Influence of Indian Ocean Warming on Extreme Precipitation in the Western Tianshan Mountains from Late Spring to Early Summer
-
摘要: 利用NOAA(美国国家海洋和大气管理局)气候预测中心的逐日格点降水资料分析了春末夏初(5、6月)天山极端降水时空变化以及印度洋海盆一致模(IOBM)影响极端降水的机制。结果表明:春末夏初天山极端降水变化具有明显的空间差异,西天山地区极端降水显著增加,其他区域极端降水变化不显著。诊断分析和数值模式模拟结果表明,春末夏初西天山地区极端降水增加与同期IOBM正异常促进冷暖气流在西天山地区交汇有关。IOBM正异常,一方面有利于东欧至中亚北部反气旋异常加强,促进冷空气向南输送。另一方面使得印度洋海温非均匀增暖,产生异常垂直环流,其下沉支使阿拉伯海和印度半岛产生反气旋异常,异常反气旋和偏南气流共同促进印度洋暖湿水汽向西天山输送,从而有利于西天山地区极端降水增加。Abstract: The National Oceanic and Atmospheric Administration Climate Prediction Center’s daily grid precipitation data is used to analyze the spatial–temporal change of extreme precipitation in the Tianshan Mountains from late spring to early summer (May and June), as well as the mechanism of the Indian Ocean Basin Mode (IOBM) on extreme precipitation. The results show a clear spatial difference in extreme precipitation in the Tianshan Mountains from late spring to early summer. Extreme precipitation increased dramatically in the western Tianshan Mountains, whereas other regions experienced little variation. The diagnostic and numerical simulation results consistently showed that the increase in extreme precipitation in the western Tianshan Mountains was caused by a coetaneous positive anomaly of IOBM, which promoted the convergence of warm and cold airflows in the western Tianshan Mountains. On the one hand, the positive anomaly of IOBM strengthened the anticyclonic anomalies located in Eastern Europe and the northern part of Central Asia, promoting cold airflow southward transportation. On the other hand, it induced the Indian Ocean to warm unevenly, resulting in abnormal vertical circulation and subsidence, which caused the anticyclonic anomalies in the Arabian Sea and the Indian peninsula. Warm moisture from the Indian Ocean was delivered to the western Tianshan Mountains by the anomalous anticyclone and southerly airflow, which aided in the increase of extreme precipitation in the western Tianshan Mountains.
-
图 1 1979~2018年中亚(a、c)春季、(b、d)夏季年均极端降水频次(第一行,单位:d)以及累积极端降水量(第二行,单位:mm)空间分布。黑框代表天山地区
Figure 1. Spatial distribution of annual average extreme precipitation frequency (top line, units: d) and total extreme precipitation (bottom line, units: mm) in (a, c) spring and (b, d) summer during 1979–2018 in central Asia. The black rectangles represent the Tianshan Mountains regions
图 2 1979~2018年天山年均(a)月降水量对区域年降水量的贡献,(b)月极端降水量对区域当月降水量的贡献以及(c)月极端降水量对区域年降水量的贡献量随时间的变化。灰色和黑色长柱分别表示频次和累积降水的贡献量
Figure 2. Temporal variations of annual average contribution of (a) monthly precipitation to regional annual precipitation, (b) extreme monthly precipitation to regional monthly precipitation, and (c) extreme monthly precipitation to regional annual precipitation in the Tianshan Mountains regions from 1979 to 2018. The gray and black bars represent the frequency and total precipitation contributions, respectively
