Relationship between Two Types of East–West Oscillations of the South Asia High in Summer and Their Influences on Weather
-
摘要: 夏季南亚高压(SAH)中心呈青藏高原和伊朗高原双模态分布,表现为东—西振荡的形式。同时,SAH的东缘还存在规律性的向东亚地区东伸或西退至青藏高原,表现为另一种形式的东西振荡。本文利用NCEP1逐日再分析资料、APHRODITE逐日降水数据以及印度地区逐日降水数据,研究了SAH这两类东—西振荡的联系以及它们对亚洲地区环流和天气影响的差异。结果表明,SAH中心的双模态东 — 西振荡位相可显著影响其东缘东伸/西退的发生及其幅度。尽管在SAH中心呈青藏高原和伊朗高原模态时,均可以出现SAH东缘的向东亚东伸,但青藏高原模态下发生东伸的频率明显高于伊朗高原模态;在伊朗高原模态时则更容易出现SAH东缘的西退。而且,在青藏高原模态下发生的SAH东缘东伸的幅度也比伊朗高原模态时更大。进一步研究发现,SAH中心的双模态东—西振荡主要与印度北部及整个青藏高原地区的降水异常型密切联系,并与异常降水有关的热力和动力作用变化相耦合。而SAH东缘的东伸/西退则通过引起西太副高的西进/东退,与东亚地区偶极子型的降水异常(青藏高原中东部、长江与黄河之间的中下游地区的降水异常与长江以南地区的相反)相联系。此外,SAH中心为青藏高原模态且东缘发生东伸时,与SAH中心为伊朗高原模态且东缘发生西退时,青藏高原西部与中东部的降水异常总是呈显著反位相变化。Abstract: The South Asia high (SAH) center is characterized by bimodal distribution [i.e., the Tibetan Plateau (TP) mode and Iranian Plateau (IP) mode], showing an east–west oscillation pattern. In addition, the eastern edge of the SAH also regularly extends eastward to East Asia or retreats westward to the TP, manifesting another type of east–west oscillation. Using NCEP1 daily reanalysis data, APHRODITE daily precipitation data, and daily India precipitation data, this paper investigates the relationship between the two types of east–west oscillations of the SAH and the differences in their impacts on the circulation and weather in Asia. The results show that bimodal east–west oscillation of the SAH center can significantly affect the occurrence and amplitude of the eastward extension/westward retreat of the eastern edge of the SAH. Although the eastern edge of the SAH can extend eastward when the SAH center is in the TP or IP mode, the frequency of the eastward extension of the eastern edge of the SAH in the TP mode is significantly higher than that in the IP mode. In the IP mode, the eastern edge of the SAH is more inclined to retreat westward, and the magnitude of the eastward extension of the eastern edge of the SAH in the TP mode is larger than that in the IP mode. Further analysis reveals that the bimodal east–west oscillation of the SAH center is closely related to the rainfall anomaly pattern in North India and the TP region and is coupled with the variation of thermodynamic effect related to rainfall anomaly. The eastward extension/westward retreat of the eastern edge of the SAH is related to the dipole rainfall anomaly pattern in East Asia (i.e., rainfall anomalies in the central and eastern TP and the middle and lower reaches of the Yangtze Riverand Yellow River are opposite to those in the southern region of the Yangtze River), resulting in the westward extension/eastward retreat of the western Pacific subtropical high. Furthermore, when the SAH is in the TP mode and its eastern edge extends eastward and when the SAH is in the IP mode and its eastern edge retreats westward, rainfall anomaly in the western TP is always opposite to that in the central and eastern TP.
