高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

近32年泰国降水的主要变化趋势研究

杨雯婷 傅慎明 孙建华 郑飞 卫捷

杨雯婷, 傅慎明, 孙建华, 等. 2022. 近32年泰国降水的主要变化趋势研究[J]. 大气科学, 46(2): 263−274 doi: 10.3878/j.issn.1006-9895.2107.21001
引用本文: 杨雯婷, 傅慎明, 孙建华, 等. 2022. 近32年泰国降水的主要变化趋势研究[J]. 大气科学, 46(2): 263−274 doi: 10.3878/j.issn.1006-9895.2107.21001
YANG Wenting, FU Shenming, SUN Jianhua, et al. 2022. Study of the Main Trend of Precipitation in Thailand over the Last 32 Years [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 46(2): 263−274 doi: 10.3878/j.issn.1006-9895.2107.21001
Citation: YANG Wenting, FU Shenming, SUN Jianhua, et al. 2022. Study of the Main Trend of Precipitation in Thailand over the Last 32 Years [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 46(2): 263−274 doi: 10.3878/j.issn.1006-9895.2107.21001

近32年泰国降水的主要变化趋势研究

doi: 10.3878/j.issn.1006-9895.2107.21001
基金项目: 国家自然科学基金项目41861144015、42075002、41775046,中国科学院前沿科学重点研究计划ZDBS-LY-DQC010,国家重点科技基础设施项目“地球系统科学数值模拟设施”
详细信息
    作者简介:

    杨雯婷,女,1997年出生,博士研究生,主要从事中尺度气象学研究。E-mail: yangwenting@mail.iap.ac.cn

    通讯作者:

    傅慎明,E-mail: fusm@mail.iap.ac.cn

  • 中图分类号: P466

Study of the Main Trend of Precipitation in Thailand over the Last 32 Years

Funds: National Natural Science Foundation of China (Grants 41861144015, 42075002, 41775046), Key Research Program of Frontier Sciences, Chinese Academy of Sciences (Grant ZDBS-LY-DQC010), National Key Scientific and Technological Infrastructure Project“Earth System Science Numerical Simulator Facility”
  • 摘要: 基于泰国气象局提供的近32年(1981~2012)站点逐日降水观测资料,利用线性趋势和集合经验模态分解(Ensemble empirical mode decomposition, EEMD)等分析方法,本文重点研究了泰国及其五个地理分区内各等级降水量与降水日数出现正异常(第95百分位及以上)的站点比例变化,并深入分析了泰国逐年降水量与暴雨级别以上持续性和非持续性降水量相对贡献的变化。主要结论如下:(1)泰国东部和南部地区是其降水最强的区域,而泰国北部地区降水相对最弱,在研究的32年时段内,泰国境内有87%的站点出现了逐年降水增加的趋势(共有22个站通过了95%置信水平的显著性检验),其中泰国南部是增加最快的区域,而泰国东部地区则是出现降水增加趋势最少的地区。位于泰国湾沿岸的曼谷站和洛坤站是整个泰国境内逐年降水增加最快的站点。(2)泰国北部地区的逐年降水量、逐年降水日数与平均降水强度出现正异常的站点比例显著增加,表明极端降水的影响范围在扩大,而泰国南部地区仅大暴雨级别以上的极端降水出现了范围扩大的趋势。(3)暴雨级别以上的降水在泰国不同地区存在着显著差异,其中泰国北部、东北部和中部地区,非持续性降水占主导地位,而在泰国东部和南部地区,持续性与非持续性降水的贡献相当。暴雨级别以上持续性降水出现正异常的站点比例在泰国北部和南部地区有显著的增加趋势,表明这些地区受稳定系统影响所发生强降水的范围有着显著的扩大趋势。
  • 图  1  1981~2012年泰国(a)年均降水量(R,单位:mm)、(b)年降水量线性趋势(b,单位:mm/a)的空间分布。阴影代表地形高度;红色线框将泰国分为5个区域(北部、东北部、中部、东部和南部)。图b中,三角形代表该站点线性趋势通过95%置信水平的显著性t检验

