Driving Force of Land Surface Air Temperature Variability Based on the Slow Feature Analysis Method
-
摘要: 慢特征分析(SFA)方法可以从非平稳时间序列中提取出慢变的外强迫信息。近年来,SFA方法被应用于气候变化研究领域,用于探究气候变化的潜在驱动力及相关的动力学机制。本文基于SFA方法,提取全球陆地表面气温(LSAT)的慢变外强迫信息,研究全球LSAT慢变驱动力的空间结构特征及低频变率的主要驱动因子。SFA方法提取的LSAT慢变驱动力与历史时期全球辐射强迫(GRF)和全球海表温度(SST)的主模态(大西洋多年代际振荡AMO、热带太平洋ENSO变率和太平洋年代际振荡PDO)有显著的相关关系,表明全球大部分地区LSAT的变率受到GRF和三个SST模态的显著影响。GRF对LSAT变率的影响有全球一致性的特征,而三个SST模态对LSAT变率的影响则呈现出明显的区域特点。此外,由于SFA方法可以有效降低原始LSAT序列中随机噪声的干扰,GRF和SST模态对LSAT变率的解释方差显著提高,进一步表明GRF和SST模态是全球LSAT低频变率主要的驱动因子。最后,利用历史海温驱动AGCM试验(即AMIP试验)的结果,验证了三个SST模态对区域LSAT变率的显著影响。
-
关键词:
- 慢特征分析(SFA) /
- 陆地表面气温 /
- 驱动力 /
- 低频变率 /
- AMIP试验
Abstract: The slow feature analysis (SFA) can extract slowly varying external forcing information from non-stationary time series. In recent years, the SFA method has been applied to the climate change field to explore the potential driving forces of climate change and related dynamic mechanisms. This study extracts the slowly varying external forcing information of the global land surface air temperature (LSAT) based on the SFA method. It investigates the spatial structure characteristics of the global LSAT slow varying driving force and the main driving factors of low-frequency variability. The LSAT slowly varying driving force extracted by the SFA method has a significant correlation with global radiative forcing (GRF) and the main modes of the global sea surface temperature (SST) (i.e., Atlantic Multidecadal Oscillation, tropical Pacific El Niño–Southern Oscillation variability, and Interdecadal Pacific Oscillation), indicating that the LSAT variability in most parts of the world is significantly affected by GRF and the three SST modes. The influence of GRF on the LSAT variability has global consistency, while that of the three SST modes on the LSAT variability has obvious regional characteristics. In addition, the interpretation variance of the LSAT variability of the GRF and SST modes significantly improved because the SFA method can effectively reduce the explanatory random noise in the original LSAT sequence, further showing that the GRF and SST modes are the main driving factors of the global LSAT low-frequency variability. Finally, the results of the historical sea surface temperature-driven Atmospheric General Circulation Model test, which is also known as the Atmospheric Model Intercomparison Project (AMIP)test, verify the significant influence of the three SST modes on the regional LSAT variability. -
图 1 1901~2009年(a)观测LSAT、(b)SFA方法提取的LSAT慢变驱动力与逐年GRF的相关系数的空间分布。蓝色方框内为相关系数显著增加的区域,分别为北非地区(0°~30°N,0°~30°E)、欧亚大陆中部地区(30°~60°N,30°~60°E)。黑色打点区域代表通过95%的信度水平检验
Figure 1. Correlation of (a) the original observed LSAT(Land Surface Air Temperature) and (b) the LSAT slow driving force extracted by the SFA(Slow Feature Analysis) method with the annual GRF(Global Radiation Forcing ) for 1901–2009. In the blue boxes, the regions with significantly increased correlation coefficients are Central Eurasia (30°–60°N, 30°–60°E) and North Africa (0°–30°N, 0°–30°E). Regions above 95% confidence level are black spotted
图 2 1901~2009年(a)欧亚大陆中部地区(30°~60°N,30°~60°E)、(b)北非地区(0°~30°N,0°~30°E)区域年平均LSAT与逐年GRF的标准化时间序列。红线表示GRF,灰线表示观测LSAT,黑线表示SFA方法提取的LSAT慢变驱动力
Figure 2. Normalized time series of the regional mean annual LSAT in (a) Central Eurasia (30°–60°N, 30°–60°E) and (b) North Africa (0°–30°N, 0°–30°E) and annual GRF for 1901–2009. The red lines represent the annual GRF. The gray line represents the original observed LSAT. The black line represents the LSAT slow driving force extracted by the SFA method
