Strong Wind Characteristics of the Lower Boundary Layer (0–300 m) during the Landfall of a Typhoon
-
摘要: 利用台风山竹(1822)和利奇马(1909)登陆期间固定式风廓线雷达、WindCubeV2激光雷达和测风塔的梯度观测数据,结合台风山竹(1822)登陆前后精细化风场模拟资料,分析了登陆台风不同影响象限内,离地300 m高度内的强风参数及其随距离、海拔高度及下垫面的变化特征。结果表明:(1)距离台风中心200 km水平范围内,最大风速所在高度及风切变指数沿台风半径向外增加,且陆地强风切变指数普遍高于0.12,而海洋下垫面拖曳作用弱,风切变较小,仅在岛屿群附近存在超出国标设计阈值的高切变区域。(2)台风移动方向的右前象限内强风切变指数稳定维持在0.17左右,且对海拔高度不敏感,左后象限存在类似于急流的风廓线,而左前象限内强风的垂直变化在空间上具有较强的非线性特征,边界层低层强风结构较复杂。(3)阵风因子和湍流强度随平均风速增大、离地高度升高呈现减小趋势。(4)过程最大风向变差角沿台风半径向外减小,且在空间上具有显著的非对称性,其中右后象限的风向变差角最大,半小时风向变化超过30°,且大多发生在台风登陆前或登陆时。研究成果可为我国近海及沿海风电场的微尺度风场模拟及台风风险防御提供帮助。Abstract: Based on in situ gradient observations from wind profiler radars, WindCubeV2 lidar, and masts during the landfall of typhoons Mangkhut (1822) and Lekima (1909), combined with the simulated winds of typhoon Mangkhut (1822) with the finest horizontal resolution of 2 km and vertical resolution of 50 model levels in which the lower levels are densified, the strong wind structure in the lower level (below 300 m height over sea level or terrain) were analyzed, and the following results were obtained. (1) Within the range of 0–200 km from the typhoon center, the maximum wind speed height and wind shear index increased outward along the radial direction, and the wind shear index on the underlying land surface was generally higher than 0.12. Because of the weak drag effect on the underlying ocean surface, the wind shear index was generally small, except for island areas. (2) The strong wind shear on the right front quadrant of the moving direction of the typhoon remained stable at approximately 0.17, which was insensitive to distance and altitude. The wind profile was similar to the jet stream on the left rear quadrant, and a previous study pointed out that the changes of supergradient/subgradient wind in the vertical direction were responsible for the jet-type profiles. The vertical variations of strong winds on the left front quadrant showed nonlinear characteristics, indicating the complex, strong wind structure over this area. (3) The gust factor and turbulence intensity decreased with the mean wind speed and altitude. (4) The maximum wind direction variation during the landfall of a typhoon decreased outward along the radial direction and exhibited statistically significant spatial asymmetry, with the largest variation near the right rear quadrant. Over some areas of the right rear quadrant, the wind direction changed more than 30° in half an hour, and most of them occurred before or during the typhoon’s landfall. This information could be useful for microscale wind simulation as well as the prevention and mitigation of typhoon disasters over offshore wind farms in China.