    Figure  1.  Geographical distributions of (a) the 32-year average and (b) linear trend (b, units: mm/a) of annual precipitation (R, units: mm) in Thailand during 1981–2012. The shadings indicate the terrain (units: m), the red lines divide Thailand into five regions (North, Northeast, Central, East, and South Thailand). In Fig. b, the triangles indicate that the linear trends for stations reach the 95% confidence level using the t test

    图  2  1981~2012年整个泰国(a)年降水量及(b)年降水日数正异常覆盖率的变化。红线是线性趋势线,通过了90%置信水平的t检验

    Figure  2.  Variations in the coverage rate of positive abnormal (a) annual precipitation amount and (b) annual precipitation days in whole Thailand during 1981–2012. The red line indicates the linear trend reaching the 90% confidence level using t test

    图  3  1981~2012年整个泰国(a)中雨级别以上、(b)暴雨级别以上、(c)大暴雨级别以上降水量(灰色柱状)及降水日数(黑色柱状)正异常覆盖率的变化。图a、b中,红(蓝)线表示降水量(降水日数)的线性趋势,线性趋势通过90%置信水平的显著性t检验

    Figure  3.  Variations in the coverage rate of the positive abnormal annual precipitation amount (gray bars) and precipitation days (black bars) above (a) moderate rain level, (b) heavy rain level, and (c) storm level in whole Thailand during 1981–2012. In Figs. a and b, the blue (red) lines indicate the linear trend of precipitation days (precipitation amount), linear trends reaching the 90% confidence level using t test

    图  4  基于EEMD(Ensemble empirical mode decomposition)方法分解1981~2012年整个泰国暴雨级别以上降水量(AP-heavy)正异常覆盖率时间序列得到的前三个IMF(Intrinsic mode functions)分量(a)IMF1、(b)IMF2、(c)IMF3及(d)趋势项

    Figure  4.  The first three IMF (Intrinsic mode functions) components (a) IMF1, (b) IMF2, (c) IMF2, and (d) the trend component of the coverage rate of positive abnormal annual precipitation above heavy rain level in whole Thailand based on EEMD (ensemble empirical mode decomposition ) method during 1981–2012

    图  5  1981~2012年整个泰国逐年平均降水强度正异常覆盖率的变化。线性趋势(红线)未通过90%置信水平的显著性t检验

    Figure  5.  Variations in the coverage rate of positive abnormal mean intensity in whole Thailand during 1981–2012. The linear trend (red line) fails to reach the 90% confidence level using t test

    图  6  1981~2012年整个泰国最长持续降水日数正异常覆盖率的变化。线性趋势(红线)未通过90%置信水平的显著性t检验

    Figure  6.  Variations in the coverage rate of positive abnormal annual maximum duration in whole Thailand during 1981–2012. The linear trend (red line) fails to reach the 90% confidence level using t test

    图  7  1981~2012年整个泰国暴雨级别以上非持续性(黑色柱状)及持续性(灰色柱状)降水量正异常覆盖率的变化。蓝色线表示暴雨级别以上非持续性降水量的线性趋势,红色线表示暴雨级别以上持续性降水量的线性趋势,线性趋势都未通过90%置信水平的显著性t检验

    Figure  7.  Variations in the coverage rate of positive abnormal annual nonpersistent (black bars) and persistent (gray bars) precipitation above heavy rain level in whole Thailand during 1981–2012. The blue (red) line indicates the linear trend of the covering range of positive abnormal annual nonpersistent (persistent) precipitation above heavy rain level. All linear trends fail to reach the 90% confidence level using t test

    图  8  1981~2012年泰国(a)北部、(b)东北部、(c)中部、(d)东部、(e)南部地区暴雨级别以上持续性(黑色柱状)及非持续性(灰色柱状)降水量对暴雨级别以上总降水量的相对贡献(左侧纵坐标)。黑色线和红色线分别代表逐年持续和非持续降水量之比及其线性趋势(右侧纵坐标)

    Figure  8.  Relative contributions (left y-axis) of annual persistent (black bars) and nonpersistent (gray bars) precipitation to annual precipitation above heavy rain level in (a) northern, (b) northeastern, (c) central, (d) eastern, and (e) southern Thailand during 1981–2012. The black lines represent the ratio of persistent to nonpersistent precipitation, the red lines indicate linear trends, corresponding to the right y-axis

