moisture released in the target region for (a) “7·21” rainfall process and (b) “7·20” rainfall process. The orange histogram represents the integrated result of the entire atmospheric layer, whereas the green histogram represents the integrated result of the boundary layer
图 13 各水汽源区(a,b)整层大气和(c,d)边界层水汽总摄取量以及不同组成部分占目标降水区域内水汽总释放量百分比。浅蓝色代表沿途损失部分,深蓝色代表目标降水区域释放部分,绿色代表到达目标区域但未释放部分。左列为“7·21”过程,右列为“7·20”过程
Figure 13. Percentage of the moisture uptake from the examined moisture source regions (a, b) across the entire atmospheric layer and (c, d) in the boundary layer to the total moisture release within the target precipitation area for (a, c) “7·21” rainfall process, (b, d) “7·20” rainfall process. These are divided into three parts: the part lost in transit (baby blue), the part released over the target precipitation area (dark blue), and the part that reached the target precipitation area but did not fall as precipitation (green)
表 1 “7·21”特大暴雨过程不同强度等级短历时降水事件的平均降水量、平均持续时间、和事件数量
Table 1. Average precipitation, average duration, and number of short-duration precipitation events with different intensity levels in the “7·21” heavy rain process
不同强度等级 平均降水量/mm 平均持续时间/min 事件数量/次 5~10 9.23 70.61 124(24.08%) 10~20 26.08 148.92 126(24.46%) 20~ 124.06 302.56 265(51.46%) 50~ 169.56 363.21 137(26.6%) 注:括号中数值为不同等级事件数量占所有事件数量的百分比 表 2 “7·20”特大暴雨过程不同强度等级短历时降水事件的平均降水量、平均持续时间、和事件数量
Table 2. Average precipitation, average duration, and number of short-duration precipitation events with different intensity levels in the “7·20” heavy rain process
不同强度等级 平均降水量/mm 平均持续时间/min 事件数量/次 5~10 9.21 70.50 333(33.88%) 10~20 28.90 159.30 431(43.84%) 20~ 101.85 373.23 219(22.28%) 50~ 124.37 286.67 3(0.305%) 注:括号中数值为不同等级事件数量占所有事件数量的百分比(%) -
[1] Bonne J L, Delmotte V M, Cattani O, et al. 2014. The isotopic composition of water vapour and precipitation in Ivittuut, southern Greenland [J]. Atmos. Chem. Phys., 14(9): 4419−4439. doi: 10.5194/acp-14-4419-2014 [2] 曹伟华, 梁旭东, 赵晗萍, 等. 2016. 基于Copula函数的北京强降水频率及危险性分析 [J]. 气象学报, 74(5): 772−783. doi: 10.11676/qxxb2016.056Cao Weihua, Liang Xudong, Zhao Hanping, et al. 2016. Copula-based frequency analysis and its application in hazard risk assessment of heavy rainfall in Beijing [J]. Acta Meteor. Sinica (in Chinese), 74(5): 772−783. doi: 10.11676/qxxb2016.056 [3] 陈斌, 徐祥德, 施晓晖. 2011. 拉格朗日方法诊断2007年7月中国东部系列极端降水的水汽输送路径及其可能蒸发源区 [J]. 气象学报, 69(5): 810−818. doi: 10.11676/qxxb2011.071Chen Bin, Xu Xiangde, Shi Xiaohui. 2011. Estimating the water vapor transport pathways and associated sources of water vapor for the extreme rainfall event over east of China in July 2007 using the Lagrangian method [J]. Acta Meteor. Sinica (in Chinese), 69(5): 810−818. doi: 10.11676/qxxb2011.071 [4] 陈双, 王迎春, 张文龙, 等. 2011. 复杂地形下雷暴增强过程的个例研究 [J]. 气象, 37(7): 802−813. doi: 10.7519/j.issn.1000-0526.2011.7.004Chen Shuang, Wang Yingchun, Zhang Wenlong, et al. 2011. Intensifying mechanism of the convective storm moving from the mountain to the plain over Beijing area [J]. Meteor. Mon. (in Chinese), 37(7): 802−813. doi: 10.7519/j.issn.1000-0526.2011.7.004 [5] 丁一汇. 1993. 1991年江淮流域持续性特大暴雨研究 [M]. 