图 3 1979~2018年中亚(a、c)5月、(b、d)6月极端降水频次变化趋势(第一行,单位:d a−1)和累积极端降水量变化趋势(第二行,单位:mm a−1)空间分布。白点区域为通过90%显著性检验,黑框为西天山地区
Figure 3. Spatial distribution of extreme precipitation frequency trend (top line, units: d a−1) and extreme precipitation trend (bottom line, units: mm a−1) in (a, c) May and (b, d) June and total during 1979–2018 in Central Asia. The white dots indicate significance at the 90% and the black rectangles represent the Western Tianshan Mountains regions
图 4 1979~2018年西天山(a、c)5月、(b、d)6月区域平均极端降水频次(第一行,单位:d)和累积极端降水量(第二行,单位:mm)。黑实线、黑虚线、灰虚线分别为极端降水频次/累积极端降水量、9年滑动平均、线性趋势,*、**表示趋势通过90%和95%显著性检验
Figure 4. Regional average of extreme precipitation frequency (top line, units: d) and total extreme precipitation (bottom line, units: mm) in (a, c) May and (b, d) June in the Western Tianshan Mountains during 1979–2018. The black solid line represents extreme precipitation frequency or total extreme precipitation, the black dash line represents the 9-year running mean, and the gray dash line is the linear trend; *, ** indicates significance over the 90% or 95% confidence level
图 5 西天山极端降水日合成的(a–c)5月、(d–f)6月(a、d)500 hPa位势高度(阴影,单位:gpm)及风场(矢量,单位:m s−1)异常分布、(b、e)整层水汽通量(矢量,单位:kg m−1 s−1)及水汽通量散度(阴影,单位:kg m−2 s−1)分布和(c、f)整层水汽通量(矢量,单位:kg m−1 s−1)及水汽通量散度(阴影,单位:kg m−2 s−1)异常分布。红框为西天山地区,(a、d)中从北至南的紫线和绿线分别表示平均态及极端降水日平均5500 gpm、5600 gpm、5750 gpm位势高度线,打点区域为高度场通过95%显著性检验区域
Figure 5. Distributions of (a, d) anomalous geopotential height (shaded, units: gpm) and winds (vectors, units: m s−1) at 500 hPa, (b, e) the vertical integral of water vapor flux (units: kg m−1 s−1) and water vapor flux divergence (units: kg m−2 s−1), and (c, f) the anomalous vertical integral of water vapor flux (units: kg m−1 s−1) and water vapor flux divergence (units: kg m−2 s−1) on an extreme precipitation day in (a–c) May and (d–f) June. The red rectangles represent the Western Tianshan Mountains region, the purple and green lines from north to south in (a, d) represent the 5500 gpm, 5600 gpm, and 5750 gpm geopotential height of the climatological mean and extreme precipitation day mean, and dotted areas indicate the significance of height over the 95% confidence level
图 6 (a、b)5月及(c、d)6月印度洋海温距平(a、c)EOF第一模态和(b、d)对应时间系数(灰色长柱)。黑色实线为同期标准化印度洋海盆一致模(IOBM)指数,灰色虚线为西天山同期标准化极端降水序列
Figure 6. (a, c) The EOF first mode and (b, d) corresponding time series (gray bars) of the Indian Ocean sea surface temperature anomaly in (a, b) May and (c, d) June. The black lines and gray dashed lines reflect the standardized IOBM (Indian Ocean Basin Mode) index and the standardized extreme precipitation series of the Western Tianshan Mountains over the same period
图 7 IOBM指数高值年5月(左列)及6月(右列)合成的(a、b)200 hPa、(c、d)500 hPa高度场(填色,单位:gpm)和风场(矢量,单位:m s−1)异常分布以及(e,f)整层水汽通量(矢量,单位:kg m−1 s−1)和水汽通量散度(阴影,单位:kg m−2 s−1)异常分布。(a–d)中打点区域为高度场通过95%显著性检验区域,(e、f)中箭头区域为水汽通量通过95%显著性检验区域