    图  9  1981~2012年泰国各个地区暴雨级别以上持续性和非持续性降水量对总暴雨级别以上降水量的相对贡献

    Figure  9.  Relative contributions of annual persistent and nonpersistent precipitation to annual precipitation above heavy rain level in different regions of Thailand during 1981–2012

    表  1  12个降水统计量的名称、缩写及算法

    Table  1.   Names, abbreviations, and calculation algorithms of the 12 precipitation statistics

    降水统计量名称缩写算法
    逐年降水量AP (Annual precipitation)站点上有效降水的逐年总和
    逐年降水日数PD (Precipitation days)站点上有效降水日数的逐年总和
    中雨级别以上降水量AP-moderate站点上中雨级别以上(10 mm/d以上)降水的逐年总和
    中雨级别以上降水日数PD-moderate站点上中雨级别以上降水日数的逐年总和
    暴雨级别以上降水量AP-heavy站点上暴雨级别以上(50 mm/d以上)降水的逐年总和
    暴雨级别以上降水日数PD-heavy站点上暴雨级别以上降水日数的逐年总和
    大暴雨级别以上降水量AP-storm站点上大暴雨级别以上(100 mm/d以上)降水的逐年总和
    大暴雨级别以上降水日数PD-storm站点上大暴雨级别以上降水日数的逐年总和
    逐年平均降水强度MI (Mean intensity)站点上AP除以PD
    逐年最长持续降水日数AMD (Annual maximum duration)站点上逐年时段内最长的持续降水维持的日数
    逐年暴雨级别以上持续性降水量APP (Annual persistent precipitation)站点上暴雨级别以上(50 mm/d以上)持续降水的逐年总和
    逐年暴雨级别以上非持续性降水量ANP (Annual non-persistent precipitation)站点上暴雨级别以上(50 mm/d以上)非持续降水的逐年总和
    下载: 导出CSV

    表  2  1981~2012年泰国整体及各个区域12个降水统计量出现正异常站点覆盖率的线性趋势(单位:a−1

    Table  2.   Linear trend (units: a−1) of coverage rate of positive abnormal values of the 12 precipitation statistics in whole Thailand and its regions during 1981–2012

    正异常站点覆盖率的线性趋势/a−1
    APPDAP-moderatePD-moderateAP-heavyPD-heavyAP-stormPD-stormMIAMDAPPANP
    整体0.16%*0.1%0.13%*0.12%*0.15%**0.13%**0.04%0.04%0.09%0.05%0.09%0.06%
    北部0.33%**0.08%0.26%*0.29%**0.26%**0.25%**0.05%0.07%0.27%**−0.07%0.16%*0.12%*
    东北0.11%0.03%0.07%−0.01%0.12%0.12%−0.07%0.06%0.05%0.11%0.08%0.15%*
    中部−0.01%0.04%0.05%0.01%0.06%0.09%−0.05%−0.01%0.01%0.03%−0.09%0.04%
    东部0.09%0.32%**0.05%0.22%*000.08%0.05%−0.23%0.22%−0.09%−0.08%
    南部0.16%0.18%0.15%0.06%0.19%0.05%0.24%**0.04%0.12%0.14%0.28%**−0.06%
    注:*表示通过90%置信水平的显著性t检验,**表示通过95%置信水平的显著性t检验。
    下载: 导出CSV
  • [1] Chokngamwong R, Chiu L S. 2008. Thailand daily rainfall and comparison with TRMM products [J]. J. Hydrometeorol., 9(2): 256−266. doi: 10.1175/2007JHM876.1
    [2] Dai A G. 2013. Increasing drought under global warming in observations and models [J]. Nature Climate Change, 3(1): 52−58. doi: 10.1038/nclimate1633
    [3] Economic and Social Commission for Asia and the Pacific (ESCAP). 2020. Nakhon Si Thammarat, Thailand [EB/OL]. https://www.unescap.org/sites/default/files/Closing%20the%20Loop%20-%20Nakhon%20Si%20Thammarat%20City%20Profile.pdf. [2022-01-12]
    [4] Endo N, Matsumoto J, Lwin T. 2009. Trends in precipitation extremes over Southeast Asia [J]. Sola, 5: 168−171. doi: 10.2151/sola.2009-043
    [5] 韩瑞丹, 张黎, 郑艺, 等. 2017. 曼谷城市扩张生态环境效应 [J]. 生态学报, 37(19): 6322−6334. doi: 10.5846/stxb201607191470