图 3 同图1,但为1901~2009年(a)观测LSAT、(b)SFA方法提取的LSAT慢变驱动力与逐月AMO指数的相关系数的空间分布。蓝色方框区域分别为东亚地区(17°~37°N,90°~110°E)、北美洲东部(43°~63°N,49°~69°W)和格陵兰岛地区(58°~78°N,37°~57°W)
Figure 3. As in Fig. 1, but for correlation of (a) the original observed LSAT and (b) the LSAT slow driving force extracted by the SFA method with the monthly AMO (Atlantic Multidecadal Oscillation) index. The blue boxes represent East Asia (17°–37°N, 90°–110°E), eastern North America (43°–63°N, 49°–69°W), and Greenland (58°–78°N, 37°–57°W)
图 4 同图2,但为(a)东亚地区(17°~37°N,90°~110°E)、(b)北美洲东部(43°~63°N,49°~69°W)、(c)格陵兰岛地区(58°~78°N,37°~57°W)区域月平均LSAT和逐月AMO指数。红线表示逐月AMO指数,灰线表示观测LSAT,黑线表示SFA方法提取的LSAT慢变驱动力
Figure 4. As in Fig. 2, but for the regional mean monthly LSAT in East Asia (17°–37°N, 90°–110°E), eastern North America (43°–63°N, 49°–69°W), and Greenland (58°–78°N, 37°–57°W) and the monthly AMO index(AMOI). The red lines represent the monthly AMOI. The gray line represents the original observed LSAT. The black line represents the LSAT slow driving force extracted by the SFA method
图 5 同图1,但为1901~2009年(a)观测LSAT、(b)SFA方法提取的LSAT慢变驱动力与逐月Niño3.4指数的相关系数的空间分布。方框区域分别为北美洲南部(18°~38°N,88°~108°W)、印度地区(15°~20°N,70°~80°E)、中南半岛(7°~27°N,91°~111°E)
Figure 5. As in Fig. 1, but for correlation of (a) the original observed LSAT and (b) the LSAT slow driving force extracted by the SFA method with the monthly Niño3.4 index. The boxes represent southern North America (18°–38°N, 88°–108°W), India (15°–20°N, 70°–80°E), and the Indo-China Peninsula (7°–27°N, 91°–111°E)
图 6 同图2,但为(a)北美洲南部(18°~38°N,88°~108°W)、(b)印度地区(15°~20°N,70°~80°E)、(c)中南半岛(7°~27°N,91°~111°E)区域月平均LSAT和逐月Niño3.4指数。红线为逐月Nino3.4指数经过12个月滑动平均的标准化时间序列,灰线表示观测LSAT,黑线表示SFA方法提取的LSAT慢变驱动力
Figure 6. As in Fig. 2, but for the regional mean monthly LSAT in southern North America (18°–38°N, 88°–108°W), India (15°–20°N, 70°–80°E), and Indo-China Peninsula (7°–27°N, 91°–111°E) and the monthly Niño3.4 index (NI). The red lines run through the 12-month moving average The gray line represents the original observed LSAT. The black line represents the LSAT slow driving force extracted by the SFA method
图 7 同图1,但为1901~2009年(a)观测LSAT、(b)SFA方法提取的LSAT慢变驱动力与逐月PDO指数的相关系数的空间分布。方框区域分别为北美洲西北部(50°~70°N,100°~160°W)、南美洲中部(10°~30°S,55°~65°W)、澳洲东部(20°~30°S,140°~150°E)、北美洲南部(25°~35°N,100°~105°W)
Figure 7. As in Fig. 1, but for correlation of (a) the original observed LSAT and (b) the LSAT slow driving force extracted by the SFA method with the monthly PDO index. The boxes represent northwestern North America (50°–70°N, 100°–160°W), central South America (10°–30°S, 55°–65°W), Australia (20°–30°S, 140°–150°E), and southern North America (25°–35°N, 100°–105°W)
图 8 同图2,但为(a)北美洲西北部(50°~70°N,100°~160°W)、(b)南美洲中部(10°~30°S,55°~65°W)、(c)澳洲(20°~30°S,140°~150°E)、(d)北美洲南部(25°~35°N,100°~105°W)区域月平均LSAT和逐月PDO指数。红线表示逐月PDO指数,灰线表示观测LSAT,黑线表示SFA方法提取的LSAT慢变驱动力
Figure 8. As in Fig. 2, but for the regional mean monthly LSAT in (a) northwestern North America (50°–70°N, 100–160°W), (b) central South America (10°–30°S, 55°–65°W), (c) Australia (20°–30°S, 140°–150°E), and southern North America (25°–35°N, 100°–105°W) and the monthly PDO index (PDOI)The red lines represent the monthly PDOI. The gray line represents the original observed LSAT. The black line represents the LSAT slow driving force extracted by the SFA method
图 9 AMIP试验10个集合平均1901~2009年的LSAT与逐月AMO指数同期相关系数的空间分布。方框内为据观测结果选择的关键区,黑色打点区域代表通过95%的信度水平检验
