Relationship between Snowfall in the Yanqing Zone of Winter Olympic Games and the Easterly Wind in the Boundary Layer
-
摘要: 受特殊地理环境影响,北京地区冬季降雪常与边界层东风相伴,边界层东风所引起的水汽输送和动力辐合效应对降雪发生发展有重要意义。不同于已有边界层东风对平原地区降雪影响的研究,本文结合2022年冬奥会北京延庆赛区的地形特征,对比相似天气背景下不同温湿特性、不同发展高度的边界层东风对降雪的作用机制,研究表明:(1)途经渤海湾的路径较长有利于边界层东风的明显增湿,反之增湿效果则较弱;(2)“干冷”性质的偏东风可形成冷垫抬升北京平原及低海拔地区的暖湿空气;当偏东风在垂直方向发展较为深厚(600 m以上)时,能够翻越延庆东部海拔较低的军都山并在背风坡形成绕流汇合,同时受西部海拔较高的海陀山阻挡,形成迎风坡的强迫抬升,二者共同作用导致延庆区的辐合东强西弱,进而造成降雪分布呈东多西少的特征;(3)“暖湿”性质的边界层东风因垂直延展高度较低,无法向西越过军都山,对延庆赛区降雪基本无影响;(4)空中500 hPa为西北气流影响时,除考虑边界层东风能否越山之外,若存在与地形高度接近的、700 hPa高度附近饱和区与抬升运动的有利配合,将导致延庆赛区的高海拔山区出现明显降雪。Abstract: Affected by the special geographical environment, winter snowfall in Beijing is often accompanied by the easterly wind in the boundary layer. The water vapor transport and dynamic convergence effect caused by the easterly wind in the boundary layer are of great significance to the occurrence and development of snowfall. This paper is based on the topographic characteristics of the Yanqing zone of the 2022 Winter Olympic Games and is different from the existing snowfall studies on the easterly wind of boundary layer in plain areas. The paper compared the easterly wind mechanism in the boundary layer with various thermal and humidity properties and development heights on snowfall under similar weather conditions. The results show that: (1) A longer route through the Bohai Bay is beneficial to the obvious humidification of the boundary layer easterly wind and vice versa. (2) The “dry and cold” easterly wind can form a cold pad to lift the warm and humid air in the Beijing plain area. When the easterly wind develops deep in the vertical direction (over 600 m), it can overturn the Jundu mountain with lower altitudes in eastern Yanqing and form a around-flow confluence on leeward slopes. At the same time, the easterly wind is blocked by the Haituo mountain with higher altitudes in the west, forming the forced uplift of the windward slope. The two effects together lead to the convergence of the strong east and the weak west, which causes more snowfall distribution in the east than in the west. (3) The “warm and humid” boundary-layered easterly wind cannot cross the Jundu mountain westward because of its lower vertical development height, which has little effect on snow in Yanqing. (4) When the air gets affected by the northwest airflow of 500 hPa, closer to the terrain, the saturation area near the 700 hPa height and the lifting movement make the high-altitude mountainous area of Yanqing experience the obvious snowfall.