    Han Ruidan, Zhang Li, Zheng Yi, et al. 2017. Urban expansion and its ecological environmental effects in Bangkok, Thailand [J]. Acta Ecologica Sinica (in Chinese), 37(19): 6322−6334. doi: 10.5846/stxb201607191470
    [6] 贺冰蕊, 翟盘茂. 2018. 中国1961~2016年夏季持续和非持续性极端降水的变化特征 [J]. 气候变化研究进展, 14(5): 437−444. doi: 10.12006/j.issn.1673-1719.2018.016

    He Bingrui, Zhai Panmao. 2018. Characteristics of the persistent and non-persistent extreme precipitation in China from 1961 to 2016 [J]. Climate Change Research (in Chinese), 14(5): 437−444. doi: 10.12006/j.issn.1673-1719.2018.016
    [7] 黄嘉佑. 1999. 气象统计分析与预报方法 [M]. 北京: 气象出版社. Huang Jiayou. 1999. Statistic Analysis and Forecast Methods in Meteorology (in Chinese) [M]. Beijing: China Meteorological Press.
    [8] Huang N E, Shen Z, Long S R, et al. 1998. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis [J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 454(1971): 903–995. doi: 10.1098/rspa.1998.0193
    [9] IPCC. 2014. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Summaries, Frequently Asked Questions, and Cross-Chapter Boxes. A Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [M]. Field C B, Barros V R, Dokken D J, et al. Eds. World Meteorological Organization, Geneva, Switzerland, 190 pp.
    [10] 江志红, 陈威霖, 宋洁, 等. 2009. 7个IPCC AR4模式对中国地区极端降水指数模拟能力的评估及其未来情景预估 [J]. 大气科学, 33(1): 109−120. doi: 10.3878/j.issn.1006-9895.2009.01.10

    Jiang Zhihong, Chen Weilin, Song Jie, et al. 2009. Projection and evaluation of the precipitation extremes indices over China based on seven IPCC AR4 coupled climate models [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 33(1): 109−120. doi: 10.3878/j.issn.1006-9895.2009.01.10
    [11] Karl T R, Knight R W, Easterling D R, et al. 1996. Indices of climate change for the united states [J]. Bull. Amer. Meteor. Soc., 77(2): 279−292. doi:10.1175/1520-0477(1996)077<0279:IOCCFT>2.0.CO;2
    [12] 李铭宇, 韩婷婷, 郝鑫. 2020. 欧亚大陆极端降水事件的区域变化特征 [J]. 大气科学学报, 43(4): 687−698. doi: 10.13878/j.cnki.dqkxxb.20191202001

    Li Mingyu, Han Tingting, Hao Xin. 2020. Regional characteristics of extreme precipitation events in Eurasia [J]. Transactions of Atmospheric Sciences (in Chinese), 43(4): 687−698. doi: 10.13878/j.cnki.dqkxxb.20191202001
    [13] Limjirakan S, Limsakul A, Sriburi T. 2010. Trends in temperature and rainfall extremes changes in Bangkok metropolitan area [J]. J. Environ. Res., 32(1): 31−48.
    [14] Limsakul A, Singhruck P. 2016. Long-term trends and variability of total and extreme precipitation in Thailand [J]. Atmospheric Research, 169: 301−317. doi: 10.1016/j.atmosres.2015.10.015
    [15] Limsakul A, Limjirakan S, Sriburi T. 2010. Observed changes in daily rainfall extreme along Thailand’s coastal zones [J]. J. Environ. Res., 32(1): 49−68.
    [16] 刘学华, 季致建, 吴洪宝, 等. 2006. 中国近40年极端气温和降水的分布特征及年代际差异 [J]. 热带气象学报, 22(6): 618−624. doi: 10.3969/j.issn.1004-4965.2006.06.015