Figure 7. Distributions of anomalous (a, b) 200 hPa, (c, d) 500 hPa geopotential height (shaded, units: gpm) and winds (vector, units: m s−1), and (e, f) vertical integral of water vapor flux (vectors, units: kg m−1 s−1) and water vapor flux divergence (shaded, units: kg m−2 s−1) of high IOBM index years in May (left column) and June (right column). Dotted areas in (a–d) indicate the significance of height over the 95% confidence level, while vectors in (e, f) indicate the significance of water flux over the 95% confidence level
图 9 (a、b)5月及(c、d)6月IOBM指数高值年异常垂直环流:(a、c)10°N~25°N纬向异常垂直剖面;(b)50°E~80°E、(d)80°E~110°E经向异常垂直剖面。水平速度单位:m s−1,垂直速度单位:−1×10−1 Pa s−1,阴影区域为垂直速度通过95%显著性检验的区域
Figure 9. Anomalous vertical circulation in (a, b) May and (c, d) June of high IOBM index years: (a, c) Anomalous longitude–height cross section along 10°N–25°N; anomalous latitude–height cross section along (b) 50°E–80°E and (d) 80°E–110°E. Horizontal velocity units: m s−1, vertical velocity units: −1×10−1 Pa s−1, shade indicate the significance of vertical velocity over the 95% confidence level
图 10 5月(左列)、6月(右列)(a、b)200 hPa、(c、d)500 hPa高度场(填色,单位:gpm)和风场(矢量,单位:m s−1)敏感性试验与控制试验差值;(e、f)整层水汽通量(矢量,单位:kg m−1 s−1)及总降水率(填色,单位:mm d−1)敏感性试验与控制试验差值分布
Figure 10. Differences of (a, b) 200 hPa, (c, d) 500 hPa geopotential height (shaded, units: gpm) and winds (vector, units: m s−1) among experiments and control tests; differences of (e, f) vertical integral of water vapor flux (vectors, units: kg m−1 s−1) and total precipitation rate (shaded, units: mm d−1) among experiments and control tests in May (left column) and June (right column)
表 1 西天山极端降水序列与同期EOF时间系数及IOBM指数的相关
Table 1. Correlation between extreme precipitation series and EOF time coefficient and IOBM index in the Western Tianshan Mountains over the same period
相关系数 PC1 PC2 IOBM指数 去ENSO IOBM指数 5月 0.30 * 0.03 0.34 ** 0.31* 6月 0.33 ** −0.25 0.41*** 0.42 *** 注:*、**、***分别表示相关系数通过90%、95%、99%显著性检验 -
[1] Alexander L V, Zhang X, Peterson T C, et al. 2006. Global observed changes in daily climate extremes of temperature and precipitation [J]. J. Geophys. Res., 111(D5): D05109. doi: 10.1029/2005jd006290 [2] An S I. 2003. Conditional maximum covariance analysis and its application to the tropical Indian Ocean SST and surface wind stress anomalies [J]. J. Climate, 16(17): 2932−2938. doi: 10.1175/1520-0442(2003)016<2932:CMCAAI>2.0.CO;2 [3] Chang C P, Li T. 2000. A theory for the tropical tropospheric biennial oscillation [J]. J. Atmos. Sci., 57(14): 2209−2224. doi: 10.1175/1520-0469(2000)057<2209:ATFTTT>2.0.CO;2 [4] Chen C Z, Zhang X J, Lu H Y, et al. 2021. Increasing summer precipitation in arid Central Asia linked to the weakening of the East Asian summer monsoon in the recent decades [J]. Int. J. Climatol., 41(2): 1024−1038. doi: 10.1002/joc.6727 [5] Dhame S, Taschetto A S, Santoso A, et al. 2020. Indian Ocean warming modulates global atmospheric circulation trends [J]. Climate Dyn., 55(7–8): 2053–2073. doi:10.1007/s00382-020-05369-1 [6] Donat M G, Lowry A L, Alexander L V, et al. 2016. More extreme precipitation in the world’s dry and wet regions [J]. Nat. Climate Change, 6(5): 508−513. doi: 10.1038/NCLIMATE2941 [7] 韩雪云, 杨青, 姚俊强. 2013. 