-
图 1 北半球夏季(7~8月)200 hPa位势高度(黑色等值线,间隔:10 gpm)和西风急流(红色等值线,间隔:10 m s−1)以及500 hPa位势高度(橘黄色等值线,间隔:20 gpm)的气候态。灰色曲线表示青藏高原1500米的地形边界,从南往北,蓝色曲线分别表示长江和黄河
Figure 1. Summer (July–August) climatology of geopotential height (black contours, interval: 10 gpm) and westerly jet (red contours, intervals: 10 m s−1) at 200 hPa, and geopotential height (orange contours, interval: 20 gpm) at 500 hPa in boreal. The gray curve delineates the Tibetan Plateau topographic boundary of 1500 m, and the blue curves mark the Yangtze and Yellow Rivers from south to north
图 2 基于(a、b)南亚高压双模态振荡指数(BOI)和(c、d)南亚高压东伸指数(EI)合成的200 hPa西风急流(红色等值线,间隔:10 m s−1)、200 hPa位势高度(黑色等值线,间隔:20 gpm)及其异常(阴影,单位:gpm)。(a)和(b)分别是根据逐日的BOI小于−1个标准差(南亚高压呈伊朗高原模态)和大于1个标准差(南亚高压呈青藏高原模态)合成的,(c)和(d)分别是根据逐日的南亚高压东伸指数(EI)小于−1个标准差和大于1个标准差合成的。打点区域表示合成的位势高度异常超过90%信度水平
Figure 2. Composites of the westerly jet (red contours, intervals: 10 m s−1), geopotential height (black contours, intervals: 20 gpm) and its anomalies (shaded, units: gpm) at 200 hPa, based on (a, b) the bimodality oscillation index (BOI) of the South Asia high and eastward extension index (EI) of the South Asia high. (a) and (b) are for days when the BOI is below (Iranian Plateau mode) and above (Tibetan Plateau mode) its normal value by 1 standard deviation (STD), respectively; (c) and (d) are for days when the EI is below and above its normal by 1 STD, respectively. The dotted areas mark the 90% confidence level of the composite geopotential height anomalies
图 3 基于南亚高压的(a)伊朗高原模态(BOI<−1个标准差)、(b)青藏高原模态(BOI>1个标准差)合成的200 hPa相对涡度异常(红色等值线,间隔:5×10−6 s−1)、水平涡度平流异常(阴影,单位:10−5 m s−2)以及水平风场异常(矢量,单位:m s−1)。(a)和(b)分别是根据逐日的BOI小于–1个标准差和大于1个标准差合成的。打点区域表示合成的水平涡度平流异常超过90%信度水平
Figure 3. Composites of relative vorticity anomalies (black contours, intervals: 5×10 −6 s−1), and horizontal vorticity advection anomalies (shaded, units: 10 −5 m s−2), and horizontal wind anomalies (vectors, units: m s−1) at 200 hPa, based on (a, b) the bimodal oscillation index (BOI) of the South Asia high. (a) and (b) are for days when the BOI are below (Iranian Plateau mode) and above (Tibetan Plateau mode) its normal value by 1 standard deviation (STD), respectively. The dotted areas mark the 90% confidence level of the composite horizontal vorticity advection anomalies
图 4 同图2,但为根据逐日的BOI和EI(a)均小于–1个标准差、(b)分别小于–1和大于1个标准差、(c)分别大于1和小于–1个标准差以及(d)均大于1个标准差合成的。(a)WW、(b)WE、(c)EW、(d)EE分别表示南亚高压呈伊朗高原模态合并东缘西退、伊朗高原模态合并东缘东伸、青藏高原模态合并东缘西退、青藏高原模态合并东缘东伸
Figure 4. Same as Fig. 2, but for days when (a) both BOI and EI are below the normal values by 1 STD, (b) BOI and EI are below and above the normal values by 1 STD, respectively, (c) BOI and EI are above and below 1 STD, respectively, and (d) both BOI and EI are above 1 STD. (a) WW, (b) WE, (c) EW, (d) EE represents for the IP mode and westward retreat of the SAH, IP mode and eastward extension of the SAH, TP mode and westward retreat of the SAH, TP mode and eastward extension of the SAH respectively