Figure 9. Correlation of the ten sets averaging LSAT simulated by the AMIP experience with the monthly AMO index for the same period from1901–2009. The boxes represent the key areas selected according to the observation results, regions above 95% confidence level are black spotted
表 1 区域平均的LSAT与逐年GRF的相关系数和解释方差
Table 1. Correlation coefficient and explanatory variance of the regional mean LSAT and the annual GRF
区域 相关系数 增长量(绝对值) 解释方差 增长量 原始序列 SFA方法提取的慢变驱动力 原始序列 SFA方法提取的慢变驱动力 欧洲中部 0.58 0.71 0.13 34% 50% 16% 北非地区 0.64 0.70 0.06 41% 49% 8% 区域 相关系数 增长量(绝对值) 解释方差 增长量 原始序列 SFA方法提取的慢变驱动力 原始序列 SFA方法提取的慢变驱动力 东亚地区 0.13 0.33 0.20 2% 11% 9% 北美洲东部 0.25 0.44 0.19 6% 19% 13% 格陵兰岛 0.18 0.39 0.21 3% 15% 12% 区域 相关系数 增长量(绝对值) 解释方差 增长量 原始序列 SFA方法提取的慢变驱动力 原始序列 SFA方法提取的慢变驱动力 北美洲南部 −0.16 −0.32 0.16 3% 10% 8% 印度 0.26 0.45 0.19 7% 20% 13% 中南半岛 0.19 0.32 0.13 4% 10% 7% -
[1] 安然, 冯娟, 李建平, 等. 2019. 评估IPCC AMIP5模式对北半球冬季Hadley环流与热带海温经向结构关系的模拟 [J]. 北京师范大学学报(自然科学版), 55(4): 532−544. doi: 10.16360/j.cnki.jbnuns.2019.04.016An Ran, Feng Juan, Li Jianping, et al. 2019. Relationship of the boreal winter Hadley cell and various tropical SST meridional structures in IPCC AMIP5 models [J]. Journal of Beijing Normal University (Natural Science) (in Chinese), 55(4): 532−544. doi: 10.16360/j.cnki.jbnuns.2019.04.016 [2] Chen X Y, Tung K K. 2018. Global-mean surface temperature variability: Space-time perspective from rotated EOFs [J]. Climate Dyn., 51(5-6): 1719−1732. doi: 10.1007/s00382-017-3979-0 [3] Dai A G, Fyfe J C, Xie S P, et al. 2015. Decadal modulation of global surface temperature by internal climate variability [J]. Nature Climate Change, 5(6): 555−559. doi: 10.1038/nclimate2605 [4] Deser C, Alexander M A, Xie S P, et al. 2010. Sea surface temperature variability: Patterns and mechanisms [J]. Annual Review of Marine Science, 2: 115−143. doi: 10.1146/annurev-marine-120408-151453 [5] Di Lorenzo E, Cobb K M, Furtado J C, et al. 2010. Central Pacific El Niño and decadal climate change in the North Pacific Ocean [J]. Nature Geoscience, 3(11): 762−765. doi: 10.1038/ngeo984 [6] 范开宇, 王革丽, 李超, 等. 2018. 利用慢特征分析法提取二维非平稳系统中的外强迫特征 [J]. 气候与环境研究, 23(3): 287−298. doi: 10.3878/j.issn.1006-9585.2017.17097Fan Kaiyu, Wang Geli, Li Chao, et al. 2018. Extracting the driving force signal from two-dimensional non-stationary system based on slow feature analysis [J]. Climatic and Environmental Research (in Chinese), 23(3): 287−298. doi: 10.3878/j.issn.1006-9585.2017.17097 [7] 冯娟, 李建平. 2012. IPCC AMIP模式对西南澳类季风环流的模拟 [J]. 气候与环境研究, 17(4): 409−421. doi: 10.3878/j.issn.1006-9585.2011.10110Feng Juan, Li Jianping. 2012. Evaluation of IPCC AMIP models in simulating monsoon-like Southwest Australian circulation [J]. Climatic and Environmental Research (in Chinese), 17(4): 409−421. doi: 10.3878/j.issn.1006-9585.2011.10110 [8] Forest C E, Stone P H, Sokolov A P. 2006. Estimated PDFs of climate system properties including natural and anthropogenic forcings [J]. Geophys. Res. Lett., 33(1): L01705. doi: 10.1029/2005GL023977 [9] 龚道溢, 周天军, 王绍武. 2001. 北大西洋涛动变率研究进展 [J]. 地球科学进展, 16(3): 413−420. doi: 10.3321/j.issn:1001-8166.2001.03.018Gong Daoyi, Zhou Tianjun, Wang Shaowu. 