新疆天山山区近51年来降水变化特征 [J]. 水土保持研究, 20(2): 139−144.Han Xueyun, Yang Qing, Yao Junqiang. 2013. Spatiotemporal distribution characteristics of precipitation in Tianshan Mountain of Xinjiang during the last 51 years [J]. Research of Soil and Water Conservation (in Chinese), 20(2): 139−144. [8] He J H, Wen M, Wang L J, et al. 2006. Characteristics of the onset of the Asian summer monsoon and the importance of Asian–Australian “Land Bridge” [J]. Adv. Atmos. Sci., 23(6): 951−963. doi: 10.1007/s00376-006-0951-z [9] Hu K M, Huang G, Qu X, et al. 2012. The impact of Indian Ocean variability on high temperature extremes across the southern Yangtze River valley in late summer [J]. Adv. Atmos. Sci., 29(1): 91−100. doi: 10.1007/s00376-011-0209-2 [10] 黄晓璐, 徐海明, 邓洁淳. 2015. 冬季中国近海海表温度的长期升高及其对中国降水的影响 [J]. 气象学报, 73(3): 505−514. doi: 10.11676/qxxb2015.038Huang Xiaolu, Xu Haiming, Deng Jiechun. 2015. Long-term rising of SST over the marginal seas of China in winter and its impact on precipitation in China [J]. Acta Meteor. Sinica (in Chinese), 73(3): 505−514. doi: 10.11676/qxxb2015.038 [11] 黄刚, 胡开明, 屈侠, 等. 2016. 热带印度洋海温海盆一致模的变化规律及其对东亚夏季气候影响的回顾 [J]. 大气科学, 40(1): 121−130.Huang Gang, Hu Kaiming, Qu Xia, et al. 2016. A review about Indian Ocean basin mode and its impacts on East Asian summer climate [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 40(1): 121–130. doi:10.3878/j.issn.1006-9895.1505.15143 [12] IPCC. 2013. Summary for policymakers [M]//Stocker T F, Qin D, Plattner G K, et al. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 1535pp. doi:10.1017/CBO9781107415324.004 [13] Klein S A, Soden B J, Lau N C. 1999. Remote sea surface temperature variations during ENSO: Evidence for a tropical atmospheric bridge [J]. J. Climate, 12(4): 917−932. doi: 10.1175/1520-0442(1999)012<0917:RSSTVD>2.0.CO;2 [14] Li T, Zhang Y S, Chang C P, et al. 2001. On the relationship between Indian Ocean sea surface temperature and Asian summer monsoon [J]. Geophys. Res. Lett., 28(14): 2843−2846. doi: 10.1029/2000GL011847 [15] 刘惠云. 2001. 新疆夏季降水异常与100hPa南亚高压月平均环流特征的相关分析 [J]. 新疆气象, 24(3): 9−11. doi: 10.3969/j.issn.1002-0799.2001.03.003Liu Huiyun. 2001. Correlation analysis between anomalous precipitation in Xinjiang and monthly mean circulation features of South Asia high in summer [J]. Bimonthly of Xinjiang Meteorology (in Chinese), 24(3): 9−11. doi: 10.3969/j.issn.1002-0799.2001.03.003 [16] 刘伯奇, 何金海, 王黎娟. 2009. 4~5月南亚高压在中南半岛上空建立过程特征及其可能机制 [J]. 大气科学, 33(6): 1319−1332. doi: 10.3878/j.issn.1006-9895.2009.06.17Liu Boqi, He Jinhai, Wang Lijuan. 