-
图 2 (a、b)2015年11月21日08:00和(c、d)2016年1月21日08:00 500 hPa环流形势(左列;等值线为位势高度场,单位:dagpm;风羽,单位:m s−1)以及海平面气压场(右列;等值线,单位:hPa)分布
Figure 2. Distributions of (a, c) synoptic situation at 500 hPa (contours for geopotential, units: dagpm; barbs for wind, units: m s−1) and (b, d) sea level pressure (contours, units: hPa) at 0800 BJT (Beijing time) on (a, b) November 21, 2015 and (c, d) January 21, 2016
图 3 (a、c)2015年11月21日05:00~16:00和2016年1月21日08:00~18:00北京延庆区总降雪量分布(左列)以及(b、d)逐小时降雪量变化(右列),单位:mm
Figure 3. (a) Distributions of total snowfall amount, (b) variation of hourly snowfalls from 0500 BJT to 1600 BJT on November 21, 2015, units: mm. (c, d) are same as (a, b), but for 0800 BJT to 1800 BJT on January 21, 2016
图 4 (a)2015年11月20日20:00至21日20:00的温度(等值线,单位:°C)、相对湿度(阴影)和风场(箭头,单位:m s−1),(b)2015年11月21日08:00 1000 hPa比湿(等值线,单位:g kg−1)、风场(风向杆,单位:m s−1)及冷平流(阴影,单位:10−5 K s−1)
Figure 4. (a) Distributions of temperature (contours, units: °C), relative humidity (shaded) and wind (barb, units: m s−1) from 2000 BJT 20 to 2000 BJT 21 November 2015, (b) distributions of specific humidity (contours, units: g kg−1), wind (barb, units: m s−1) and cold advection (shade, units: 10−5 K·s−1) at 1000 hPa on 0800 BJT 21 November 2015
图 5 (a)2015年11月21日08:00沿(39.5°N,116.5°E)的96 h后向轨迹(绿色线为200 m,蓝色线为400 m,红色线为600 m),(b)气流后向轨迹对应的相对湿度
Figure 5. (a) Backward trajectories of 96 h at 0000 BJT 21 November 2015 along (39.5°N, 116.5°E) for 200 m (green line), 400 m (blue line) and 600 m (red line) , (b) the corresponding relative humidity of backward trajectory
图 6 (a)2016年1月20日20:00至21日20:00的温度(等值线,单位:°C)、相对湿度(阴影)和风场(箭头,单位:m s−1)分布,(b)2016年1月21日08:00 1000 hPa比湿(等值线,单位:g kg−1)、风场(风向杆,单位:m s−1)及暖平流(阴影,单位:10−5 K s−1)分布
Figure 6. (a) Distributions of temperature (contours, units: °C), relative humidity (shaded) and wind (barb, units: m s−1) from 2000 BJT 20 to 2000 BJT 21 2016, (b) distributions of specific humidity (contours, units: g kg−1), wind (barbs, units: m s−1) and warm advection (shaded, units: 10−5 K s−1) at 1000 hPa on 0800 BJT 21 January 2016
图 8 2015年11月21日(a)00:00~18:00延庆站风廓线(风向杆,单位:m s−1)以及(b)09:00沿40.4°N的垂直剖面(黑色粗实线为地形高度;红色虚线为温度,单位:°C;阴影为辐合区,单位:10−5 s−1;风向杆为水平流场,单位:m s−1)
Figure 8. (a) Wind profile from 0000 BJT to 1800 BJT on November 21, 2015 of the Yanqing station (barbs, units: m s−1), (b) the cross-section along 40.4°N at 0900 BJT on November 21, 2015. Black solid line for terrain height; red contours for temperature, units: °C; shaded for convergence, units: 10−5 s−1; barbs for horizontal wind, units: m s−1
图 9 2016年1月21日(a)00:00~18:00延庆站风廓线(风向杆,单位:m s−1),(b)09:00沿40.0°N的剖面(黑色粗实线为地形高度;红色虚线为温度,单位:°C;阴影为辐合区,单位:10−5 s−1;风向杆为水平流场,单位:m s−1),(c)10:00至19:00沿(40.56°N,115.82°E)的风场(风向杆,单位:m s−1)、相对湿度(等值线)和上升运动(阴影,单位:Pa s−1)时序剖面
Figure 9. (a) Wind profile from 0000 BJT to 1800 BJT of the Yanqing station (barbs, units: m s−1), (b) the cross-section along 40.0°N at 0900 BJT (black solid lines for the terrain height; red contours for temperature, units: °C; shaded for convergence, units: 10−5 s−1; barb for horizontal wind, units: m s−1), (c) the cross-section of relative humidity (contours), wind (barb for wind,unit: m s−1) and ascending motion (shaded, units: Pa s−1) along (40.56°N, 115.82°E) from 1000 BJT to 1900 BJT on January 21, 2016