    Liu Xuehua, Ji Zhijian, Wu Hongbao, et al. 2006. Distributing characteristics and interdecadal difference of daily temperature and precipitation extremes in China for latest 40 years [J]. Journal of Tropical Meteorology (in Chinese), 22(6): 618−624. doi: 10.3969/j.issn.1004-4965.2006.06.015
    [17] Manton M J, Della-Marta P M, Haylock M R, et al. 2001. Trends in extreme daily rainfall and temperature in Southeast Asia and the South Pacific: 1961–1998 [J]. International Journal of Climatology, 21(3): 269−284. doi: 10.1002/joc.610
    [18] 蒙伟光, 李昊睿, 张艳霞, 等. 2012. 珠三角城市环境对对流降水影响的模拟研究 [J]. 大气科学, 36(5): 1063−1076. doi: 10.3878/j.issn.1006-9895

    Meng Weiguang, Li Haorui, Zhang Yanxia, et al. 2012. A modeling study of the impacts of Pearl River Delta urban environment on convective precipitation [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 36(5): 1063−1076. doi: 10.3878/j.issn.1006-9895
    [19] Sharma D, Babel M S. 2014. Trends in extreme rainfall and temperature indices in the western Thailand [J]. International Journal of Climatology, 34(7): 2393−2407. doi: 10.1002/joc.3846
    [20] Trenberth K E. 1998. Atmospheric moisture residence times and cycling: Implications for rainfall rates and climate change [J]. Climatic Change, 39(4): 667−694. doi: 10.1023/A:1005319109110
    [21] Wu Z H, Huang N E. 2009. Ensemble empirical mode decomposition: A noise-assisted data analysis method [J]. Advances in Adaptive Data Analysis, 1(1): 1−41. doi: 10.1142/S1793536909000047
    [22] 杨涵洧, 龚志强, 王晓娟, 等. 2020. 中国东部夏季极端降水年代际变化特征及成因分析 [J]. 大气科学, 45(3): 683−696. doi: 10.3878/j.issn.1006-9895.2007.19247

    Yang Hanwei, Gong Zhiqiang, Wang Xiaojuan, et al. 2020. Analysis of the characteristics and causes of interdecadal changes in the summer extreme precipitation over eastern China [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 45(3): 683−696. doi: 10.3878/j.issn.1006-9895.2007.19247
    [23] 翟盘茂, 潘晓华. 2003. 中国北方近50年温度和降水极端事件变化 [J]. 地理学报, 58(S1): 1−10. doi: 10.3321/j.issn:0375-5444.2003.z1.001

    Zhai Panmao, Pan Xiaohua. 2003. Change in extreme temperature and precipitation over northern China during the second half of the 20th century [J]. Acta Geographica Sinica (in Chinese), 58(S1): 1−10. doi: 10.3321/j.issn:0375-5444.2003.z1.001
    [24] 翟盘茂, 章国材. 2004. 气候变化与气象灾害 [J]. 科技导报(7): 11−14. doi: 10.3321/j.issn:1000-7857.2004.07.004

    Zhai Panmao, Zhang Guocai. 2004. Climate change and meteorological disasters [J]. Science & Technology Review (in Chinese)(7): 11−14. doi: 10.3321/j.issn:1000-7857.2004.07.004
    [25] 翟盘茂, 任福民, 张强. 1999. 中国降水极值变化趋势检测 [J]. 气象学报, 57(2): 208−216. doi: 10.11676/qxxb1999.019

    Zhai Panmao, Ren Fumin, Zhang Qiang. 1999. Detection of trends in China’s precipitation extremes [J]. Acta Meteorologica Sinica (in Chinese), 57(2): 208−216. doi: 10.11676/qxxb1999.019
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  536
  • HTML全文浏览量:  110
  • PDF下载量:  120
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-04
  • 录用日期:  2021-07-23
  • 网络出版日期:  2021-08-27
  • 刊出日期:  2022-03-16

目录

    /

    返回文章
    返回