2009. Characteristics of the South Asia high establishment processes above the Indo–China Peninsula from April to May and their possible mechanism [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 33(6): 1319−1332. doi: 10.3878/j.issn.1006-9895.2009.06.17 [17] Liu B Q, He J H, Wang L J. 2012. On a possible mechanism for southern Asian convection influencing the South Asian high establishment during winter to summer transition [J]. J. Trop. Meteor., 18(4): 473−484. [18] 刘友存, 焦克勤, 赵奎, 等. 2017. 中国天山地区降水对全球气候变化的响应 [J]. 冰川冻土, 39(4): 748−759. doi: 10.7522/j.issn.1000-0240.2017.0085Liu Youcun, Jiao Keqin, Zhao Kui, et al. 2017. The response of precipitation to global climate change in the Tianshan Mountains, China [J]. Journal of Glaciology and Geocryology (in Chinese), 39(4): 748−759. doi: 10.7522/j.issn.1000-0240.2017.0085 [19] 卢星, 赵勇, 王天竺. 2021. 新疆夏季降水的环流差异分析 [J]. 沙漠与绿洲气象, 15(1): 84−90. doi: 10.12057/j.issn.1002-0799.2021.01.011Lu Xing, Zhao Yong, Wang Tianzhu. 2021. Analysis on the circulation differences of summer rainfall over Xinjiang [J]. Desert and Oasis Meteorology (in Chinese), 15(1): 84−90. doi: 10.12057/j.issn.1002-0799.2021.01.011 [20] 马玉芬, 张广兴, 杨莲梅. 2012. 天山地形对新疆大风和降温天气作用的数值模拟研究 [J]. 干旱区资源与环境, 26(5): 113−118. doi: 10.13448/j.cnki.jalre.2012.05.030Ma Yufen, Zhang Guangxing, Yang Lianmei. 2012. Numerical simulating research upon Tianshan’s orographic function on gale and cold wave in Xinjiang [J]. Journal of Arid Land Resources and Environment (in Chinese), 26(5): 113−118. doi: 10.13448/j.cnki.jalre.2012.05.030 [21] Ma Q R, Zhang J, Game A T, et al. 2020. Spatiotemporal variability of summer precipitation and precipitation extremes and associated large-scale mechanisms in Central Asia during 1979-2018 [J]. J. Hydrol. X, 8: 100061. doi: 10.1016/j.hydroa.2020.100061 [22] 钱永甫, 张琼, 张学洪. 2002. 南亚高压与我国盛夏气候异常 [J]. 南京大学学报(自然科学版), 38(3): 295−307. doi: 10.3321/j.issn:0469-5097.2002.03.004Qian Yongfu, Zhang Qiong, Zhang Xuehong. 2002. The South Asian High and its effects on China’s mid-summer climate abnormality [J]. Journal of Nanjing University (Natural Sciences) (in Chinese), 38(3): 295−307. doi: 10.3321/j.issn:0469-5097.2002.03.004 [23] Qu X, Huang G. 2012. Impacts of tropical Indian Ocean SST on the meridional displacement of East Asian jet in boreal summer [J]. Int. J. Climatol., 32(13): 2073−2080. doi: 10.1002/joc.2378 [24] Rayner N A, Parker D E, Horton E B, et al. 2003. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century [J]. J. Geophys. Res., 108(D14): 4407. doi: 10.1029/2002jd002670 [25] Saji N H, Yamagata T. 2003. Possible impacts of Indian Ocean dipole mode events on global climate [J]. Climate Res., 25(2): 151−169. doi: 10.3354/cr025151 [26] 施雅风, 沈永平, 胡汝骥. 2002. 西北气候由暖干向暖湿转型的信号、影响和前景初步探讨 [J]. 