-
图 1 (a)2018年9月台风山竹(1822)、(b)2019年8月台风利奇马(1909)的移动路径(黑色实线)以及固定式风廓线雷达(蓝色三角)位置。图b中绿色星、黑色十字和紫色方块分别代表测风塔、WindCubeV2激光雷达和温岭东海塘风电场位置
Figure 1. Tracks (black line) of typhoon (a) Mangkhut (1822) in September 2018 and (b) typhoon Lekima (1909) in August 2019 and locations (blue triangles) of the wind profiler radars. In Fig. b, the green stars, black cross, and purple block denote the locations of masts, WindCubeV2 lidar, and Donghaitang wind farm, respectively
图 2 台风移动路径象限客观分析法,四角星为探测点所在位置(xs, ys),右下圆点为当前时刻台风所在位置(x0, y0),左上圆点为下一时刻台风所在位置(x1, y1)。θ为(x0, y0)和(x1, y1)连线与(x0, y0)和(xs, ys)连线的顺时针夹角,θ1为正北方向与(x0, y0)和(x1, y1)连线的顺时针夹角,θS为正北方向与(x0, y0)和(xs, ys)连线的顺时针夹角
Figure 2. Quadrant analysis benchmarked on the track of the typhoon. The blue star, the blue dots in the lower right and upper left denote the observation point (xs, ys), the current position of the typhoon (x0, y0), and the position of the typhoon in the next moment (x1, y1), respectively. θ denotes the clockwise angle between the line from (x0, y0) to (x1, y1) and the line from (x0, y0) to (xs, ys). θ1 denotes the clockwise angle between the north line and the line from (x0, y0) to (x1, y1). θS denotes the clockwise angle between the north line and the line from (x0, y0) to (xs, ys)
图 5 2019年台风利奇马(1909)登陆(a)前、(b)中、(c)后浙江省平阳县WindCubeV2激光雷达观测的离地300 m高度内的风廓线
Figure 5. Observed wind profiles in the lower level (below 300 m over terrain) from WindCubeV2 lidar located in Pingyang County of Zhejiang Province (a) before, (b) during, and (c) after the landfall of typhoon Lekima (1909) in 2019
图 7 2019年台风利奇马(1909)登陆前后测风塔10 m高度的强风(≥17.2 m s−1)样本对应的(a)阵风因子、(b)湍流强度的垂直变化。实线为平均值,虚线为95%置信水平线
Figure 7. Observed (a) gust factor and (b) turbulence intensity profiles of strong winds (≥17.2 m s−1) at 10-m height from two masts during the landfall of typhoon Lekima (1909) in 2019. The solid and dashed lines denote the mean value and 95% confidence level, respectively
图 8 2019年台风利奇马(1909)登陆前后1663#测风塔观测的10 m高度处强风(a)阵风因子、(b)湍流强度随风速的变化,减小趋势均超过95%置信水平的显著性检验
Figure 8. Variations of (a) gust factor and (b) turbulence intensity of strong winds (≥17.2 m s−1) at 10-m height with wind speed observed at 1663# mast during the landfall of typhoon Lekima (1909) in 2019. The decreasing trends are significant at the 95% confidence level
图 9 模拟的、观测的2018年台风山竹(1822)的(a)移动路径,(b)台风中心最大风速和最低气压。图b黑色柱子为台风登陆点,观测资料来源于中国气象局热带气旋最佳路径数据集
Figure 9. Simulated and observed (a) typhoon tracks and (b) maximum wind speeds and minimum air pressures at the center of typhoon Mangkhut (1822) in 2018. In Fig. b, the black bar denotes the landing point. The observation data are obtained from the China Meteorological Administration tropical cyclone database
图 10 模拟的、风廓线雷达探测的2018年台风山竹(1822)影响期间离地300 m高度内(a)海陵岛和(b)珠海的u/u100廓线。u、u100分别表示各高度层的平均风速、100 m高度处的平均风速
Figure 10. Simulated and observed wind profiles in the lower level (below 300 m over terrain) in (a) Hailingdao and (b) Zhuhai during typhoon Mangkhut (1822) in 2018. u, u100 represent mean wind speed at different height level, mean wind speed at 100-m height, respectively