北京: 气象出版社. Ding Yihui. 1993. Study on Persistent Heavy Rainfalls in the Yangtze and Huaihe River Valley in1991 (in Chinese) [M]. Beijing: China Meteorological Press. [6] 丁一汇, 李吉顺, 孙淑清, 等. 1980. 影响华北夏季暴雨的几类天气尺度系统分析[C]//暴雨及强对流天气的研究——中国科学院大气物理研究所集刊(第9号). 北京: 科学出版社, 1–13Ding Yihui, Li Jishun, Sun Shuqing, et al. 1980. The analysis on mesoscale systems producing heavy rainfall in North China [C]//Papers of Institute of Atmospheric Physics, Chinese Academy of Sciences (CAS), No. 9 (in Chinese). Beijing: Science Press, 1–13. [7] Drumond A, Nieto R, Gimeno L. 2011a. Sources of moisture for China and their variations during drier and wetter conditions in 2000-2004: a Lagrangian approach [J]. Climate Res., 50(2−3): 215−225. doi: 10.3354/cr01043 [8] 高守亭, 孙建华, 崔晓鹏. 2008. 暴雨中尺度系统数值模拟与动力诊断研究 [J]. 大气科学, 32(4): 854−866. doi: 10.3878/j.issn.1006-9895.2008.04.13Gao Shouting, Sun Jianhua, Cui Xiaopeng. 2008. Numerical simulation and dynamic analysis of mesoscale torrential rain systems [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 32(4): 854−866. doi: 10.3878/j.issn.1006-9895.2008.04.13 [9] Gao Shouting, Tan Zhemin, Zhao Sixiomg, et al. 2015. Mesoscale dynamics and its application in torrential rainfall systems in China [J]. Adv. Atmos. Sci., 32(2): 192−205. doi: 10.1007/s00376-014-0005-x [10] 高守亭, 周玉淑, 冉令坤. 2018. 我国暴雨形成机理及预报方法研究进展 [J]. 大气科学, 42(4): 833−846. doi: 10.3878/j.issn.1006-9895.1802.17277Gao Shouting, Zhou Yushu, Ran Lingkun. 2018. A review on the formation mechanisms and forecast methods for torrential rain in China [J]. Chinese Journal Atmospheric Science (in Chinese), 42(4): 833−846. doi: 10.3878/j.issn.1006-9895.1802.17277 [11] 郭虎, 季崇萍, 张琳娜, 等. 2006. 北京地区2004年7月10日局地暴雨过程中的波动分析 [J]. 大气科学, 30(4): 703−711. doi: 10.3878/j.issn.1006-9895.2006.04.15Guo Hu, Ji Chongping, Zhang Lingna, et al. 2006. A case study of local rainstorm in Beijing on 10 July 2004: The analysis of the gravity wave [J]. Chinese Journal of Atmospheric Science (in Chinese), 30(4): 703−711. doi: 10.3878/j.issn.1006-9895.2006.04.15 [12] Gustafsson M, Rayner D, Chen Deliang. 2010. Extreme rainfall events in southern Sweden: Where does the moisture come from? [J]. Tellus A:Dynamic Meteorology and Oceanography, 62(5): 605−616. doi: 10.1111/j.1600-0870.2010.00456.x [13] Holman K D, Vavrus S J. 2012. Understanding simulated extreme precipitation events in Madison, Wisconsin, and the role of moisture flux convergence during the late twentieth and twenty-first centuries [J]. J. Hydrometeorol., 13(3): 877−894. doi: 10.1175/JHM-D-11-052.1 [14] 黄荣, 王迎春, 张文龙. 2012. 复杂地形下北京一次局地雷暴新生和增强机制初探 [J]. 暴雨灾害, 31(3), 232–241. Huang Rong, Wang Yingchun, Zhang Wenlong. 2012. Initiating and intensifying mechanism of a local thunderstorm over complex terrain of Beijing [J]. Torrential Rain and Disasters (in Chinese), 31(3): 232–241. [15] Huang Yongjie, Cui Xiaopeng. 2015a. Moisture sources of an extreme precipitation event in Sichuan, China, based on the Lagrangian method [J]. Atmos. Sci. Lett., 16(2): 177−183. doi: 10.1002/asl2.562 [16] Huang Yongjie, Cui Xiaopeng. 