2001. Advance in the studies on North Atlantic Oscillation (NAO) [J]. Advance in Earth Sciences (in Chinese), 16(3): 413−420. doi: 10.3321/j.issn:1001-8166.2001.03.018 [10] Gong Z Q, Sun C, Li J P, et al. 2020. An inter-basin teleconnection from the North Atlantic to the subarctic North Pacific at multidecadal time scales [J]. Climate Dyn., 54(1-2): 807−822. doi: 10.1007/s00382-019-05031-5 [11] Granger C W J. 1969. Investigating causal relations by econometric models and cross-spectral methods [J]. Econometrica, 37(3): 424−438. doi: 10.2307/1912791 [12] Hansen J, Sato M, Kharecha P, et al. 2011. Earth's energy imbalance and implications [J]. Atmospheric Chemistry and Physics, 11(24): 13421−13449. doi: 10.5194/acp-11-13421-2011 [13] 何珊珊, 张文君, 祁莉, 等. 2015. 两类厄尔尼诺事件发展年秋季印度洋海温异常特征对比 [J]. 气象学报, 73(3): 515−528. doi: 10.11676/qxxb2015.040He Shanshan, Zhang Wenjun, Qi Li, et al. 2015. Contrasting SST anomalies over the Indian Ocean between the two types of El Niño events during boreal autumn [J]. Acta Meteor. Sinica (in Chinese), 73(3): 515−528. doi: 10.11676/qxxb2015.040 [14] Hoerling M P, Kumar A. 1997. Origins of extreme climate states during the 1982–83 ENSO winter [J]. J. Climate, 10(11): 2859−2870. doi:10.1175/1520-0442(1997)010<2859:OOECSD>2.0.CO;2 [15] 胡淑娟. 2006. 全球大气运动的三维环流分解及大气垂直运动特征的分析 [D]. 兰州大学博士学位论文. Hu Shujuan. 2006. The three-dimensional expansion of global atmospheric circumfluence and characteristic analyze of atmospheric vertical motion [D]. Ph. D. dissertation (in Chinese), Lanzhou University. [16] 胡淑娟, 周冰倩, 高晨斌, 等. 2020. 全球大气环流的三型分解理论 [J]. 中国科学: 地球科学, 50(9): 1165–1184. Hu Shujuan, Zhou Bingqian, Gao Chenbin, et al. 2020. Theory of three-pattern decomposition of global atmospheric circulation [J]. Science China Earth Sciences, 63(9): 1248–1267. doi: 10.1007/s11430-019-9614-y [17] IPCC. 2007. Climate Change 2007: Synthesis Report [M]. Core Writing Team, Pachauri R K, Reisinger A, Eds. Geneva, Switzerland, 104 pp. [18] IPCC. 2013. Climate Change 2013: The Physical Science Basis [M]. Stocker T F, Qin D H, Plattner G K, et al. , Eds. Cambridge: Cambridge University Press, 1535 pp. [19] Ji F, Wu Z H, Huang J P, et al. 2014. Evolution of land surface air temperature trend [J]. Nature Climate Change, 4(6): 462−466. doi: 10.1038/nclimate2223 [20] Ju J H, Slingo J. 1995. The Asian summer monsoon and ENSO [J]. Quart. J. Roy. Meteor. Soc., 121(525): 1133−1168. doi: 10.1002/qj.49712152509 [21] Kang S C, Xu Y W, You Q L, et al. 2010. Review of climate and cryospheric change in the Tibetan Plateau [J]. Environ. Res. Lett., 5(1): 015101. doi: 10.1088/1748-9326/5/1/015101 [22] Knight J R, Folland C K, Scaife A A. 2006. Climate impacts of the Atlantic multidecadal oscillation [J]. Geophys. Res. Lett., 33(17): L17706. doi: 10.1029/2006GL026242 [23] Konen W, Koch P. 2009. How slow is slow? SFA detects signals that are slower than the driving force [J]. http://arxiv.org/abs/0911.4397v1. doi: 10.48550/arXiv.0911.4397 [24] Konen W, Koch P. 2011. The slowness principle: SFA can detect different slow components in non-stationary time series [J]. International Journal of Innovative Computing and Applications, 3(1): 3−10. doi: 10.1504/IJICA.2011.037946 [25] Kosaka Y, Xie S P. 2013. Recent global-warming hiatus tied to equatorial Pacific surface cooling [J]. Nature, 501(7467): 403−407. doi: 10.1038/nature12534 [26] Li S L, Bates G T. 2007. Influence of the Atlantic multidecadal oscillation on the winter climate of East China [J]. Adv. Atmos. Sci., 24(1): 126−135. doi: 10.1007/s00376-007-0126-6 [27] Li J P, Sun C, Jin F F. 2013. NAO implicated as a predictor of Northern Hemisphere mean temperature multidecadal variability [J]. Geophys. Res. Lett., 40(20): 5497−5502. doi: 10.1002/2013GL057877 [28] 李双林, 王彦明, 郜永祺. 2009. 北大西洋年代际振荡(AMO)气候影响的研究评述 [J]. 大气科学学报, 32(3): 458−465. doi: 10.13878/j.cnki.dqkxxb.2009.03.006Li Shuanglin, Wang Yanming, Gao Yongqi. 