图 5 基于(a、b)南亚高压双模态振荡指数(BOI)和(c、d)南亚高压东伸指数(EI)合成的500 hPa位势高度(黑色等值线,间隔:20 gpm),水平风场(红色箭头,单位:m s−1)。(a)和(b)分别是根据逐日的BOI小于−1个标准差(南亚高压呈伊朗高原模态)和大于1个标准差(南亚高压呈青藏高原模态)合成的,(c)和(d)分别是根据逐日的南亚高压东伸指数(EI)小于−1个标准差和大于1个标准差合成的
Figure 5. Composites of the geopotential height (black contours, intervals: 20 gpm) and horizontal wind field (red arrows, units: m s−1) at 500 hPa based on (a, b) the bimodality oscillation index (BOI) of the South Asia high and eastward extension index (EI) of the South Asia high. (a) and (b) are for days when the BOI is below (Iranian Plateau mode) and above (Tibetan Plateau mode) its normal value by 1 standard deviation (STD), respectively; (c) and (d) are for days when the EI is below and above its normal by 1 STD, respectively
图 6 同图5,但为合成的700 hPa水平风场异常(箭头,单位:m s−1)和降水异常(阴影,单位:mm)。打点区域和黑色箭头分别表示合成的降水和水平风场异常超过90%信度水平
Figure 6. Same as Fig. 5, but for composite horizontal wind anomalies (arrows, units: m s−1) at 700 hPa and rainfall anomalies (shaded, units: mm). The dotted areas and black arrows respectively indicate that the composite anomalies of rainfall and horizontal wind are statistically significant above the 90% confidence level
图 7 同图5,但为合成的500 hPa位势高度(黑色等值线,间隔:20 gpm)和水平风场(红色箭头,单位:m s−1)。(a)WW、(b)WE、(c)EW、(d)EE分别表示南亚高压呈伊朗高原模态合并东缘西退、伊朗高原模态合并东缘东伸、青藏高原模态合并东缘西退、青藏高原模态合并东缘东伸
Figure 7. Same as in Fig. 5, but for composite geopotential height (black contours, intervals: 20 gpm) and horizontal wind field (red arrows, units: m s−1) at 500 hPa. (a) WW, (b) WE, (c) EW, (d) EE represents for the IP mode and westward retreat of the SAH, IP mode and eastward extension of the SAH, TP mode and westward retreat of the SAH, TP mode and eastward extension of the SAH respectively
图 8 同图2,但为合成的700 hPa水平风场异常(箭头,单位:m s−1)和降水异常(阴影,单位:mm)。打点区域和黑色箭头分别表示合成的降水和水平风异常超过90%信度水平
Figure 8. Same as in Fig. 2, but for composite horizontal wind anomalies (arrows, units: m s−1) at 700 hPa and rainfall anomalies (shaded, units: mm). The dotted areas and black arrows respectively indicate that the composite anomalies of rainfall and horizontal wind are statistically significant above the 90% confidence level
图 9 (a)BOI、(b)EI分别与NIRI和THI的超前/滞后相关。(a)和(b)中的横坐标分别表示BOI和EI超前的时间(单位:d);长虚线、短虚线分别表示BOI(EI)与NIRI和THI相关的90%信度水平
Figure 9. Lead/lag correlation of the (a) BOI, (b) THI with NIRI and THI respectively. The abscissa in (a) and (b) are the lead time of the BOI and EI (units: d), respectively; the long and short dashed lines denote the 90% confidence level for the BOI (EI)–NIRI and BOI (EI)–THI cross-correlation, respectively
图 10 75°~95°E平均的(a,b)非绝热加热率异常(阴影,单位:K d−1)和环流异常(箭头,由经向速度v和垂直速度–ω合成得到,其中v的单位是m s−1,–ω的单位是0.005 Pa s−1)、(c,d)气温异常(阴影,单位:K)和位势高度异常(等值线,间隔:4 gpm)的垂直剖面。(a,c)和(b,d)分别是根据逐日的BOI小于−1个标准差(伊朗高原模态)和大于1个标准差(青藏高原模态)合成的,(a,b)和(c,d)中的打点区域分别表示合成的非绝热加热率异常和气温异常超过90%信度水平,灰色阴影区域表示地形
