Study of the Main Trend of Precipitation in Thailand over the Last 32 Years
-
摘要: 基于泰国气象局提供的近32年(1981~2012)站点逐日降水观测资料,利用线性趋势和集合经验模态分解(Ensemble empirical mode decomposition, EEMD)等分析方法,本文重点研究了泰国及其五个地理分区内各等级降水量与降水日数出现正异常(第95百分位及以上)的站点比例变化,并深入分析了泰国逐年降水量与暴雨级别以上持续性和非持续性降水量相对贡献的变化。主要结论如下:(1)泰国东部和南部地区是其降水最强的区域,而泰国北部地区降水相对最弱,在研究的32年时段内,泰国境内有87%的站点出现了逐年降水增加的趋势(共有22个站通过了95%置信水平的显著性检验),其中泰国南部是增加最快的区域,而泰国东部地区则是出现降水增加趋势最少的地区。位于泰国湾沿岸的曼谷站和洛坤站是整个泰国境内逐年降水增加最快的站点。(2)泰国北部地区的逐年降水量、逐年降水日数与平均降水强度出现正异常的站点比例显著增加,表明极端降水的影响范围在扩大,而泰国南部地区仅大暴雨级别以上的极端降水出现了范围扩大的趋势。(3)暴雨级别以上的降水在泰国不同地区存在着显著差异,其中泰国北部、东北部和中部地区,非持续性降水占主导地位,而在泰国东部和南部地区,持续性与非持续性降水的贡献相当。暴雨级别以上持续性降水出现正异常的站点比例在泰国北部和南部地区有显著的增加趋势,表明这些地区受稳定系统影响所发生强降水的范围有着显著的扩大趋势。Abstract: On the basis of 32-year daily precipitation observation data from Thailand’s meteorological department during 1981–2012, using linear trend and EEMD (ensemble empirical mode decomposition), this study focused on the changes in the proportion of stations with abnormally high (95th percentile and above) precipitation and precipitation days in multiple grades in Thailand as a whole and its five geographical regions and further analyzed the annual precipitation and the variation trend of the relative contribution of annual persistent and nonpersistent precipitation to annual precipitation above heavy rain level. The main conclusions are as follows: (1) Annual precipitation is the strongest in eastern and southern Thailand and the weakest in northern Thailand. Additionally, during the 32-year study period, it shows an increasing trend at 87% of the stations (with 22 stations reaching the 90% confidence level), showing the fastest increase in South Thailand and the slowest increase in eastern Thailand. In Thailand, annual precipitation at the Bangkok and Nakhon Si Thammarat stations on the coast of the Gulf of Thailand shows the most significant increasing trend. (2) The proportion of stations with abnormally high annual precipitation, annual precipitation days, and mean precipitation intensity increase significantly in North Thailand, which indicates that the range of extreme precipitation is expanding, while in southern Thailand, only the range of extreme precipitation for precipitation above storm rain level increases significantly. (3) In Thailand, precipitation above heavy rain level varies significantly in different regions. In North, Northeast, and central Thailand, precipitation-heavy is more of a nonpersistent form, while in East and South Thailand, two forms (nonpersistent and persistent) of precipitation are balanced. The proportion of stations with abnormally high persistent precipitation above heavy rain level has a significant expansion trend in North and South Thailand, which indicates that the range of heavy precipitation under the influence of the stable system has a significant expansion trend.