2015b. Moisture sources of torrential rainfall events in the Sichuan basin of China during summers of 2009–13 [J]. J. Hydrometeorol., 16(4): 1906−1917. doi: 10.1175/JHM-D-14-0220.1 [17] 雷蕾, 孙继松, 何娜, 等. 2017. “7·20”华北特大暴雨过程中低涡发展演变机制研究 [J]. 气象学报, 75(5): 685−699. doi: 10.11676/qxxb2017.054Lei Lei, Sun Jisong, He Na, et al. 2017. A study on the mechanism for the vortex system evolution and development during the torrential rain event in North China on 20 July 2016 [J]. Acta Meteor. Sinica (in Chinese), 75(5): 685−699. doi: 10.11676/qxxb2017.054 [18] Lenderink G, Van Meijgaard E. 2008. Increase in hourly precipitation extremes beyond expectations from temperature changes [J]. Nat. Geosci., 1(8): 511−514. doi: 10.1038/ngeo262 [19] 李建, 宇如聪, 王建捷. 2008. 北京市夏季降水的日变化特征 [J]. 科学通报, 53(7): 829–832.Li Jian, Yu Rucong, Wang Jianjie. 2008. Diurnal variations of summer precipitation in Beijing [J]. Chinese Sci. Bull. , 53(12): 1933–1936. doi: 10.3321/j.issn:0023-074X.2008.07.014 [20] Li Huiqi, Cui Xiaopeng, Zhang Wenlong, et al. 2016. Observational and dynamic downscaling analysis of a heavy rainfall event in Beijing, China during the 2008 Olympic Games [J]. Atmos. Sci. Lett., 17(6): 368−376. doi: 10.1002/asl.667 [21] Li Huiqi, Cui Xiaopeng, Zhang Dalin. 2017a. A statistical analysis of hourly heavy rainfall events over the Beijing metropolitan region during the warm seasons of 2007–2014 [J]. Int. J. Climatol., 37(11): 4027−4042. doi: 10.1002/joc.4983 [22] Li Huiqi, Cui Xiaopeng, Zhang Dalin. 2017b. On the initiation of an isolated heavy-rain-producing storm near the central urban area of Beijing metropolitan region [J]. Mon. Wea. Rev., 145(1): 181−197. doi: 10.1175/MWR-D-16-0115.1 [23] Li Huiqi, Cui Xiaopeng, Zhang Dalin. 2017c. Sensitivity of the initiation of an isolated thunderstorm over the Beijing metropolitan region to urbanization, terrain morphology and cold outflows [J]. Quart. J. Roy. Meteor. Soc., 143(709): 3153−3164. doi: 10.1002/qj.3169 [24] 刘璐, 冉令坤, 周玉淑, 等. 2015. 北京“7.21”暴雨的不稳定性及其触发机制分析 [J]. 大气科学, 39(3): 583−595. doi: 10.3878/j.issn.1006-9895.1407.14144Liu Lu, Ran Lingkun, Zhou Yushu, et al. 2015. Analysis on the instability and trigger mechanism of torrential rainfall event in Beijing on 21 July 2012 [J]. Chinese Journal of Atmospheric Science (in Chinese), 39(3): 583−595. doi: 10.3878/j.issn.1006-9895.1407.14144 [25] 陆汉城, 成巍, 朱民, 等. 2002. 梅雨锋致洪暴雨的β中尺度涡旋机理的分析 [J]. 解放军理工大学学报(自然科学版), 3(4): 70−76. doi: 10.3969/j.issn.1009-3443.2002.04.018Lu Hancheng, Cheng Wei, Zhu Min, et al. 2002. Mechanism study of meso-β scale vortex system of heavy rain in Meiyu front [J]. Journal of PLA University of Science and Technology (Natural Science Edition), 3(4): 70−76. doi: 10.3969/j.issn.1009-3443.2002.04.018 [26] 倪允琪, 周秀骥. 2006. “我国重大天气灾害形成机理与预测理论研究”取得的主要研究成果 [J]. 地球科学进展, 21(9): 881−894. doi: 10.3321/j.issn:1001-8166.2006.09.001Ni Yunqi, Zhou Xiuji. 