图 11 2018年台风山竹(1822)(a)登陆前(9月16日15时)、(b)登陆时(9月16日17时)和(c)登陆后(9月16日19:30)低于500 m的最大风速所在高度。最大风速是指格点位置处各高度层水平风速的最大值
Figure 11. The heights (lower than 500 m) of maximum wind speed (a) before (1500 BJT 16 September), (b) during (1700 BJT 16 September), and (c) after (1930 BJT 16 September) the landfall of typhoon Mangkhut (1822) in 2018. The maximum wind speed denotes the maximum value of the horizontal wind speeds in the different heights
图 12 2018年台风山竹(1822)登陆时区域平均的典型风廓线。蓝色线、绿色线和橘色线分别代表图11b中蓝色、绿色和橘色区域内平均风廓线。实线为平均值,虚线为95%置信水平线
Figure 12. Typical wind profiles of winds averaged over the blue, green, and orange areas in Fig. 11b during the landfall of typhoon Mangkhut (1822) in 2018. The solid and dashed lines denote the mean value and 95% confidence level, respectively
图 13 2018年台风山竹(1822)登陆时T-RAPS模式第3层嵌套网格区域内(a)离地300 m高度内的风切变指数和(b)10 m高度瞬时风速。白色圆点代表台风中心位置,图b中白色十字代表风切变指数大于0.21的区域
Figure 13. Simulated (a) wind shear index in the lower level (below 300 m over terrain) and (b) 10-m wind speed over domain 3 of the T-RAPS model during the landfall of typhoon Mangkhut (1822) in 2018. The white dot denotes the center of the typhoon. In Fig. b, the white crosses denote the area with a wind shear index greater than 0.21
图 14 2018年台风山竹(1822)登陆时不同象限离地300 m高度内的强风(表3中强风阈值)风切变指数与(a)格点距台风中心的距离、(b)格点海拔高度的关系
Figure 14. Relationships of the four-quadrant strong wind (strong wind thresholds in Table 3) shear index in the lower layer (below 300 m over terrain) with (a) the distances from the grid points to the center of the typhoon and (b) the altitudes of the grid points during the landfall of typhoon Mangkhut (1822) in 2018
表 1 2018年台风山竹(1822)影响期间T-RAPS模式的数值模拟试验设计
Table 1. Numerical simulation settings used in T-RAPS model during Typhoon Mangkhut (1822) in 2018
数值模式主要设置项 参数设置 初猜场和侧边界 FNL再分析资料 起报时间 2018年9月16日02:00(北京时) 积分时长 72 h 分辨率/km 18 6 2 格点范围 311×251 271×271 211×211 移动嵌套 否 是 是 移动嵌套网格中心 BABJ台风业务实况定位资料 垂直分辨率 50 模式层顶/hPa 10 积分步长/s 60 20 6 积云动力参数化方案 KF (new Eta) 不使用 不使用 云微物理参数化方案 WSM6 边界层参数化方案 YSU 表层方案 Revised MM5 M-O 辐射参数化方案 RRTMG/RRTMG 陆面过程参数化方案 Unified Noah land-surface 表 2 2019年8月台风利奇马(1909)登陆前后测风塔与台风中心的距离、移动方向的夹角
Table 2. Distances and angles between the two masts and typhoon center, moving direction during Lekima (1909) in August 2019
10日00时 10日01时 10日02时 10日03时 测风塔 与台风中心
的距离/km与台风移动
方向的夹角与台风中心
的距离/km与台风移动
方向的夹角与台风中心
的距离/km与台风移动
方向的夹角与台风中心
的距离/km与台风移动
方向的夹角6602# 117 0° 87 0° 73 18° 52 8° 1663# 119 21° 92 28° 79 52° 67 51° 表 3 2018年台风山竹(1822)影响期间不同象限的强风样本分类表
Table 3. Classification criteria of strong winds over four different quadrants during typhoon Mangkhut (1822) in 2018
格点位置与台风移动
方向的夹角/(°)10 m高度
风速/m s−1下垫面覆盖类型 右前陆地强风 20~80 ≥28.4 陆地 右后陆地强风 140~150 ≥28.4 陆地 左后海洋强风 220~230 ≥34.4 海洋 左前陆地强风 300~330 ≥28.4 陆地 -