2009. A review of the researches on the Atlantic Multidecadal Oscillation (AMO) and its climate influence [J]. Transactions of Atmospheric Sciences (in Chinese), 32(3): 458−465. doi: 10.13878/j.cnki.dqkxxb.2009.03.006 [29] 李双林, 井元元, 罗菲菲. 2015. 工业革命前中国气温与大西洋年代际振荡(AMO)的可能联系 [J]. 中国科学: 地球科学, 45(6): 864–878. Li Shuanglin, Jing Yuanyuan, Luo Feifei. 2015. The potential connection between China surface air temperature and the Atlantic Multidecadal Oscillation (AMO) in the Pre-industrial Period [J]. Science China Earth Sciences, 58(10): 1814–1826. doi: 10.1007/s11430-015-5091-9 [30] Li J P, Zheng F, Sun C, et al. 2019. Pathways of influence of the Northern Hemisphere mid-high latitudes on East Asian climate: A review [J]. Adv. Atmos. Sci., 36(9): 902−921. doi: 10.1007/s00376-019-8236-5 [31] Lin J L, Qian T T. 2019. A new picture of the global impacts of El Niño–Southern Oscillation [J]. Scientific Reports, 9(1): 17543. doi: 10.1038/s41598-019-54090-5 [32] 林霄沛, 许丽晓, 李建平, 等. 2016. 全球变暖“停滞”现象辨识与机理研究 [J]. 地球科学进展, 31(10): 995−1000. doi: 10.11867/j.issn.1001-8166.2016.10.0995Lin Xiaopei, Xu Lixiao, Li Jianping, et al. 2016. Research on the global warming Hiatus [J]. Advances in Earth Science (in Chinese), 31(10): 995−1000. doi: 10.11867/j.issn.1001-8166.2016.10.0995 [33] 刘珊, 陈幸荣, 蔡怡. 2019. 全球变暖“停滞”研究综述 [J]. 海洋学报, 41(4): 1−14. doi: 10.3969/j.issn.0253-4193.2019.04.001Liu Shan, Chen Xingrong, Cai Yi. 2019. Review on global warming "hiatus" [J]. Haiyang Xuebao (in Chinese), 41(4): 1−14. doi: 10.3969/j.issn.0253-4193.2019.04.001 [34] 刘海涛, 胡淑娟, 徐明, 等. 2007. 全球大气环流三维分解 [J]. 中国科学 D辑: 地球科学, 37(12): 1679–1692. Liu Haitao, Hu Shujuan, Xu Ming, et al. 2007. Three-dimensional decomposition method of global atmospheric circulation [J]. Science in China Series D: Earth Sciences, 51(3): 386–402. doi: 10.1007/s11430-008-0020-9 [35] 罗菲菲, 李双林. 2015. 动力统计相结合的未来30年东亚气温年代际预测 [J]. 中国科学: 地球科学, 45(4): 402–413. Luo Feifei, Li Shuanglin. 2014. Joint statistical-dynamical approach to decadal prediction of East Asian surface air temperature [J]. Science China Earth Sciences, 57(12): 3062–3072. doi: 10.1007/s11430-014-4984-3 [36] 马杰. 2007. 大气环流圈变化特征以及与ENSO的关系 [D]. 兰州大学博士学位论文. Ma Jie. 2007. The variability of the atmosphere circulation cell and its relationship with ENSO [D]. Ph. D. dissertation (in Chinese), Lanzhou University. [37] Mantua N J, Hare S R, Zhang Y, et al. 1997. A pacific Interdecadal climate oscillation with impacts on salmon production [J]. Bull. Amer. Meteor. Soc., 78(6): 1069−1080. doi:10.1175/1520-0477(1997)078<1069:APICOW>2.0.CO;2 [38] Marvel K, Schmidt G A, Miller R L, et al. 2016. Implications for climate sensitivity from the response to individual forcings [J]. Nat. Climate Change, 6(4): 386−389. doi: 10.1038/nclimate2888 [39] Meehl G A, Hu A X, Arblaster J M, et al. 2013. Externally forced and internally generated decadal climate variability associated with the Interdecadal Pacific Oscillation [J]. J. Climate, 26(18): 7298−7310. doi: 10.1175/JCLI-D-12-00548.1 [40] Merrifield A L, Xie S P. 2016. Summer U. S. surface air temperature variability: Controlling factors and AMIP simulation biases [J]. J. Climate, 29(14): 5123−5139. doi: 10.1175/JCLI-D-15-0705.1 [41] Messié M, Chavez F. 2011. Global modes of sea surface temperature variability in relation to regional climate indices [J]. J. Climate, 24(16): 4314−4331. doi: 10.1175/2011JCLI3941.1 [42] Miller R L, Schmidt G A, Nazarenko L S, et al. 2014. CMIP5 historical