Figure 10. Cross sections of the anomalies of (a, b) diabatic heating rate (shaded, units: K d−1) and circulation (arrows, combination of meridional velocity (v) and vertical velocity (–ω), v is in units of m s−1,–ω is in units of 0.005 Pa s−1, (c, d) air temperature (shaded, units: K) and geopotential height (contours, intervals: 4 gpm) averaged from 75°–95°E. (a, c) and (b, d) are composites when daily the BOI is less than its normal value by 1 STD (IP mode) and greater than its normal value by 1 STD (TP mode), respectively. The dotted areas in (a, b) and (c, d) respectively indicate that the composite anomalies of diabatic heating rate and air temperature are statistically significant above the 90% confidence level. The gray shaded areas denote topography
图 11 (a、b)沿27.5°N(西太副高脊线附近)的水平散度异常(阴影,单位:10−6 s−1)、位势高度异常(等值线,间隔:4 gpm)和垂直运动异常(箭头,单位:10−2 Pa s−1);(c、d)沿110°E的水平散度异常(阴影,单位:10−6 s−1)、环流异常(箭头,v的单位是m s−1,–ω的单位是0.005)和纬向风(绿色等值线,间隔:5 m s−1,仅显示大于10的部分)的垂直剖面。(a、c)和(b、d)分别是根据逐日的EI小于−1个标准差(西退)和大于1个标准差(东伸)合成的,(a,b)和(c,d)中的打点区域表示合成的水平散度异常超过90%信度水平
Figure 11. Cross sections of the anomalies of (a, b) horizontal divergence (shaded, units: 10−6 s−1), geopotential height (contours, intervals: 4 gpm), and vertical motion (arrows, units: 10−2 Pa s−1) along 27.5°N; (c, d) horizontal divergence (shaded, units: 10−6 s−1), circulation (arrows, v is in units of m s−1, –ω is in units of Pa s−1 and has been amplified by 200), and zonal wind (green contours, unit: m s−1, interval: 5, values above 10 are shown) along 110°E. (a, c) and (b, d) are composites when the daily EI is less than its normal value by 1 STD (westward retreat) and greater than its normal value by one STD (eastward extension), respectively. The dotted areas in (a, b) and (c, d) indicate that the composite anomalies of horizontal divergence are statistically significant above the 90% confidence level
表 1 根据南亚高压双模态振荡指数BOI和东伸指数EI,统计在不同的BOI强度下,南亚高压西退(EI<−1个标准差)和东伸(EI>1个标准差)事件的天数(单位:d)
Table 1. Numbers (units: d) of westward retreat (EI<−1) and eastward extension (EI>1) event of the South Asia high at different BOI intensities, based on the bimodality oscillation index (BOI) of the South Asia high and the eastward extension index (EI) of the South Asia high
南亚高压双模态 BOI(单位:1个
标准差)南亚高压西退和东伸事件/d 西退(EI<−1个
标准差)东伸(EI>1个
标准差)伊朗高原模态 (–0.5,0) 89 91 (–1,–0.5) 71 41 (−∞,–1) 76 39 青藏高原模态 (0,0.5) 71 104 (0.5,1) 40 76 (1,+∞) 73 85 -
[1] Fujinami H, Yasunari T. 2004. Submonthly variability of convection and circulation over and around the Tibetan Plateau during the boreal summer [J]. J. Meteor. Soc. Japan, 82(6): 1545−1564. doi: 10.2151/jmsj.82.1545 [2] Garny H, Randel W J. 2013. Dynamic variability of the Asian monsoon anticyclone observed in potential vorticity and correlations with tracer distributions [J]. J. Geophys. Res., 118(24): 13421−13433. doi: 10.1002/2013JD020908 [3] Jiang X W, Li Y Q, Yang S, et al. 2011. Interannual and interdecadal variations of the South Asian and western Pacific subtropical highs and their