冰川冻土, 24(3): 219−226. doi: 10.3969/j.issn.1000-0240.2002.03.001Shi Yafeng, Shen Yongping, Hu Ruji. 2002. Preliminary study on signal, impact and foreground of climatic shift from warm-dry to warm-humid in Northwest China [J]. Journal of Glaciology and Geocryology (in Chinese), 24(3): 219−226. doi: 10.3969/j.issn.1000-0240.2002.03.001 [27] Sun B, Li H X, Zhou B T. 2019. Interdecadal variation of Indian Ocean basin mode and the impact on Asian summer climate [J]. Geophys. Res. Lett., 46(21): 12388−12397. doi: 10.1029/2019GL085019 [28] Trenberth K E. 1991. Climate diagnostics from global analyses: Conservation of mass in ECMWF analyses [J]. J. Climate, 4(7): 707−722. doi: 10.1175/1520-0442(1991)004<0707:CDFGAC>2.0.CO;2 [29] 王天竺, 赵勇. 2021. 青藏高原和热带印度洋5月热力异常与新疆夏季降水的关系 [J]. 高原气象, 40(1): 1−14. doi: 10.7522/j.issn.1000-0534.2020.00003Wang Tianzhu, Zhao Yong. 2021. Relationships between thermal anomalies over the Qinghai–Xizang Plateau and tropical Indian Ocean in May with summer rainfall in Xinjiang [J]. Plateau Meteorology (in Chinese), 40(1): 1−14. doi: 10.7522/j.issn.1000-0534.2020.00003 [30] Wang S J, Zhang M J, Sun M P, et al. 2013. Changes in precipitation extremes in Alpine areas of the Chinese Tianshan Mountains, Central Asia, 1961–2011 [J]. Quat. Int., 311: 97−107. doi: 10.1016/j.quaint.2013.07.008 [31] 王前, 赵勇, 陈飞, 等. 2017. 南亚高压的多模态特征及其与新疆夏季降水的联系 [J]. 高原气象, 36(5): 1209−1220. doi: 10.7522/j.issn.1000-0534.2016.00123Wang Qian, Zhao Yong, Chen Fei, et al. 2017. Characteristics of different patterns of South Asia high and their relationships with summer precipitation in Xinjiang [J]. Plateau Meteorology (in Chinese), 36(5): 1209−1220. doi: 10.7522/j.issn.1000-0534.2016.00123 [32] 吴国雄, 刘平, 刘屹岷, 等. 2000. 印度洋海温异常对西太平洋副热带高压的影响—大气中的两级热力适应 [J]. 气象学报, 58(5): 513−522. doi: 10.3321/j.issn:0577-6619.2000.05.001Wu Guoxiong, Liu Ping, Liu Yimin, et al. 2000. Impacts of the sea surface temperature anomaly in the Indian Ocean on the subtropical anticyclone over the western Pacific—Two-stage thermal adaptation in the atmosphere [J]. Acta Meteorologica Sinica (in Chinese), 58(5): 513−522. doi: 10.3321/j.issn:0577-6619.2000.05.001 [33] 杨莲梅. 2003a. 新疆极端降水的气候变化 [J]. 地理学报, 58(4): 577−583. doi: 10.11821/xb200304012Yang Lianmei. 2003a. Climate change of extreme precipitation in Xinjiang [J]. Acta Geographica Sinica (in Chinese), 58(4): 577−583. doi: 10.11821/xb200304012 [34] 杨莲梅. 2003b. 南亚高压突变引起的一次新疆暴雨天气研究 [J]. 气象, 29(8): 21−25. doi: 10.7519/j.issn.1000-0526.2003.8.005Yang Lianmei. 2003b. Research on a case of heavy rain in Xinjiang from South Asia high abnormity [J]. Meteorological Monthly (in Chinese), 29(8): 21−25. doi: 10.7519/j.issn.1000-0526.2003.8.005 [35] 杨莲梅, 张庆云. 2007. 新疆北部汛期降水年际和年代际异常的环流特征 [J]. 地球物理学报, 50(2): 412−419. doi: 10.3321/j.issn:0001-5733.2007.02.011Yang Lianmei, Zhang Qingyun. 2007. Circulation characteristics of interannual and interdecadal anomalies of summer rainfall in north Xinjiang [J]. Chinese Journal of Geophysics (in Chinese), 50(2): 412−419. doi: 10.3321/j.issn:0001-5733.2007.02.011 [36] 杨莲梅, 张庆云. 2008. 新疆夏季降水年际变化与亚洲副热带西风急流 [J]. 