simulations (1850–2012) with GISS ModelE2 [J]. J. Adv. Model. Earth Syst., 6(2): 441−478. doi: 10.1002/2013MS000266 [43] Muller R A, Curry J, Groom D, et al. 2013. Decadal variations in the global atmospheric land temperatures [J]. J. Geophys. Res. :Atmos., 118(11): 5280−5286. doi: 10.1002/jgrd.50458 [44] Nakaegawa T, Kanamitsu M, Smith T M. 2004. Interdecadal trend of prediction skill in an ensemble AMIP–type experiment [J]. J. Climate, 17(14): 2881−2889. doi:10.1175/1520-0442(2004)017<2881:ITOPSI>2.0.CO;2 [45] Newman M, Compo G P, Alexander M A. 2003. ENSO-forced variability of the pacific decadal oscillation [J]. J. Climate, 16(23): 3853−3857. doi:10.1175/1520-0442(2003)016<3853:EVOTPD>2.0.CO;2 [46] Newman M, Alexander M A, Ault T R, et al. 2016. The Pacific Decadal Oscillation, revisited [J]. J. Climate, 29(12): 4399−4427. doi: 10.1175/JCLI-D-15-0508.1 [47] 潘昕浓, 王革丽, 杨培才. 2017. 利用慢特征分析法提取层次结构系统中的外强迫 [J]. 物理学报, 66(8): 080501. doi: 10.7498/aps.66.080501Pan Xinong, Wang Geli, Yang Peicai. 2017. Extracting the driving force signal from hierarchy system based on slow feature analysis [J]. Acta Physica Sinica (in Chinese), 66(8): 080501. doi: 10.7498/aps.66.080501 [48] 潘昕浓, 王革丽, 王鹏飞, 等. 2016. 慢特征分析法在气象上的应用进展 [J]. 气象与环境科学, 39(1): 96−101. doi: 10.16765/j.cnki.1673-7148.2016.01.013Pan Xinnong, Wang Geli, Wang Pengfei, et al. 2016. Progress of slow feature analysis method applied on meteorological research [J]. Meteorological and Environmental Sciences (in Chinese), 39(1): 96−101. doi: 10.16765/j.cnki.1673-7148.2016.01.013 [49] 容新尧, 杨修群. 2004. 全球海洋环流模式中上层海洋对表面强迫的响应和调整 I. 年际变率 [J]. 海洋学报, 26(2): 20−36. doi: 10.3321/j.issn:0253-4193.2004.02.003Rong Xinyao, Yang Xiuqun. 2004. The upper-ocean response and adjustment to surface forcing in an ocean general circulation model I. Interannual variability [J]. Acta Oceanologica Sinica (in Chinese), 26(2): 20−36. doi: 10.3321/j.issn:0253-4193.2004.02.003 [50] 容新尧, 杨修群. 2005. 全球海洋环流模式中上层海洋对表面强迫的响应和调整 II. 年代际变率 [J]. 海洋学报, 27(3): 20−31. doi: 10.3321/j.issn:0253-4193.2005.03.003Rong Xinyao, Yang Xiuqun. 2005. The upper-ocean response and adjustment to surface forcing in an oceanic general circulation model II. Decadal-to-interdecadal variability [J]. Acta Oceanologica Sinica (in Chinese), 27(3): 20−31. doi: 10.3321/j.issn:0253-4193.2005.03.003 [51] Schreiber T. 1997. Detecting and analyzing nonstationarity in a time series using nonlinear cross predictions [J]. Phys. Rev. Lett., 78(5): 843−846. doi: 10.1103/PhysRevLett.78.843 [52] Schreiber T. 2000. Measuring information transfer [J]. Phys. Rev. Lett., 85(2): 461−464. doi: 10.1103/PhysRevLett.85.461 [53] 宋斌, 智协飞, 胡耀兴. 2015. 全球变暖停滞的形成机制研究进展 [J]. 大气科学学报, 38(2): 145−154. doi: 10.13878/j.cnki.dqkxxb.20150105002Song Bin, Zhi Xiefei, Hu Yaoxing. 2015. A review of recent studies on global warming hiatus [J]. Trans. Atmos. Sci. (in Chinese), 38(2): 145−154. doi: 10.13878/j.cnki.dqkxxb.20150105002 [54] 苏京志, 温敏, 丁一汇, 等. 2016. 全球变暖趋缓研究进展 [J]. 大气科学, 40(6): 1143−1153. doi: 10.3878/j.issn.1006-9895.1512.15242Su Jingzhi, Wen Min, Ding Yihui, et al. 2016. Hiatus of global warming: A review [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 40(6): 1143−1153. doi: 10.3878/j.issn.1006-9895.1512.15242 [55] Sugihara G, May R, Ye H, et al. 2012. Detecting causality in complex ecosystems [J]. Science, 338(6106): 496−500. doi: 10.1126/science.1227079 [56] Sun C, Li J P, Jin F F. 2015. A delayed oscillator model for the quasi-periodic multidecadal variability of the NAO [J]. Climate Dyn., 45(7-8): 2083−2099. doi: 10.1007/s00382-014-2459-z [57] Sutton R T, Hodson D L R. 2005. Atlantic Ocean forcing of North American and European summer climate [J]. Science, 309(5731): 115−118. doi: 10.1126/science.1109496 [58] Sutton R T, Hodson D L R. 2007. Climate response to basin-scale warming and cooling of the North Atlantic Ocean [J]. J. Climate, 20(5): 891−907. doi: 10.1175/JCLI4038.1 [59] Tanuma N, Tozuka T. 2020. Influences of the Interdecadal Pacific Oscillation on the locally amplified Ningaloo Niño [J]. Geophys. Res. Lett., 47(15): e2020GL088712. doi: 10.1029/2020GL088712 [60] Timmermann A, An S I, Kug J S, et al. 2018. El Niño–Southern Oscillation complexity [J]. Nature, 559(7715): 535−545. doi: 10.1038/s41586-018-0252-6 [61] Tsonis A A, Deyle E R, May R M, et al. 2015. Dynamical evidence for causality between galactic cosmic rays and interannual variation in global temperature [J]. Proc. Natl. Acad. Sci. USA, 112(11): 3253−3256. doi: 10.1073/pnas.1420291112 [62] Tsonis A A, Pan X N, Wang G L, et al. 2019. On the min-max estimation of mean daily temperatures [J]. Climate Dyn., 53(3-4): 1981−1989. doi: 10.1007/s00382-019-04757-6 [63] Wang Y M, Li S L, Luo D H. 2009. Seasonal response of Asian monsoonal climate to the Atlantic Multidecadal Oscillation [J]. J. Geophys. Res.: Atmos., 114(D2): D02112. doi: 10.1029/2008JD010929 [64] Wang G L, Yang P C, Zhou X J. 2017. Identification of the driving forces of climate change using the longest instrumental temperature record [J]. Sci. Rep., 7(1): 46091. doi: 10.1038/srep46091 [65] Wang G L, Yang P C, Bian J C, et al. 2011. A novel approach in predicting non-stationary time series by combining external forces [J]. Chin. Sci. Bull., 56(28-29): 3053. doi: 10.1007/s11434-011-4638-1 [66] Wang G L, Zhang N N, Fan K Y, et al. 2019. Central European air temperature: Driving force analysis and causal influence of NAO [J]. Theor. Appl. Climatol., 137(1-2): 1421−1427. doi: 10.1007/s00704-018-2676-1 [67] Watanabe M, Shiogama H, Tatebe H, et al. 2014. Contribution of natural decadal variability to global warming acceleration and hiatus [J]. Nat. Climate Change, 4(10): 893−897. doi: 10.1038/nclimate2355 [68] Weaver S J, Schubert S, Wang H L. 2009. Warm season variations in the low-level circulation and precipitation over the Central United States in observations, AMIP simulations, and idealized SST experiments [J]. J. Climate, 22(20): 5401−5420. doi: 10.1175/2009JCLI2984.1 [69] Wild M. 2016. Decadal changes in radiative fluxes at land and ocean surfaces and their relevance for global warming [J]. Wiley Interdisciplinary Reviews: Climate Change, 7(1): 91−107. doi: 10.1002/wcc.372 [70] Wiskott L. 2003. Estimating driving forces of nonstationary time series with slow feature analysis [J]. http://www.arxiv.org/abs/cond-mat/0312317. doi: 10.48550/arXiv.cond-mat/0312317 [71] Wu Z W, Wang B, Li J P, et al. 2009. An empirical seasonal prediction model of the East Asian summer monsoon using ENSO and NAO [J]. J. Geophys. Res.: Atmos., 114(D18): D18120. doi: 10.1029/2009JD011733 [72] Wu Z H, Huang N E, Wallace J M, et al. 2011. On the time-varying trend in global-mean surface temperature [J]. Climate Dyn., 37(3-4): 759−773. doi: 10.1007/s00382-011-1128-8 [73] Xiao H X, Zhang F, Miao L J, et al. 2020. Long-term trends in Arctic surface temperature and potential causality over the last 100 years [J]. Climate Dyn., 55(5-6): 1443−1456. doi: 10.1007/s00382-020-05330-2 [74] Xie T J, Li J P, Sun C, et al. 2019. NAO implicated as a predictor of the surface air temperature multidecadal variability over East Asia [J]. Climate Dyn., 53(1-2): 895−905. doi: 10.1007/s00382-019-04624-4 [75] 徐一丹, 李建平, 汪秋云, 等. 2019. 