-
[1] Bove R, Paolo G. 2009. Convective snowfalls linked to the interaction of a boundary–layer front with a mesoscale cyclone near Terra Nova Bay, Antarctica [J]. Bound. -Layer Meteor., 131(3): 465−478. doi: 10.1007/s10546-009-9374-6 [2] Draxler R R, Hess G D. 1997. Description of the HYSPLIT_4 modeling system [R]. NOAA Technical Memorandum ERL ARL-224, Maryland, American. [3] Finnigan J, Ayotte K, Harman I, et al. 2020. Boundary–layer flow over complex topography [J]. Bound. -Layer Meteor. , 177(2–3): 247–313. doi: 10.1007/s10546-020-00564-3 [4] 高茜, 郭学良, 刘香娥, 等. 2020. 北京北部山区两次降雪过程微物理形成机制的观测—模拟研究 [J]. 大气科学, 44(2): 407−420. doi: 10.3878/j.issn.1006-9895.1901.18172Gao Qian, Guo Xueliang, Liu Xiang’e, et al. 2020. Numerical simulation and observation study on microphysical formation processes of two different snowfall cases in Northern mountain area of Beijing [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 44(2): 407−420. doi: 10.3878/j.issn.1006-9895.1901.18172 [5] 郭锐, 张琳娜, 李靖, 等. 2012. 2010年冬季北京初雪预报难点分析 [J]. 气象, 38(7): 858−867. doi: 10.7519/j.issn.1000-0526.2012.7.012Guo Rui, Zhang Linna, Li Jing, et al. 2012. Analysis of forecast difficulties for the first snow of Beijing area in 2010 winter [J]. Meteorological Monthly (in Chinese), 38(7): 858−867. doi: 10.7519/j.issn.1000-0526.2012.7.012 [6] 何群英, 孙一昕, 于莉莉. 2011. 渤海西岸边界层东风与暴雪天气的机理分析 [J]. 气象与环境学报, 27(4): 66−71. doi: 10.3969/j.issn.1673-503X.2011.04.012He Qunying, Sun Yixin, Yu Lili. 2011. Analysis of the mechanisms of boundary layer easterly wind and snowstorm over the western coast of the Bohai Sea [J]. Journal of Meteorology and Environment (in Chinese), 27(4): 66−71. doi: 10.3969/j.issn.1673-503X.2011.04.012 [7] 何娜, 孙继松, 王国荣, 等. 2014. 北京地区预报失误的两次降雪过程分析 [J]. 气象科技, 42(3): 488−495. doi: 10.19517/j.1671-6345.2014.03.021He Na, Sun Jisong, Wang Guorong, et al. 2014. Analysis of unsuccessful forecasting for two snowfall processes in Beijing [J]. Meteorological Science and Technology (in Chinese), 42(3): 488−495. doi: 10.19517/j.1671-6345.2014.03.021 [8] 黄钰, 郭学良, 毕凯, 等. 2020. 北京延庆山区降雪云物理特征的垂直观测和数值模拟研究 [J]. 大气科学, 44(2): 356−370. doi: 10.3878/j.issn.1006-9895.1903.18258Huang Yu, Guo Xueliang, Bi Kai, et al. 2020. Vertical observation and numerical simulation of the clouds physical characteristics of snow-producing over Yanqing Mountain area in Beijing [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 44(2): 356−370. doi: 10.3878/j.issn.1006-9895.1903.18258 [9] 蒋建莹, 史历, 倪允琪. 2005. 一次“高影响天气”的弱降雪过程的数值研究 [J]. 应用气象学报, 16(2): 231−237. doi: 10.3969/j.issn.1001-7313.2005.02.012Jiang Jianying, Shi Li, Ni Yunqi. 2005. A simulation of a high impact weather event [J]. Journal of Applied Meteorological Science (in Chinese), 16(2): 231−237. doi: 10.3969/j.issn.1001-7313.2005.02.012 [10] Kristovich D A R, Braham Jr R R. 1998. Mean profiles of moisture fluxes in snow-filled boundary layers [J]. Bound. -Layer Meteor., 87(2): 195−215. doi: 10.1023/A:1000836401204 [11] Lee J G, Xue Ming. 2013. A study on a snowband associated with a coastal front and cold-air damming event of 3-4 February 1998 along the eastern coast of the Korean Peninsula [J]. Adv. Atmos. Sci., 30(2): 263−279. doi: 10.1007/s00376-012-2088-6 [12] 李国平. 2016. 