应用气象学报, 19(2): 171−179. doi: 10.3969/j.issn.1001-7313.2008.02.006Yang Lianmei, Zhang Qingyun. 2008. Interannual variation of summer precipitation in Xinjiang and Asian subtropical westerly jet stream [J]. Journal of Applied Meteorological Science (in Chinese), 19(2): 171−179. doi: 10.3969/j.issn.1001-7313.2008.02.006 [37] Yang J L, Liu Q Y, Liu Z Y, et al. 2009. Basin mode of Indian Ocean sea surface temperature and Northern Hemisphere circumglobal teleconnection [J]. Geophys. Res. Lett., 36(19): L19705. doi: 10.1029/2009gl039559 [38] 杨建玲, 李艳春, 穆建华, 等. 2015a. 热带印度洋海温与西北地区东部降水关系研究 [J]. 高原气象, 34(3): 690−699. doi: 10.7522/j.issn.1000-0534.2014.00010Yang Jianling, Li Yanchun, Mu Jianhua, et al. 2015a. Analysis of relationship between sea surface temperature in tropical Indian Ocean and precipitation in east of Northwest China [J]. Plateau Meteorology (in Chinese), 34(3): 690−699. doi: 10.7522/j.issn.1000-0534.2014.00010 [39] 杨建玲, 郑广芬, 王素艳, 等. 2015b. 印度洋海盆模影响西北东部降水的大气环流分析 [J]. 高原气象, 34(3): 700−705. doi: 10.7522/j.issn.1000-0534.2014.00011Yang Jianling, Zheng Guangfen, Wang Suyan, et al. 2015b. Analyses of atmospheric circulation of tropical Indian Ocean Basin Mode influencing precipitation in east of Northwest China [J]. Plateau Meteorology (in Chinese), 34(3): 700−705. doi: 10.7522/j.issn.1000-0534.2014.00011 [40] 杨莲梅, 关学锋, 张迎新. 2018. 亚洲中部干旱区降水异常的大气环流特征 [J]. 干旱区研究, 35(2): 249−259. doi: 10.13866/j.azr.2018.02.01Yang Lianmei, Guan Xuefeng, Zhang Yingxin. 2018. Atmospheric circulation characteristics of precipitation anomaly in arid regions in Central Asia [J]. Arid Zone Research (in Chinese), 35(2): 249−259. doi: 10.13866/j.azr.2018.02.01 [41] 应明, 孙淑清. 2000. 西太平洋副热带高压对热带海温异常响应的研究 [J]. 大气科学, 24(2): 193−206. doi: 10.3878/j.issn.1006-9895.2000.02.08Ying Ming, Sun Shuqing. 2000. A study on the response of subtropical high over the western Pacific on the SST anomaly [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 24(2): 193−206. doi: 10.3878/j.issn.1006-9895.2000.02.08 [42] 于晓澄, 赵俊虎, 杨柳, 等. 2019. 华北雨季开始早晚与大气环流和海表温度异常的关系 [J]. 大气科学, 43(1): 107−118. doi: 10.3878/j.issn.1006-9895.1801.17242Yu Xiaocheng, Zhao Junhu, Yang Liu, et al. 2019. The relationship between the onset date of the rainy season in north china and the atmospheric circulation and SST [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 43(1): 107−118. doi: 10.3878/j.issn.1006-9895.1801.17242 [43] 张雪梅, 江志红, 刘晓东, 等. 2009. 东亚地区水汽输送强、弱年水汽输送的异同 [J]. 气象学报, 67(4): 561−568. doi: 10.11676/qxxb2009.056Zhang Xuemei, Jiang Zhihong, Liu Xiaodong, et al. 2009. Comparison of atmospheric moisture transport between strong and weak transport years over East Asia [J]. Acta Meteorologica Sinica (in Chinese), 67(4): 561−568. doi: 10.11676/qxxb2009.056 [44] 张正勇, 刘琳, 唐湘玲. 2013. 近50年我国天山山区降水变化区域差异及突变特征 [J]. 干旱区资源与环境, 27(7): 85−90. doi: 10.13448/j.cnki.jalre.2013.07.023Zhang Zhengyong, Liu Lin, Tang Xiangling. 