-
Key words:
- Thailand precipitation /
- Extremum /
- Trend
-
图 1 1981~2012年泰国(a)年均降水量(R,单位:mm)、(b)年降水量线性趋势(b,单位:mm/a)的空间分布。阴影代表地形高度;红色线框将泰国分为5个区域(北部、东北部、中部、东部和南部)。图b中,三角形代表该站点线性趋势通过95%置信水平的显著性t检验
Figure 1. Geographical distributions of (a) the 32-year average and (b) linear trend (b, units: mm/a) of annual precipitation (R, units: mm) in Thailand during 1981–2012. The shadings indicate the terrain (units: m), the red lines divide Thailand into five regions (North, Northeast, Central, East, and South Thailand). In Fig. b, the triangles indicate that the linear trends for stations reach the 95% confidence level using the t test
图 2 1981~2012年整个泰国(a)年降水量及(b)年降水日数正异常覆盖率的变化。红线是线性趋势线,通过了90%置信水平的t检验
Figure 2. Variations in the coverage rate of positive abnormal (a) annual precipitation amount and (b) annual precipitation days in whole Thailand during 1981–2012. The red line indicates the linear trend reaching the 90% confidence level using t test
图 3 1981~2012年整个泰国(a)中雨级别以上、(b)暴雨级别以上、(c)大暴雨级别以上降水量(灰色柱状)及降水日数(黑色柱状)正异常覆盖率的变化。图a、b中,红(蓝)线表示降水量(降水日数)的线性趋势,线性趋势通过90%置信水平的显著性t检验
Figure 3. Variations in the coverage rate of the positive abnormal annual precipitation amount (gray bars) and precipitation days (black bars) above (a) moderate rain level, (b) heavy rain level, and (c) storm level in whole Thailand during 1981–2012. In Figs. a and b, the blue (red) lines indicate the linear trend of precipitation days (precipitation amount), linear trends reaching the 90% confidence level using t test
图 4 基于EEMD(Ensemble empirical mode decomposition)方法分解1981~2012年整个泰国暴雨级别以上降水量(AP-heavy)正异常覆盖率时间序列得到的前三个IMF(Intrinsic mode functions)分量(a)IMF1、(b)IMF2、(c)IMF3及(d)趋势项
Figure 4. The first three IMF (Intrinsic mode functions) components (a) IMF1, (b) IMF2, (c) IMF2, and (d) the trend component of the coverage rate of positive abnormal annual precipitation above heavy rain level in whole Thailand based on EEMD (ensemble empirical mode decomposition ) method during 1981–2012
图 7 1981~2012年整个泰国暴雨级别以上非持续性(黑色柱状)及持续性(灰色柱状)降水量正异常覆盖率的变化。蓝色线表示暴雨级别以上非持续性降水量的线性趋势,红色线表示暴雨级别以上持续性降水量的线性趋势,线性趋势都未通过90%置信水平的显著性t检验
Figure 7. Variations in the coverage rate of positive abnormal annual nonpersistent (black bars) and persistent (gray bars) precipitation above heavy rain level in whole Thailand during 1981–2012. The blue (red) line indicates the linear trend of the covering range of positive abnormal annual nonpersistent (persistent) precipitation above heavy rain level. All linear trends fail to reach the 90% confidence level using t test
图 8 1981~2012年泰国(a)北部、(b)东北部、(c)中部、(d)东部、(e)南部地区暴雨级别以上持续性(黑色柱状)及非持续性(灰色柱状)降水量对暴雨级别以上总降水量的相对贡献(左侧纵坐标)。黑色线和红色线分别代表逐年持续和非持续降水量之比及其线性趋势(右侧纵坐标)
Figure 8. Relative contributions (left y-axis) of annual persistent (black bars) and nonpersistent (gray bars) precipitation to annual precipitation above heavy rain level in (a) northern, (b) northeastern, (c) central, (d) eastern, and (e) southern Thailand during 1981–2012. The black lines represent the ratio of persistent to nonpersistent precipitation, the red lines indicate linear trends, corresponding to the right y-axis
表 1 12个降水统计量的名称、缩写及算法
Table 1. Names, abbreviations, and calculation algorithms of the 12 precipitation statistics
降水统计量名称 缩写 算法 逐年降水量 AP (Annual precipitation) 站点上有效降水的逐年总和 逐年降水日数 PD (Precipitation days) 站点上有效降水日数的逐年总和 中雨级别以上降水量 AP-moderate 站点上中雨级别以上(10 mm/d以上)降水的逐年总和 中雨级别以上降水日数 PD-moderate 站点上中雨级别以上降水日数的逐年总和 暴雨级别以上降水量 AP-heavy 站点上暴雨级别以上(50 mm/d以上)降水的逐年总和 暴雨级别以上降水日数 PD-heavy 站点上暴雨级别以上降水日数的逐年总和 大暴雨级别以上降水量 AP-storm 站点上大暴雨级别以上(100 mm/d以上)降水的逐年总和 大暴雨级别以上降水日数 PD-storm 站点上大暴雨级别以上降水日数的逐年总和 逐年平均降水强度 MI (Mean intensity) 站点上AP除以PD 逐年最长持续降水日数 AMD (Annual maximum duration) 站点上逐年时段内最长的持续降水维持的日数 逐年暴雨级别以上持续性降水量 APP (Annual persistent precipitation) 站点上暴雨级别以上(50 mm/d以上)持续降水的逐年总和 逐年暴雨级别以上非持续性降水量 ANP (Annual non-persistent precipitation) 站点上暴雨级别以上(50 mm/d以上)非持续降水的逐年总和 表 2 1981~2012年泰国整体及各个区域12个降水统计量出现正异常站点覆盖率的线性趋势(单位:a−1)