近25年来中国山地气象研究进展 [J]. 气象科技进展, 6(3): 115−122. doi: 10.3969/j.issn.2095-1973.2016.03.016Li Guoping. 2016. Progress and prospects in research of mountain meteorology in China during the past 25 years [J]. Advances in Meteorological Science and Technology (in Chinese), 6(3): 115−122. doi: 10.3969/j.issn.2095-1973.2016.03.016 [13] 李津, 赵思雄, 孙建华. 2017. 一次华北破纪录暴雪成因的分析研究 [J]. 气候与环境研究, 22(6): 683−698. doi: 10.3878/j.issn.1006-9585.2017.16121Li Jin, Zhao Sixiong, Sun Jianhua. 2017. Analysis of a record heavy snowfall event in North China [J]. Climatic and Environmental Research (in Chinese), 22(6): 683−698. doi: 10.3878/j.issn.1006-9585.2017.16121 [14] 李林, 乔媛, 孙雪琪, 等. 2018. 北京延庆冬季风寒温度分布特征及变化趋势 [J]. 干旱气象, 36(6): 936−943. doi: 10.11755/j.issn.1006-7639(2018)-06-0936Li Lin, Qiao Yuan, Sun Xueqi, et al. 2018. Spatial –temporal characteristics and change trend of wind chill temperature in winter in Yanqing of Beijing [J]. Journal of Arid Meteorology (in Chinese), 36(6): 936−943. doi: 10.11755/j.issn.1006-7639(2018)-06-0936 [15] 李炬, 程志刚, 张京江, 等. 2020. 小海坨山冬奥赛场气象观测试验及初步结果分析 [J]. 气象, 46(9): 1178−1188. doi: 10.7519/j.issn.1000-0526.2020.09.005Li Ju, Cheng Zhigang, Zhang Jingjiang, et al. 2020. Meteorological field experiment and preliminary analysis result in the Winter Olympic Venue in Xiaohaituo Mountain [J]. Meteorological Monthly (in Chinese), 46(9): 1178−1188. doi: 10.7519/j.issn.1000-0526.2020.09.005 [16] Li Na, Jiao Baofeng, Ran Lingkun, et al. 2021. On the mechanism of a terrain-influenced snow burst event during midwinter in Northeast China [J]. Adv. Atmos. Sci., 38(5): 800−816. doi: 10.1007/s00376-020-0104-9 [17] 刘郁珏, 苗世光, 胡非, 等. 2018. 冬奥会小海坨山赛区边界层风场大涡模拟研究 [J]. 高原气象, 37(5): 1388−1401. doi: 10.7522/j.issn.1000-0534.2018.00034Liu Yujue, Miao Shiguang, Hu Fei, et al. 2018. Large eddy simulation of flow field over the Xiaohaituo mountain division for the 24th Winter Olympic Games [J]. Plateau Meteorology (in Chinese), 37(5): 1388−1401. doi: 10.7522/j.issn.1000-0534.2018.00034 [18] Liu Lian, Ma Yaoming, Yao Nan, et al. 2021. Diagnostic analysis of a regional heavy snowfall event over the Tibetan Plateau using NCEP reanalysis data and WRF [J]. Climate Dyn. , 56(7–8): 2451–2467. doi: 10.1007/s00382-020-05598-4 [19] Meng Zhiyong, Zhang Fuqing, Luo Dehai, et al. 2019. Review of Chinese atmospheric science research over the past 70 years: Synoptic meteorology [J]. Sci. China Earth Sci., 62(12): 1946−1991. doi: 10.1007/s11430-019-9534-6 [20] 钱昊. 2017. 京—张地区积雪时空变化及其对2022北京冬奥会的潜在影响 [D]. 南京大学硕士学位论文. Qian Hao. 2017. Spatial and temporal variation of snow cover in Beijing and Zhangjiakou region and its potential impacts on the 2022 Beijing-Zhangjiakou Olympic Winter Games [D]. M. S. thesis (in Chinese), Nanjing University. [21] 钱昊, 赵家锐, 范宇宾, 等. 2019. 积雪变化及其对北京冬奥会的潜在影响 [J]. 