2006. Main scientific issues and achievements of state 973 project on study for formation mechanism and prediction theories of severe weather disasters in China [J]. Advances in Earth Science (in Chinese), 21(9): 881−894. doi: 10.3321/j.issn:1001-8166.2006.09.001 [27] Numaguti A. 1999. Origin and recycling processes of precipitating water over the Eurasian Continent: Experiments using an atmospheric general circulation model [J]. J. Geophys. Res., 104(D2): 1957−1972. doi: 10.1029/1998JD200026 [28] Pendergrass A G, Knutti R. 2018. The uneven nature of daily precipitation and its change [J]. Geophys. Res. Lett., 45(21): 11980−11988. doi: 10.1029/2018GL080298 [29] Stohl A, James P. 2004. A Lagrangian analysis of the atmospheric branch of the global water cycle. Part I: Method description, validation, and demonstration for the August 2002 flooding in central Europe [J]. J. Hydrometeorol., 5(4): 656−678. doi:10.1175/1525-7541(2004)005<0656:ALAOTA>2.0.CO;2 [30] Stohl A, James P. 2005. A Lagrangian analysis of the atmospheric branch of the global water cycle. Part II: Moisture transports between earth's ocean basins and river catchments [J]. J. Hydrometeorol., 6(6): 961−984. doi: 10.1175/JHM470.1 [31] Stohl A, Hittenberger M, Wotawa G. 1998. Validation of the Lagrangian particle dispersion model flexpart against large-scale tracer experiment data [J]. Atmos. Environ., 32(24): 4245−4264. doi: 10.1016/S1352-2310(98)00184-8 [32] Stohl A, Eckhardt S, Forster C, et al. 2002. On the pathways and timescales of intercontinental air pollution transport [J]. J. Geophys. Res., 107(D23): 4684. doi: 10.1029/2001JD001396 [33] Sun Bo, Wang Huijun. 2013. Water vapor transport paths and accumulation during widespread snowfall events in northeastern China [J]. J. Climate, 26(13): 4550−4566. doi: 10.1175/JCLI-D-12-00300.1 [34] Sun Bo, Wang Huijun. 2014. Moisture sources of semiarid grassland in China using the Lagrangian particle model FLEXPART [J]. J. Climate, 27(6): 2457−2474. doi: 10.1175/JCLI-D-13-00517.1 [35] Sun Bo, Wang Huijun. 2015. Analysis of the major atmospheric moisture sources affecting three sub-regions of East China [J]. Int. J. Climatol., 35(9): 2243−2257. doi: 10.1002/joc.4145 [36] 孙继松. 2005. 北京地区夏季边界层急流的基本特征及形成机理研究 [J]. 大气科学, 29(3), 445–452. Sun Jisong. 2005. A study of the basic features and mechanism of boundary layer jet in Beijing area [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 29(3): 445–452. doi: 10.3878/j.issn.1006-9895.2005.03.12 [37] 孙继松, 何娜, 王国荣, 等. 2012. “7.21” 北京大暴雨系统的结构演变特征及成因初探 [J]. 暴雨灾害, 31(3): 218−225.Sun Jisong, He Na, Wang Guorong, et al. 2012. Preliminary analysis on synoptic configuration evolvement and mechanism of a torrential rain occurring in Beijing on 21 July 2012 [J]. Torrential Rain and Disasters (in Chinese), 31(3): 218−225. [38] 孙建华, 赵思雄, 傅慎明, 等. 2013. 2012年7月21日北京特大暴雨的多尺度特征 [J]. 大气科学, 37(3): 705−718. doi: 10.3878/j.issn.1006-9895.2013.12202Sun Jianhua, Zhao Sixiong, Fu Shenming, et al. 2013. Multi-scale characteristics of record heavy rainfall over Beijing area on July 21, 2012 [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 37(3): 705−718. doi: 10.3878/j.issn.1006-9895.2013.12202 [39] 汤鹏宇, 何宏让, 阳向荣, 等. 2015. 北京“7·21”特大暴雨中的干侵入分析研究 [J]. 