[1] Cha D H, Wang Y Q. 2013. A dynamical initialization scheme for real-time forecasts of tropical cyclones using the WRF Model [J]. Mon. Wea. Rev., 141(3): 964−986. doi: 10.1175/MWR-D-12-00077.1 [2] 陈雯超, 宋丽莉, 植石群, 等. 2011. 不同下垫面的热带气旋强风阵风系数研究 [J]. 中国科学: 技术科学, 41(11): 1449–1459. Chen W C, Song L L, Zhi S Q, et al. 2011. Analysis on gust factor of tropical cyclone strong wind over different underlying surfaces [J]. Science China Technological Sciences, 54(10): 2576–2586. doi: 10.1007/s11431-011-4511-0 [3] 邓国, 周玉淑, 李建通. 2005. 台风数值模拟中边界层方案的敏感性试验. I: 对台风结构的影响 [J]. 大气科学, 29(3): 417−428. doi: 10.3878/j.issn.1006-9895.2005.03.09Deng G, Zhou Y S, Li J T. 2005. The experiments of the boundary layer schemes on simulated typhoon. Part I: The effect on the structure of typhoon [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 29(3): 417−428. doi: 10.3878/j.issn.1006-9895.2005.03.09 [4] Duan Y H, Wan Q L, Huang J, et al. 2019. Landfalling tropical cyclone research project (LTCRP) in China [J]. Bull. Amer. Meteor. Soc., 100(12): ES447−ES472. doi: 10.1175/BAMS-D-18-0241.1 [5] 方平治, 赵兵科, 鲁小琴, 等. 2013. 台风影响下福州地区的风廓线特征 [J]. 自然灾害学报, 22(2): 91−98. doi: 10.13577/j.jnd.2013.0213Fang P Z, Zhao B K, Lu X Q, et al. 2013. Study on characteristics of wind profiles affected by landed typhoons in Fuzhou area [J]. Journal of Natural Disasters (in Chinese), 22(2): 91−98. doi: 10.13577/j.jnd.2013.0213 [6] 高祝宇, 阮征, 魏鸣, 等. 2016. 风廓线雷达数据质量影响因子及处理算法 [J]. 应用气象学报, 27(2): 148−159. doi: 10.11898/1001-7313.20160203Gao Z Y, Ruan Z, Wei M, et al. 2016. Quality factors and processing algorithm for wind profiling radar data [J]. Journal of Applied Meteorological Science (in Chinese), 27(2): 148−159. doi: 10.11898/1001-7313.20160203 [7] 葛耀君. 2016. 重大建筑与桥梁强/台风灾变的集成研究 [R]. 国家自然基金重大项目结题报告. Ge Y J. 2016. Integrated study on strong/typhoon wind hazard of super-large spatial structures and super-long-span bridges (in Chinese) [R]. Final report of Major Projects of National Natural Science Foundation of China. [8] Giammanco I M, Schroeder J L, Powell M D. 2013. GPS dropwindsonde and WSR-88D observations of tropical cyclone vertical wind profiles and their characteristics [J]. Wea. Forecasting, 28(1): 77−99. doi: 10.1175/WAF-D-11-00155.1 [9] 国家市场监督管理总局, 国家标准化管理委员会. 2018. GB/T 36745–2018 台风涡旋测风数据判别规范 [S]. 北京: 中国标准出版社. State Administration for Market Regulation, Standardization Administration of the People’ s Republic of China. 2018. GB/T 36745–2018 Specification for typhoon cyclone observational wind data differentiating (in Chinese) [S]. Beijing: Standards Press of China. [10] 国家市场监督管理总局, 国家标准化管理委员会. 2020. GB/T 38957–2020 海上风电场热带气旋影响评估技术规范 [S]. 北京: 中国标准出版社. State Administration for Market Regulation, Standardization Administration of the People's Republic of China. 2020. GB/T 38957–2020 Technical specification for effect evaluation of tropical cyclone on offshore wind power project (in Chinese) [S]. Beijing: Standards Press of China. [11] Hong S Y, Lim J O J. 2006. The WRF single-moment 6-class microphysics scheme (WSM6) [J]. Journal of the Korean Meteorological Society, 42(2): 129−151. [12] 胡尚瑜, 宋丽莉, 李秋胜. 2011. 近地边界层台风观测及湍流特征参数分析 [J]. 建筑结构学报, 32(4): 1−8. doi: 10.14006/j.jzjgxb.2011.04.001Hu S Y, Song L L, Li Q S. 2011. Monitoring of typhoons in surface boundary layer and analysis of wind turbulence characteristics [J]. Journal of Building Structures (in Chinese), 32(4): 1−8. doi: 10.14006/j.jzjgxb.2011.04.001 [13] 李晨光, 刘淑媛, 陶祖钰. 2003. 