高技术通讯, 29(10): 1042−1052. doi: 10.3772/j.issn.1002-0470.2019.10.013Qian Hao, Zhao Jiarui, Fan Yubin, et al. 2019. The potential impacts of spatiotemporal variation of snow cover on the Winter Olympic Games held in Beijing in 2022 [J]. Chinese High Technology Letters (in Chinese), 29(10): 1042−1052. doi: 10.3772/j.issn.1002-0470.2019.10.013 [22] 孙建华, 赵思维. 2003. 华北地区“12·7”降雪过程的数值模拟研究 [J]. 气候与环境研究, 8(4): 387−401. doi: 10.3878/j.issn.1006-9585.2003.04.02Sun Jianhua, Zhao Siwei. 2003. A numerical simulation of snowfall in North China on 7 December 2001 [J]. Climatic and Environmental Research (in Chinese), 8(4): 387−401. doi: 10.3878/j.issn.1006-9585.2003.04.02 [23] 孙继松, 梁丰, 陈敏, 等. 2003. 北京地区一次小雪天气过程造成路面交通严重受阻的成因分析 [J]. 大气科学, 27(6): 1057−1066. doi: 10.3878/j.issn.1006-9895.2003.06.09Sun Jisong, Liang Feng, Chen Min, et al. 2003. An analysis on serious city traffic trouble caused by light snow [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 27(6): 1057−1066. doi: 10.3878/j.issn.1006-9895.2003.06.09 [24] 王继志. 1978. 1974年12月2日华北大雪的初步分析 [J]. 大气科学, 2(4): 307−313. doi: 10.3878/j.issn.1006-9895.1978.04.05Wang Jizhi. 1978. A preliminary study of a snowstorm over North China, on December 2, 1974 [J]. Chinese Journal of Atmospheric Sciences (Scientia Atmospherica Sinica) (in Chinese), 2(4): 307−313. doi: 10.3878/j.issn.1006-9895.1978.04.05 [25] 吴庆梅, 杨波, 王国荣. 2014. 北京地区一次回流暴雪过程的锋区特征分析 [J]. 高原气象, 33(2): 539−547. doi: 10.7522/j.issn.1000-0534.2012.00194Wu Qingmei, Yang Bo, Wang Guorong. 2014. Analysis of the frontal characteristics of the backflow snowstorm process in Beijing Area [J]. Plateau Meteorology (in Chinese), 33(2): 539−547. doi: 10.7522/j.issn.1000-0534.2012.00194 [26] 夏茹娣, 王东海, 张立生. 2013. 2009年冬季华北初雪对流层低层风场及大气层结特征 [J]. 气候与环境研究, 18(1): 87−100. doi: 10.3878/j.issn.1006-9585.2012.11074Xia Rudi, Wang Donghai, Zhang Lisheng. 2013. Wind field characteristics in the lower troposphere and atmospheric stratification of the first snowfall over North China in winter 2009 [J]. Climatic and Environmental Research (in Chinese), 18(1): 87−100. doi: 10.3878/j.issn.1006-9585.2012.11074 [27] Xu Yinlong, Qian F, Chen Zhi, et al. 2002. Observational analyses of baroclinic boundary layer characteristics during one frontal winter snowstorm [J]. Adv. Atmos. Sci., 19(1): 153−168. doi: 10.1007/s00376-002-0041-9 [28] 徐庆喆, 郑景云, 张学珍, 等. 2017. 张家口市崇礼的雪季与冬奥会赛期的降雪特征分析 [J]. 气候变化研究进展, 13(3): 223−230. doi: 10.12006/j.issn.1673-1719.2016.184Xu Qingzhe, Zheng Jingyun, Zhang Xuezhen, et al. 2017. Characteristics of snow season and snowfall during the Olympic Winter Games in Chongli of Zhangjiakou City, China [J]. Climate Change Research (in Chinese), 13(3): 223−230. doi: 10.12006/j.issn.1673-1719.2016.184 [29] 于波, 蒲维维, 冯立成, 等. 2013. 影响北京地区降雪pH值的天气成因分析 [J]. 高原气象, 32(2): 575−580. doi: 10.7522/j.issn.1000-0534.2012.00055Yu Bo, Pu Weiwei, Feng Licheng, et al. 2013. Synoptic analysis on pH value in snowfall process in Beijing [J]. Plateau Meteorology (in Chinese), 32(2): 575−580. doi: 10.7522/j.issn.1000-0534.2012.00055 [30] 于波, 杜佳, 张琳娜. 2016. 1960-2013年北京地区冻雨天气过程特征分析 [J]. 气象与环境学报, 32(4): 113−118. doi: 10.3969/j.issn.1673-503X.2016.04.015Yu Bo, Du Jia, Zhang Linna. 