高原气象, 34(1): 210−219. doi: 10.7522/j.issn.1000-0534.2013.00128Tang Pengyu, He Hongrang, Yang Xiangrong, et al. 2015. Research and analysis of dry intrusion during Beijing ‘7·21’ extreme torrential rain [J]. Plateau Meteor. (in Chinese), 34(1): 210−219. doi: 10.7522/j.issn.1000-0534.2013.00128 [40] 陶诗言. 1980. 中国之暴雨[M]. 北京: 科学出版社, 225ppTao Shiyan. 1980. Rainstorm in China (in Chinese) [M]. Beijing: China Meteorological Press, 225pp. [41] 陶祖钰. 1980. 湿急流的结构及形成过程 [J]. 气象学报, 38(4): 331−340. doi: 10.11676/qxxb1980.039Tao Zuyu. 1980. The structure and formation of the moist jet stream [J]. Acta Meteor. Sinica (in Chinese), 38(4): 331−340. doi: 10.11676/qxxb1980.039 [42] Trenberth K E. 1999. Atmospheric moisture recycling: Role of advection and local evaporation [J]. J. Climate, 12(5): 1368−1381. doi:10.1175/1520-0442(1999)012<1368:AMRROA>2.0.CO;2 [43] 王国荣, 王令. 2013. 北京地区夏季短时强降水时空分布特征 [J]. 暴雨灾害, 32(3): 276−279. doi: 10.3969/j.issn.1004-9045.2013.03.012Wang Guorong, Wang Ling. 2013. Temporal and spatial distribution of short-time heavy rain of Beijing in summer [J]. Torrential Rain and Disasters (in Chinese), 32(3): 276−279. doi: 10.3969/j.issn.1004-9045.2013.03.012 [44] 王迎春, 钱婷婷, 郑永光, 等. 2003. 对引发密云泥石流的局地暴雨的分析和诊断 [J]. 应用气象学报, 14(3): 277−286. doi: 10.3969/j.issn.1001-7313.2003.03.003Wang Yingchun, Qian Tingting, Zheng Yongguang, et al. 2003. Analysis and diagnosis of a local heavy rain in Miyun county, Beijing [J]. J. Appl. Meteor. Sci. (in Chinese), 14(3): 277−286. doi: 10.3969/j.issn.1001-7313.2003.03.003 [45] 王婷婷, 王迎春, 陈明轩, 等. 2011. 北京地区干湿雷暴形成机制的对比分析 [J]. 气象, 37(2): 142−155. doi: 10.7519/j.issn.1000-0526.2011.2.003Wang Tingting, Wang Yingchun, Chen Mingxuan, et al. 2011. The contrastive analysis of formation of dry and moist thunderstorms in Beijing [J]. Meteor. Mon. (in Chinese), 37(2): 142−155. doi: 10.7519/j.issn.1000-0526.2011.2.003 [46] Wen Yongren, Xue Lin, Li Ying, et al. 2015. Interaction between Typhoon Vicente (1208) and the western Pacific subtropical high during the Beijing extreme rainfall of 21 July 2012 [J]. J. Meteor. Res., 29(2): 293−304. doi: 10.1007/s13351-015-4097-8 [47] Weyhenmeyer C E, Burns S J, Waber H N, et al. 2002. Isotope study of moisture sources, recharge areas, and groundwater flow paths within the eastern Batinah coastal plain, Sultanate of Oman [J]. Water Resour. Res., 38(10): 1184. doi: 10.1029/2000WR000149 [48] Wu Fan, Cui Xiaopeng, Zhang Dalin, et al. 2017. The relationship of lightning activity and short-duration rainfall events during warm seasons over the Beijing metropolitan region [J]. Atmos. Res., 195: 31−43. doi: 10.1016/j.atmosres.2017.04.032 [49] 杨萍, 刘伟东. 2013. 北京地区加密自动气象站数据的质量分析 [J]. 气象科技进展, 3(6): 27−34. doi: 10.3969/j.issn.2095-1973.2013.06.004Yang Ping, Liu Weidong. 2013. Evaluating the quality of meteorological data measured at automatic weather stations in Beijing during 1998–2010 [J]. Adv. Meteor. Sci. Technol., 3(6): 27−34. doi: 10.3969/j.issn.2095-1973.2013.06.004 [50] 杨默远, 潘兴瑶, 邸苏闯. 2018. 北京“7·20”特大暴雨的时空多要素分析 [J]. 水文, 38(2): 85−92. doi: 10.3969/j.issn.1000-0852.2018.02.014Yang Moyuan, Pan Xingyao, Pi Suchuang. 