relationships with Asian-Pacific summer climate [J]. Meteor. Atmos. Phys., 113(3–4): 171–180. doi:10.1007/s00703-011-0146-8 [4] Kalnay E, Kanamitsu M, Kistler R, et al. 1996. The NCEP/NCAR 40-year reanalysis project [J]. Bull. Amer. Meteor. Soc., 77(3): 437−472. doi: 10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2 [5] Krishnamurti T N, Ardanuy P. 1980. The 10 to 20-day westward propagating mode and “Breaks in the Monsoons” [J]. Tellus, 32(1): 15−26. doi: 10.3402/tellusa.v32i1.10476 [6] Krishnamurti T N, Daggupaty S M, Fein J, et al 1973. Tibetan high and upper tropospheric tropical circulations during northern summer [J]. Bull. Amer. Meteor. Soc., 54(12): 1234–1250. doi:10.1175/1520-0477-54.12.1234 [7] Liu Y M, Hoskins B, Blackburn M. 2007. Impact of Tibetan orography and heating on the summer flow over Asia [J]. J. Meteor. Soc. Japan, 85B: 1−19. doi: 10.2151/jmsj.85B.1 [8] Liu B Q, Yan Y H, Zhu C W, et al. 2020. Record-breaking Meiyu rainfall around the Yangtze River in 2020 regulated by the subseasonal phase transition of the North Atlantic Oscillation [J]. Geophys. Res. Lett., 47(22): e2020GL090342. doi: 10.1029/2020GL090342 [9] 罗四维, 钱正安, 王谦谦. 1982. 夏季100毫巴青藏高压与我国东部旱涝关系的天气气候研究 [J]. 高原气象, 1(2): 1−10.Luo S W, Qian Z A, Wang Q Q. 1982. The climatic and synoptical study about the relation between the Qinghai–Xizang high pressure on the 100 mb surface and the flood and drought in East China in summer [J]. Plateau Meteorology (in Chinese), 1(2): 1−10. [10] Mason R B, Anderson C E. 1963. The development and decay of the 100-MB. Summertime anticyclone over southern Asia [J]. Mon. Wea. Rev., 91(1): 3−12. doi: 10.1175/1520-0493(1963)091<0003:TDADOT>2.3.CO;2 [11] Nitta T. 1983. Observational study of heat sources over the eastern Tibetan Plateau during the summer monsoon [J]. J. Meteor. Soc. Japan, 61(4): 590−605. doi: 10.2151/jmsj1965.61.4_590 [12] Ortega S, Webster P J, Toma V, et al. 2017. Quasi-biweekly oscillations of the South Asian monsoon and its co-evolution in the upper and lower troposphere [J]. Climate Dyn., 49(9): 3159−3174. doi: 10.1007/s00382-016-3503-y [13] Qu X, Huang G. 2012. An enhanced influence of tropical Indian Ocean on the South Asia high after the late 1970s [J]. J. Climate, 25(20): 6930−6941. doi: 10.1175/JCLI-D-11-00696.1 [14] Rajeevan M, Bhate J, Kale J D, et al. 2006. High resolution daily gridded rainfall data for the Indian region: Analysis of break and active monsoon spells [J]. Current Sci., 91(3): 296−306. [15] Randel W J, Park M. 2006. Deep convective influence on the Asian summer monsoon anticyclone and associated tracer variability observed with Atmospheric Infrared Sounder (AIRS) [J]. J. Geophys. Res., 111(D12): D12314. doi: 10.1029/2005JD006490 [16] Reiter E R, Gao D Y. 1982. Heating of the Tibet Plateau and movements of the South Asian high during spring [J]. Mon. Wea. Rev., 110(11): 1694−1711. doi: 10.1175/1520-0493(1982)110<1694:HOTTPA>2.0.CO;2 [17] 任荣彩, 刘屹岷, 吴国雄. 2007. 