全球变暖停滞的研究进展回顾 [J]. 地球科学进展, 34(2): 175−190. doi: 10.11867/j.issn.1001-8166.2019.02.0175Xu Yidan, Li Jianping, Wang Qiuyun, et al. 2019. Review of the research progress in global warming hiatus [J]. Advances in Earth Science (in Chinese), 34(2): 175−190. doi: 10.11867/j.issn.1001-8166.2019.02.0175 [76] Xu Y D, Li J P, Sun C, et al. 2020. Contribution of SST change to multidecadal global and continental surface air temperature trends between 1910 and 2013 [J]. Climate Dyn., 54(3-4): 1295−1313. doi: 10.1007/s00382-019-05060-0 [77] 杨修群, 朱益民, 谢倩, 等. 2004. 太平洋年代际振荡的研究进展 [J]. 大气科学, 28(6): 979−992. doi: 10.3878/j.issn.1006-9895.2004.06.15Yang Xiuqun, Zhu Yimin, Xie Qian, et al. 2004. Advances in studies of Pacific Decadal Oscillation [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 28(6): 979−992. doi: 10.3878/j.issn.1006-9895.2004.06.15 [78] Yang P C, Wang G L, Zhang F, et al. 2016. Causality of global warming seen from observations: A scale analysis of driving force of the surface air temperature time series in the Northern Hemisphere [J]. Climate Dyn., 46(9-10): 3197−3204. doi: 10.1007/s00382-015-2761-4 [79] 杨韵, 李建平, 谢飞, 等. 2018. 热带北大西洋模态年际变率的研究进展与展望 [J]. 地球科学进展, 33(8): 808−817. doi: 10.11867/j.issn.1001-8166.2018.08.0808Yang Yun, Li Jianping, Xie Fei, et al. 2018. Progresses and prospects for north tropical Atlantic mode interannual variability [J]. Advances in Earth Science (in Chinese), 33(8): 808−817. doi: 10.11867/j.issn.1001-8166.2018.08.0808 [80] Yeh S W, Cai W J, Min S K, et al. 2018. ENSO atmospheric teleconnections and their response to greenhouse gas forcing [J]. Rev. Geophys., 56(1): 185−206. doi: 10.1002/2017RG000568 [81] Yu H P, Wei Y, Zhang Q, et al. 2020. Multi–model assessment of global temperature variability on different time scales [J]. Int. J. Climatol., 40(1): 273−291. doi: 10.1002/joc.6209 [82] 张华, 黄建平. 2014. 对IPCC第五次评估报告关于人为和自然辐射强迫的解读 [J]. 气候变化研究进展, 10(1): 40−44. doi: 10.3969/j.issn.1673-1719.2014.01.009Zhang Hua, Huang Jianping. 2014. Interpretation of the IPCC fifth assessment report on anthropogenic and natural radiative forcing [J]. Progressus Inquisitiones De Mutatione Climatis (in Chinese), 10(1): 40−44. doi: 10.3969/j.issn.1673-1719.2014.01.009 [83] Zhang R, Delworth T L, Held I M. 2007. Can the Atlantic Ocean drive the observed multidecadal variability in Northern Hemisphere mean temperature? [J]. Geophys. Res. Lett., 34(2): L02709. doi: 10.1029/2006GL028683 [84] Zhang N N, Wang G L, Tsonis A A. 2019. Dynamical evidence for causality between Northern Hemisphere annular mode and winter surface air temperature over Northeast Asia [J]. Climate Dyn., 52(5-6): 3175−3182. doi: 10.1007/s00382-018-4317-x [85] Zhang F, Yang P C, Fraedrich K, et al. 2017. Reconstruction of driving forces from nonstationary time series including stationary regions and application to climate change [J]. Physica A:Statistical Mechanics and its Applications, 473: 337−343. doi: 10.1016/j.physa.2016.12.088 [86] 朱益民, 杨修群. 2003. 太平洋年代际振荡与中国气候变率的联系 [J]. 气象学报, 61(6): 641−654. doi: 10.3321/j.issn:0577-6619.2003.06.001Zhu Yimin, Yang Xiuqun. 2003. Relationships between Pacific Decadal Oscillation (PDO) and climate variabilities in China [J]. Acta Meteor. Sinica (in Chinese), 61(6): 641−654. doi: 10.3321/j.issn:0577-6619.2003.06.001 -