华南暴雨试验期间香港风廓线雷达资料的评估 [J]. 热带气象学报, 19(3): 269−276. doi: 10.3969/j.issn.1004-4965.2003.03.006Li C G, Liu S Y, Tao Z Y. 2003. Review of wind profiler data of Hongkong during IOP of HUAMEX and SCSMEX [J]. Journal of Tropical Meteorology (in Chinese), 19(3): 269−276. doi: 10.3969/j.issn.1004-4965.2003.03.006 [14] 李利孝, 肖仪清, 宋丽莉, 等. 2012. 基于风观测塔和风廓线雷达实测的强台风黑格比风剖面研究 [J]. 工程力学, 29(9): 284−293. doi: 10.6052/j.issn.1000-4750.2011.01.0012Li L X, Xiao Y Q, Song L L, et al. 2012. Study on wind profile of typhoon Hagupit using wind observed tower and wind profile radar measurements [J]. Engineering Mechanics (in Chinese), 29(9): 284−293. doi: 10.6052/j.issn.1000-4750.2011.01.0012 [15] 李宗恺, 潘云仙, 孙润桥. 1985. 空气污染气象学原理及应用[M]. 北京: 气象出版社, 82–85Li Z K, Pan Y X, Sun R Q. 1985. Principles and Application of Air Pollution Meteorology (in Chinese) [M]. Beijing: China Meteorological Press, 82–85. [16] 廖菲, 邓华, 李旭. 2017. 基于风廓线雷达的广东登陆台风边界层高度特征研究 [J]. 大气科学, 41(5): 949−959. doi: 10.3878/j.issn.1006-9895.1703.16208Liao F, Deng H, Li X. 2017. A study on boundary layer height characteristics of landing typhoons by wind profilers in Guangdong Province [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 41(5): 949−959. doi: 10.3878/j.issn.1006-9895.1703.16208 [17] Liu B M, Guo J P, Gong W, et al. 2020. Characteristics and performance of wind profiles as observed by the radar wind profiler network of China [J]. Atmos. Meas. Tech., 13(8): 4589−4600. doi: 10.5194/amt-13-4589-2020 [18] Liu H Y, Wang Y Q, Xu J, et al. 2018. A dynamical initialization scheme for tropical cyclones under the influence of terrain [J]. Wea. Forecasting, 33(3): 641−659. doi: 10.1175/WAF-D-17-0139.1 [19] 宋丽莉, 毛慧琴, 黄浩辉, 等. 2005. 登陆台风近地层湍流特征观测分析 [J]. 气象学报, 63(6): 915−921. doi: 10.3321/j.issn:0577-6619.2005.06.008Song L L, Mao H Q, Huang H H, et al. 2005. Analysis on boundary layer turbulent features of landfalling typhoon [J]. Acta Meteorologica Sinica (in Chinese), 63(6): 915−921. doi: 10.3321/j.issn:0577-6619.2005.06.008 [20] 谭晓伟, 端义宏, 梁旭东. 2013. 超强台风桑美(2006)登陆前后低层风廓线数值模拟分析 [J]. 气象学报, 71(6): 1020−1034. doi: 10.11676/qxxb2013.093Tan X W, Duan Y H, Liang X D. 2013. A high-resolution simulation of typhoon Saomai (2006): Low layer wind profile around its landing [J]. Acta Meteorologica Sinica (in Chinese), 71(6): 1020−1034. doi: 10.11676/qxxb2013.093 [21] Tang J, Zhang J A, Aberson S D, et al. 2018. Multilevel tower observations of vertical eddy diffusivity and mixing length in the tropical cyclone boundary layer during landfalls [J]. J. Atmos. Sci., 75(9): 3159−3168. doi: 10.1175/JAS-D-17-0353.1 [22] Tang S M, Guo Y, Wang X, et al. 2022. Validation of Doppler wind lidar during super typhoon Lekima (2019) [J]. Front. Earth Sci., 16(1): 75−89. doi: 10.1007/s11707-020-0838-9 [23] 王叶红, 赵玉春. 2020. 边界层参数化方案对“莫兰蒂”台风(1614)登陆阶段影响的数值模拟研究 [J]. 大气科学, 44(5): 935−959. doi: 10.3878/j.issn.1006-9895.2004.19135Wang Y H, Zhao Y C. 2020. Numerical investigation of the effects of boundary layer parameterization schemes on typhoon Meranti (1614) landing process [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 44(5): 935−959. doi: 10.3878/j.issn.1006-9895.2004.19135 [24] 吴立广, 刘青元, 周星阳. 2020. 