2016. Characteristics of freezing rain in Beijing from 1960 to 2013 [J]. Journal of Meteorology and Environment (in Chinese), 32(4): 113−118. doi: 10.3969/j.issn.1673-503X.2016.04.015 [31] 于波, 李桑, 黄富祥, 等. 2019. 2016年1月京津冀地区连续性寒潮事件对比分析 [J]. 干旱气象, 37(6): 954−963. doi: 10.11755/j.issn.1006-7639(2019)-06-0954Yu Bo, Li Sang, Huang Fuxiang, et al. 2019. Comparative analysis of continuous cold wave events in Beijing–Tianjin–Hebei region in January 2016 [J]. Journal of Arid Meteorology (in Chinese), 37(6): 954−963. doi: 10.11755/j.issn.1006-7639(2019)-06-0954 [32] 张守保. 2009. 华北回流天气的多尺度结构特征 [D]. 南京信息工程大学博士学位论文. Zhang Shoubao. 2009. Multi–scale structure characteritics of return-flow events over North of China [D]. Ph. D. dissertation (in Chinese), Nanjing University of Information Science and Technology. [33] 张迎新, 张守保. 2006. 华北平原回流天气的结构特征 [J]. 南京气象学院学报, 29(1): 107−113. doi: 10.3969/j.issn.1674-7097.2006.01.016Zhang Yingxin, Zhang Shoubao. 2006. Structural feature of the backflow precipitation over North China [J]. Journal of Nanjing Institute of Meteorology (in Chinese), 29(1): 107−113. doi: 10.3969/j.issn.1674-7097.2006.01.016 [34] 张迎新, 侯瑞钦, 张守保. 2007. 回流暴雪过程的诊断分析和数值试验 [J]. 气象, 33(9): 25−32. doi: 10.3969/j.issn.1000-0526.2007.09.004Zhang Yingxin, Hou Ruiqin, Zhang Shoubao. 2007. Numerical experiments and diagnosis on a heavy snow of return-flow events [J]. Meteorological Monthly (in Chinese), 33(9): 25−32. doi: 10.3969/j.issn.1000-0526.2007.09.004 [35] 张治国, 崔炜, 白雪涛, 等. 2017. 第24届冬奥会海坨山赛区近两年冬季地面风场特征 [J]. 干旱气象, 35(3): 433−438. doi: 10.11755/j.issn.1006-7639(2017)-03-0433Zhang Zhiguo, Cui Wei, Bai Xuetao, et al. 2017. Winter ground wind field characteristic in the Haituo Mountain Division for the 24th Winter Olympic Games [J]. Journal of Arid Meteorology (in Chinese), 35(3): 433−438. doi: 10.11755/j.issn.1006-7639(2017)-03-0433 [36] 赵思雄, 孙建华. 2013. 近年来灾害天气机理和预测研究的进展 [J]. 大气科学, 37(2): 297−312. doi: 10.3878/j.issn.1006-9895.2012.12317Zhao Sixiong, Sun Jianhua. 2013. Study on mechanism and prediction of disastrous weathers during recent years [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 37(2): 297−312. doi: 10.3878/j.issn.1006-9895.2012.12317 [37] 赵思雄, 孙建华, 陈红, 等. 2002. 北京“12·7”降雪过程的分析研究 [J]. 气候与环境研究, 7(1): 7−21. doi: 10.3878/j.issn.1006-9585.2002.01.02Zhao Sixiong, Sun Jianhua, Chen Hong, et al. 2002. A study on snowfall in Beijing on 7 December 2001 [J]. Climatic and Environmental Research (in Chinese), 7(1): 7−21. doi: 10.3878/j.issn.1006-9585.2002.01.02 [38] 赵桂香, 杜莉, 范卫东, 等. 2011. 一次冷锋倒槽暴风雪过程特征及其成因分析 [J]. 高原气象, 30(6): 1516−1525.Zhao Guixiang, Du Li, Fan Weidong, et al. 2011. Characteristic of a snowstorm process with strong cold front and inverted trough and its formation analysis [J]. Plateau Meteorology (in Chinese), 30(6): 1516−1525. [39] 赵桂香, 杜莉, 郝孝智, 等. 2013. 3次回流倒槽作用下山西大(暴)雪天气比较分析 [J]. 中国农学通报, 29(32): 337−349. doi: 10.3969/j.issn.1000-6850.2013.32.062Zhao Guixiang, Du Li, Hao Xiaozhi, et al. 2013. Comparative Analysis of three heavy snow in Shanxi Province caused by reflow and inverted rough [J]. Chinese Agricultural Science Bulletin (in Chinese), 29(32): 337−349. doi: 10.3969/j.issn.1000-6850.2013.32.062 -