1998年7月南亚高压影响西太平洋副热带高压短期变异的过程和机制 [J]. 气象学报, 65(2): 183−197. doi: 10.3321/j.issn:0577-6619.2007.02.005Ren R C, Liu Y M, Wu G X. 2007. Impact of South Asia High on the short-term variation of the subtropical anticyclone over western Pacific in July 1998 [J]. Acta Meteor. Sinica (in Chinese), 65(2): 183−197. doi: 10.3321/j.issn:0577-6619.2007.02.005 [18] Ren X J, Yang D J, Yang X Q. 2015. Characteristics and mechanisms of the subseasonal eastward extension of the South Asian high [J]. J. Climate, 28(17): 6799−6822. doi: 10.1175/JCLI-D-14-00682.1 [19] Ren R C, Zhu C D, Cai M. 2019. Linking quasi-biweekly variability of the South Asian high to atmospheric heating over Tibetan Plateau in summer [J]. Climate Dyn., 53(5): 3419−3429. doi: 10.1007/s00382-019-04713-4 [20] Sugimoto S, Ueno K. 2012. Role of mesoscale convective systems developed around the eastern Tibetan Plateau in the eastward expansion of an upper tropospheric high during the monsoon season [J]. J. Meteor. Soc. Japan, 90(2): 297−310. doi: 10.2151/jmsj.2012-209 [21] 陶诗言, 朱福康. 1964. 夏季亚洲南部100毫巴流型的变化及其与西太平洋副热带高压进退的关系 [J]. 气象学报, 34(4): 385−396. doi: 10.11676/qxxb1964.039Tao S Y, Zhu F K. 1964. The 100-mb flow patterns in southern Asia in summer and its relation to the advance and retreat of the West-Pacific subtropical anticyclone over the far east [J]. Acta Meteor. Sinica (in Chinese), 34(4): 385−396. doi: 10.11676/qxxb1964.039 [22] 王黎娟, 葛静. 2016. 夏季青藏高原大气热源低频振荡与南亚高压东西振荡的关系 [J]. 大气科学, 40(4): 853−863. doi: 10.3878/j.issn.1006-9895.1509.15164Wang L J, Ge J. 2016. Relationship between low-frequency oscillations of atmospheric heat source over the Tibetan Plateau and longitudinal oscillations of the South Asia high in the summer [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 40(4): 853−863. doi: 10.3878/j.issn.1006-9895.1509.15164 [23] Wei W, Zhang R H, Yang S, et al. 2019a. Quasi-biweekly oscillation of the South Asian high and its role in connecting the Indian and East Asian summer rainfalls [J]. Geophys. Res. Lett., 46(24): 14742−14750. doi: 10.1029/2019GL086180 [24] Wei W, Zhang R H, Wen M, et al. 2019b. Dynamic effect of the South Asian high on the interannual zonal extension of the western North Pacific subtropical high [J]. Int. J. Climatol., 39(14): 5367−5379. doi: 10.1002/joc.6160 [25] 吴国雄, 刘屹岷, 刘平. 1999. 空间非均匀加热对副热带高压带形成和变异的影响I: 尺度分析 [J]. 气象学报, 57(3): 257−263. doi: 10.11676/qxxb1999.025Wu G X, Liu Y M, Liu P. 1999. The effect of spatially nonuniform heating on the formation and variation of sub-tropical high I: Scale analysis [J]. Acta Meteor. Sinica (in Chinese), 57(3): 257−263. doi: 10.11676/qxxb1999.025 [26] Wu G X, Liu Y M, He B, et al. 2012. Thermal controls on the Asian summer monsoon [J]. Sci. Rep., 2(1): 404. doi: 10.1038/srep00404 [27] 徐忠峰, 钱永甫. 2003. 100hPa高压环流和东风气流的季节、年际和年代际变化 [J]. 