2013. The regional difference and catastrophe of precipitation change in Tianshan mountains in recent 50 years [J]. Journal of Arid Land Resources and Environment (in Chinese), 27(7): 85−90. doi: 10.13448/j.cnki.jalre.2013.07.023 [45] 张舰齐, 叶成志, 陈静静, 等. 2019. 印度洋偶极子对中国南海夏季西南季风水汽输送的影响 [J]. 大气科学, 43(1): 49−63. doi: 10.3878/j.issn.1006-9895.1801.17191Zhang Jianqi, Ye Chengzhi, Chen Jingjing, et al. 2019. Influence of the Indian Ocean dipole on water vapor transport from southwesterly monsoon over the south china sea in the summer [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 43(1): 49−63. doi: 10.3878/j.issn.1006-9895.1801.17191 [46] Zhang J, Ma Q R, Chen H S, et al. 2021. Increasing warm-season precipitation in Asian Drylands and response to reducing spring snow cover over the Tibetan Plateau [J]. J. Climate, 34(8): 3129−3144. doi: 10.1175/JCLI-D-20-0479.1 [47] 赵勇, 邓学良, 李秦, 等. 2010. 天山地区夏季极端降水特征及气候变化 [J]. 冰川冻土, 32(5): 927−934.Zhao Yong, Deng Xueliang, Li Qin, et al. 2010. Characteristics of the extreme precipitation events in the Tianshan Mountains in relation to climate change [J]. Journal of Glaciology and Geocryology (in Chinese), 32(5): 927−934. [48] Zhao Y, Zhang H Q. 2016. Impacts of SST warming in tropical Indian Ocean on CMIP5 model-projected summer rainfall changes over Central Asia [J]. Climate Dyn., 46(9–10): 3223–3238. doi:10.1007/s00382-015-2765-0 [49] 赵勇, 李如琦, 杨霞, 等. 2013a. 5月青藏高原地区感热异常对北疆夏季降水的影响 [J]. 高原气象, 32(5): 1215−1223. doi: 10.7522/j.issn.1000-0534.2012.00117Zhao Yong, Li Ruqi, Yang Xia, et al. 2013a. Impact of the anomaly of surface sensible heat in Qinghai–Xizang Plateau and its surrounding areas on summertime precipitation in northern Xinjiang [J]. Plateau Meteorology (in Chinese), 32(5): 1215−1223. doi: 10.7522/j.issn.1000-0534.2012.00117 [50] 赵勇, 杨青, 黄安宁, 等. 2013b. 青藏和伊朗高原热力异常与北疆夏季降水的关系 [J]. 气象学报, 71(4): 660−667. doi: 10.11676/qxxb2013.055Zhao Yong, Yang Qing, Huang Anning, et al. 2013b. Relationships between the anomalies of surface sensible heat in the Tibetan Plateau and Iran Plateau and summertime precipitation in North Xinjiang [J]. Acta Meteorologica Sinica (in Chinese), 71(4): 660−667. doi: 10.11676/qxxb2013.055 [51] Zhao Y, Huang A N, Zhou Y, et al. 2014a. Impact of the middle and upper tropospheric cooling over central Asia on the summer rainfall in the Tarim Basin, China [J]. J. Climate, 27(12): 4721−4732. doi: 10.1175/JCLI-D-13-00456.1 [52] Zhao Y, Wang M Z, Huang A N, et al. 2014b. Relationships between the West Asian subtropical westerly jet and summer precipitation in northern Xinjiang [J]. Theor. Appl. Climatol., 116(3–4): 403–411. doi:10.1007/s00704-013-0948-3 [53] Zhou Y, Huang A N, Zhao Y, et al. 2015. Influence of the sea surface temperature anomaly over the Indian Ocean in March on the summer rainfall in Xinjiang [J]. Theor. Appl. Climatol., 119(3–4): 781–789. doi:10.1007/s00704-014-1149-4 -