热带气旋边界层精细结构研究综述 [J]. 气象科学, 40(1): 1−10. doi: 10.3969/2019jms.0082Wu L G, Liu Q Y, Zhou X Y. 2020. A review on fine-scale structures in tropical cyclone boundary layer [J]. Journal of the Meteorological Sciences (in Chinese), 40(1): 1−10. doi: 10.3969/2019jms.0082 [25] 许小峰. 2020. 低层垂直大气廓线遥感探测技术进展 [J]. 气象科技进展, 10(2): 1−5,8. doi: 10.3969/j.issn.2095-1973.2020.02.001Xu X F. 2020. Progress in remote sensing detection technology of vertical atmospheric profile in lower layer [J]. Advances in Meteorological Science and Technology (in Chinese), 10(2): 1−5,8. doi: 10.3969/j.issn.2095-1973.2020.02.001 [26] Ying M, Zhang W, Yu H, et al. 2014. An overview of the China Meteorological Administration tropical cyclone database [J]. J. Atmos. Oceanic Technol., 31(2): 287−301. doi: 10.1175/JTECH-D-12-00119.1 [27] Zhang F M, Pu Z X. 2017. Effects of vertical eddy diffusivity parameterization on the evolution of landfalling hurricanes [J]. J. Atmos. Sci., 74(6): 1879−1905. doi: 10.1175/JAS-D-16-0214.1 [28] Zhang J A, Marks F D, Montgomery M T, et al. 2011. An estimation of turbulent characteristics in the low-level region of intense hurricanes Allen (1980) and Hugo (1989) [J]. Mon. Wea. Rev., 139(5): 1447−1462. doi: 10.1175/2010MWR3435.1 [29] Zhang J A, Nolan D S, Rogers R F, et al. 2015. Evaluating the impact of improvements in the boundary layer parameterization on hurricane intensity and structure forecasts in HWRF [J]. Mon. Wea. Rev., 143(8): 3136−3155. doi: 10.1175/MWR-D-14-00339.1 [30] 张容焱, 张秀芝, 杨校生, 等. 2012. 台风莫拉克(0908)影响期间近地层风特性 [J]. 应用气象学报, 23(2): 184−194. doi: 10.3969/j.issn.1001-7313.2012.02.007Zhang R Y, Zhang X Z, Yang X S, et al. 2012. Wind characteristics study in surface layer of typhoon Morakot (0908) [J]. Journal of Applied Meteorological Science (in Chinese), 23(2): 184−194. doi: 10.3969/j.issn.1001-7313.2012.02.007 [31] Zhang X H, Duan Y H, Wang Y Q, et al. 2017. A high-resolution simulation of super typhoon Rammasun (2014). Part I: Model verification and surface energetics analysis [J]. Advances in Atmospheric Sciences, 34(6): 757−770. doi: 10.1007/s00376-017-6255-7 [32] Zhao D J, Yu Y B, Yin J F, et al. , 2020. Effects of microphysical latent heating on the rapid intensification of typhoon Hato (2017) [J]. Journal of Meteorological Research, 34(2): 368–386. doi: 10.1007/s13351-020-9076-z [33] 赵林, 杨绪南, 方根深, 等. 2019. 超强台风山竹近地层外围风速剖面演变特性现场实测 [J]. 空气动力学学报, 37(1): 43−54. doi: 10.7638/kqdlxxb-2018.0297Zhao L, Yang X N, Fang G S, et al. 2019. Observation-based study for the evolution of vertical wind profiles in the boundary layer during super typhoon Mangkhut [J]. Acta Aerodynamica Sinica (in Chinese), 37(1): 43−54. doi: 10.7638/kqdlxxb-2018.0297 [34] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 2016. GB/T 31519–2015 台风型风力发电机组 [S]. 北京: 中国标准出版社. General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People’s Republic of China. 2016. GB/T 31519–2015 Wind turbine generator system under typhoon condition (in Chinese) [S]. Beijing: Standards Press of China. -