热带气象学报, 19(3): 225−233. doi: 10.3969/j.issn.1004-4965.2003.03.001Xu Z F, Qian Y F. 2003. The seasonal, interannual and interdecadal variations of the anticyclone and the easterly current at 100 hPa [J]. Journal of Tropical Meteorology (in Chinese), 19(3): 225−233. doi: 10.3969/j.issn.1004-4965.2003.03.001 [28] Yanai M, Li C F, Song Z S. 1992. Seasonal heating of the Tibetan Plateau and its effects on the evolution of the Asian Summer monsoon [J]. J. Meteor. Soc. Japan, 70(1B): 319−351. doi: 10.2151/jmsj1965.70.1B_319 [29] Yang S Y, Li T. 2016. Zonal shift of the South Asian High on the subseasonal time-scale and its relation to the summer rainfall anomaly in China [J]. Quart. J. Roy. Meteor. Soc., 142(699): 2324−2335. doi: 10.1002/qj.2826 [30] Yasunari T. 1981. Structure of an Indian summer monsoon system around 40-day period [J]. J. Meteor. Soc. Japan, 59(3): 336−354. doi: 10.2151/jmsj1965.59.3_336 [31] Yatagai A, Kamiguchi K, Arakawa O, et al. 2012. APHRODITE: Constructing a long-term daily gridded precipitation dataset for Asia based on a dense network of rain gauges [J]. Bull. Amer. Meteor. Soc., 93(9): 1401−1415. doi: 10.1175/BAMS-D-11-00122.1 [32] Yeh T C. 1957. On the formation of quasi-geostrophic motion in the atmosphere [J]. J. Meteor. Soc. Japan, 35A: 130−137. doi: 10.2151/jmsj1923.35A.0_130 [33] 张可苏. 1980. 在有热源和耗散情况下的大气适应过程 [J]. 大气科学, 4(3): 199−211. doi: 10.3878/j.issn.1006-9895.1980.03.01Zhang K S. 1980. On the geostrophic adjustment process in the atmosphere in the presence of heat sources and dissipation [J]. Chinese Journal of Atmospheric Sciences (Scientia Atmospherica Sinica) (in Chinese), 4(3): 199−211. doi: 10.3878/j.issn.1006-9895.1980.03.01 [34] 张琼, 吴国雄. 2001. 长江流域大范围旱涝与南亚高压的关系 [J]. 气象学报, 59(5): 569−577. doi: 10.3321/j.issn:0577-6619.2001.05.007Zhang Q, Wu G X. 2001. The large area flood and drought over Yangtze River valley and its relation to the South Asia high [J]. Acta Meteor. Sinica (in Chinese), 59(5): 569−577. doi: 10.3321/j.issn:0577-6619.2001.05.007 [35] 张琼, 钱永甫, 张学洪. 2000. 南亚高压的年际和年代际变化 [J]. 大气科学, 24(1): 67−78. doi: 10.3878/j.issn.1006-9895.2000.01.07Zhang Q, Qian Y F, Zhang X H. 2000. Interannual and interdecadal variations of the South Asia High [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 24(1): 67−78. doi: 10.3878/j.issn.1006-9895.2000.01.07 [36] Zhang Q, Wu G X, Qian Y F. 2002. The bimodality of the 100 hPa South Asia high and its relationship to the climate anomaly over East Asia in summer [J]. J. Meteor. Soc. Japan, 80(4): 733−744. doi: 10.2151/jmsj.80.733 [37] Zhang P Q, Song Y, Kousky V E. 2005. South Asian high and Asian-Pacific-American climate teleconnection [J]. Adv. Atmos. Sci., 22(6): 915−923. doi: 10.1007/BF02918690 [38] Zhu C D, Ren R C, Wu G X. 2018. Varying Rossby wave trains from the developing to decaying period of the upper atmospheric heat source over the Tibetan Plateau in boreal summer [J]. Adv. Atmos. Sci., 35(9): 1114−1128. doi: 10.1007/s00376-017-7231-y -