2018. Multi-factor analysis of torrential rain occurred in Beijing on July 20, 2016 [J]. Journal of China Hydrology (in Chinese), 38(2): 85−92. doi: 10.3969/j.issn.1000-0852.2018.02.014 [51] Yin ShuiQing, Li WeiJing, Chen Deliang, et al. 2011. Diurnal variations of summer precipitation in the Beijing area and the possible effect of topography and urbanization [J]. Adv. Atmos. Sci., 28(4): 725−734. doi: 10.1007/s00376-010-9240-y [52] 岳甫璐, 王春明, 崔强, 等. 2014. “7·21”北京大暴雨过程的地形作用分析和数值试验研究 [J]. 沙漠与绿洲气象, 8(2): 41−53. doi: 10.3969/j.issn.1002-0799.2014.02.006Yue Fulu, Wang Chunming, Cui Qiang, et al. 2014. Diagnostic analysis and numerical simulation of the impact of terrain on a torrential rain event in Beijing on July 21, 2012 [J]. Desert Oasis Meteor. (in Chinese), 8(2): 41−53. doi: 10.3969/j.issn.1002-0799.2014.02.006 [53] 翟国庆, 高坤, 俞樟孝, 等. 1995. 暴雨过程中中尺度地形作用的数值试验 [J]. 大气科学, 19(4): 475−480. doi: 10.3878/j.issn.1006-9895.1995.04.10Zhai Guoqing, Gao Kun, Yu Zhangxiao, et al. 1995. Numerical simulation of the effects of mesoscale topography in a heavy rain process [J]. Chinese Journal of Atmospheric Sciences (Scientia Atmospherica Sinica) (in Chinese), 19(4): 475−480. doi: 10.3878/j.issn.1006-9895.1995.04.10 [54] 张文龙, 崔晓鹏. 2012. 近50a华北暴雨研究主要进展 [J]. 暴雨灾害, 31(4): 384−391.Zhang Wenlong, Cui Xiaopeng. 2012. Main progress of torrential rain researches in North China during the past 50 years [J]. Torrential Rain and Disasters (in Chinese), 31(4): 384−391. [55] 张文龙, 王迎春, 崔晓鹏, 等. 2011. 北京地区干湿雷暴数值试验对比研究 [J]. 暴雨灾害, 30(3): 202−209. doi: 10.3969/j.issn.1004-9045.2011.03.002Zhang Wenlong, Wang Yingchun, Cui Xiaopeng, et al. 2011. Comparative analysis on numerical test between dry thunder storm and moist thunder storm in Beijing [J]. Torrential Rain and Disaster (in Chinese), 30(3): 202−209. doi: 10.3969/j.issn.1004-9045.2011.03.002 [56] 张文龙, 王迎春, 崔晓鹏, 等. 2012. 具有“双对流云线”特征的北京局地暴雨初步分析[J]热带气象学报, 28(6): 873–887Zhang Wenlong, Wang Yingchun, Cui Xiaopeng, et al. 2012. Analysis of a local rain storm in Beijing associated with two convective lines [J]. J. Trop. Meteor. (in Chinese), 28(6): 873–887. [57] 张文龙, 崔晓鹏, 王迎春, 等. 2013. 对流层低层偏东风对北京局地暴雨的作用 [J]. 大气科学, 37(4): 829−840. doi: 10.3878/j.issn.1006-9895.2012.12058Zhang Wenlong, Cui Xiaopeng, Wang Yingchun, et al. 2013. Roles of low-level easterly winds in the local torrential rains of Beijing [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 37(4): 829−840. doi: 10.3878/j.issn.1006-9895.2012.12058 [58] 张文龙, 崔晓鹏, 黄荣. 2014. 复杂地形下北京雷暴新生地点变化的加密观测研究 [J]. 大气科学, 38(5): 825−837. doi: 10.3878/j.issn.1006-9895.1401.13102Zhang Wenlong, Cui Xiaopeng, Huang Rong. 2014. Intensive observational study on evolution of formation location of thunderstorms in Beijing under complex topographical conditions [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 38(5): 825−837. doi: 10.3878/j.issn.1006-9895.1401.13102 [59] 周玉淑, 刘璐, 朱科锋, 等. 2014. 北京“7.21”特大暴雨过程中尺度系统的模拟及演变特征分析 [J]. 大气科学, 38(5): 885−896. doi: 10.3878/j.issn.1006-9895.2013.13185Zhou Yushu, Liu Lu, Zhu Kefeng, et al. 2014. Simulation and evolution characteristics of mesoscale systems occurring in Beijing on 21 July 2012 [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 38(5): 885−896. doi: 10.3878/j.issn.1006-9895.2013.13185 -