Table 2. Linear trend (units: a−1) of coverage rate of positive abnormal values of the 12 precipitation statistics in whole Thailand and its regions during 1981–2012
正异常站点覆盖率的线性趋势/a−1 AP PD AP-moderate PD-moderate AP-heavy PD-heavy AP-storm PD-storm MI AMD APP ANP 整体 0.16%* 0.1% 0.13%* 0.12%* 0.15%** 0.13%** 0.04% 0.04% 0.09% 0.05% 0.09% 0.06% 北部 0.33%** 0.08% 0.26%* 0.29%** 0.26%** 0.25%** 0.05% 0.07% 0.27%** −0.07% 0.16%* 0.12%* 东北 0.11% 0.03% 0.07% −0.01% 0.12% 0.12% −0.07% 0.06% 0.05% 0.11% 0.08% 0.15%* 中部 −0.01% 0.04% 0.05% 0.01% 0.06% 0.09% −0.05% −0.01% 0.01% 0.03% −0.09% 0.04% 东部 0.09% 0.32%** 0.05% 0.22%* 0 0 0.08% 0.05% −0.23% 0.22% −0.09% −0.08% 南部 0.16% 0.18% 0.15% 0.06% 0.19% 0.05% 0.24%** 0.04% 0.12% 0.14% 0.28%** −0.06% 注:*表示通过90%置信水平的显著性t检验,**表示通过95%置信水平的显著性t检验。 -
[1] Chokngamwong R, Chiu L S. 2008. Thailand daily rainfall and comparison with TRMM products [J]. J. Hydrometeorol., 9(2): 256−266. doi: 10.1175/2007JHM876.1 [2] Dai A G. 2013. Increasing drought under global warming in observations and models [J]. Nature Climate Change, 3(1): 52−58. doi: 10.1038/nclimate1633 [3] Economic and Social Commission for Asia and the Pacific (ESCAP). 2020. Nakhon Si Thammarat, Thailand [EB/OL]. https://www.unescap.org/sites/default/files/Closing%20the%20Loop%20-%20Nakhon%20Si%20Thammarat%20City%20Profile.pdf. [2022-01-12] [4] Endo N, Matsumoto J, Lwin T. 2009. Trends in precipitation extremes over Southeast Asia [J]. Sola, 5: 168−171. doi: 10.2151/sola.2009-043 [5] 韩瑞丹, 张黎, 郑艺, 等. 2017. 曼谷城市扩张生态环境效应 [J]. 生态学报, 37(19): 6322−6334. doi: 10.5846/stxb201607191470Han Ruidan, Zhang Li, Zheng Yi, et al. 2017. Urban expansion and its ecological environmental effects in Bangkok, Thailand [J]. Acta Ecologica Sinica (in Chinese), 37(19): 6322−6334. doi: 10.5846/stxb201607191470 [6] 贺冰蕊, 翟盘茂. 2018. 中国1961~2016年夏季持续和非持续性极端降水的变化特征 [J]. 气候变化研究进展, 14(5): 437−444. doi: 10.12006/j.issn.1673-1719.2018.016He Bingrui, Zhai Panmao. 2018. Characteristics of the persistent and non-persistent extreme precipitation in China from 1961 to 2016 [J]. Climate Change Research (in Chinese), 14(5): 437−444. doi: 10.12006/j.issn.1673-1719.2018.016 [7] 黄嘉佑. 1999. 气象统计分析与预报方法 [M]. 北京: 气象出版社. Huang Jiayou. 1999. Statistic Analysis and Forecast Methods in Meteorology (in Chinese) [M]. Beijing: China Meteorological Press. [8] Huang N E, Shen Z, Long S R, et al. 1998. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis [J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 454(1971): 903–995. doi: 10.1098/rspa.1998.0193 [9] IPCC. 2014. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Summaries, Frequently Asked Questions, and Cross-Chapter Boxes. A Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [M]. Field C B, Barros V R, Dokken D J, et al. Eds. World Meteorological Organization, Geneva, Switzerland, 190 pp. [10] 江志红, 陈威霖, 宋洁, 等. 2009. 7个IPCC AR4模式对中国地区极端降水指数模拟能力的评估及其未来情景预估 [J]. 大气科学, 33(1): 109−120. doi: 10.3878/j.issn.1006-9895.2009.01.10Jiang Zhihong, Chen Weilin, Song Jie, et al. 2009. Projection and evaluation of the precipitation extremes indices over China based on seven IPCC AR4 coupled climate models [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 33(1): 109−120. doi: 10.3878/j.issn.1006-9895.2009.01.10 [11] Karl T R, Knight R W, Easterling D R, et al. 1996. Indices of climate change for the united states [J]. Bull. Amer. Meteor. Soc., 77(2): 279−292. doi:10.1175/1520-0477(1996)077<0279:IOCCFT>2.0.CO;2 [12] 李铭宇, 韩婷婷, 郝鑫. 2020. 欧亚大陆极端降水事件的区域变化特征 [J]. 大气科学学报, 43(4): 687−698. doi: 10.13878/j.cnki.dqkxxb.20191202001Li Mingyu, Han Tingting, Hao Xin. 2020. Regional characteristics of extreme precipitation events in Eurasia [J]. Transactions of Atmospheric Sciences (in Chinese), 43(4): 687−698. doi: 10.13878/j.cnki.dqkxxb.20191202001 [13] Limjirakan S, Limsakul A, Sriburi T. 2010. Trends in temperature and rainfall extremes changes in Bangkok metropolitan area [J]. J. Environ. Res., 32(1): 31−48. [14] Limsakul A, Singhruck P. 2016. Long-term trends and variability of total and extreme precipitation in Thailand [J]. Atmospheric Research, 169: 301−317. doi: 10.1016/j.atmosres.2015.10.015 [15] Limsakul A, Limjirakan S, Sriburi T. 2010. Observed changes in daily rainfall extreme along Thailand’s coastal zones [J]. J. Environ. Res., 32(1): 49−68. [16] 刘学华, 季致建, 吴洪宝, 等. 2006. 中国近40年极端气温和降水的分布特征及年代际差异 [J]. 热带气象学报, 22(6): 618−624. doi: 10.3969/j.issn.1004-4965.2006.06.015Liu Xuehua, Ji Zhijian, Wu Hongbao, et al. 2006. Distributing characteristics and interdecadal difference of daily temperature and precipitation extremes in China for latest 40 years [J]. Journal of Tropical Meteorology (in Chinese), 22(6): 618−624. doi: 10.3969/j.issn.1004-4965.2006.06.015 [17] Manton M J, Della-Marta P M, Haylock M R, et al. 2001. Trends in extreme daily rainfall and temperature in Southeast Asia and the South Pacific: 1961–1998 [J]. International Journal of Climatology, 21(3): 269−284. doi: 10.1002/joc.610 [18] 蒙伟光, 李昊睿, 张艳霞, 等. 2012. 珠三角城市环境对对流降水影响的模拟研究 [J]. 大气科学, 36(5): 1063−1076. doi: 10.3878/j.issn.1006-9895Meng Weiguang, Li Haorui, Zhang Yanxia, et al. 2012. A modeling study of the impacts of Pearl River Delta urban environment on convective precipitation [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 36(5): 1063−1076. doi: 10.3878/j.issn.1006-9895 [19] Sharma D, Babel M S. 2014. Trends in extreme rainfall and temperature indices in the western Thailand [J]. International Journal of Climatology, 34(7): 2393−2407. doi: 10.1002/joc.3846 [20] Trenberth K E. 1998. Atmospheric moisture residence times and cycling: Implications for rainfall rates and climate change [J]. Climatic Change, 39(4): 667−694. doi: 10.1023/A:1005319109110 [21] Wu Z H, Huang N E. 2009. Ensemble empirical mode decomposition: A noise-assisted data analysis method [J]. Advances in Adaptive Data Analysis, 1(1): 1−41. doi: 10.1142/S1793536909000047 [22] 杨涵洧, 龚志强, 王晓娟, 等. 2020. 中国东部夏季极端降水年代际变化特征及成因分析 [J]. 大气科学, 45(3): 683−696. doi: 10.3878/j.issn.1006-9895.2007.19247Yang Hanwei, Gong Zhiqiang, Wang Xiaojuan, et al. 2020. Analysis of the characteristics and causes of interdecadal changes in the summer extreme precipitation over eastern China [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 45(3): 683−696. doi: 10.3878/j.issn.1006-9895.2007.19247 [23] 翟盘茂, 潘晓华. 2003. 中国北方近50年温度和降水极端事件变化 [J]. 地理学报, 58(S1): 1−10. doi: 10.3321/j.issn:0375-5444.2003.z1.001Zhai Panmao, Pan Xiaohua. 2003. Change in extreme temperature and precipitation over northern China during the second half of the 20th century [J]. Acta Geographica Sinica (in Chinese), 58(S1): 1−10. doi: 10.3321/j.issn:0375-5444.2003.z1.001 [24] 翟盘茂, 章国材. 2004. 气候变化与气象灾害 [J]. 科技导报(7): 11−14. doi: 10.3321/j.issn:1000-7857.2004.07.004Zhai Panmao, Zhang Guocai. 2004. Climate change and meteorological disasters [J]. Science & Technology Review (in Chinese)(7): 11−14. doi: 10.3321/j.issn:1000-7857.2004.07.004 [25] 翟盘茂, 任福民, 张强. 1999. 中国降水极值变化趋势检测 [J]. 气象学报, 57(2): 208−216. doi: 10.11676/qxxb1999.019Zhai Panmao, Ren Fumin, Zhang Qiang. 1999. Detection of trends in China’s precipitation extremes [J]. Acta Meteorologica Sinica (in Chinese), 57(2): 208−216. doi: 10.11676/qxxb1999.019 -