Interannual Variation of the Quasi-biweekly Oscillation Intensity of Diabatic Heating over the Tibetan Plateau during Boreal Summer and Its Relationship with Rainfall Anomaly over Eastern China
-
摘要: 基于1979~2018年中国高分辨率格点降水资料、NCEP/NCAR和ERA-Interim再分析资料,分析了夏季青藏高原(简称高原)非绝热加热准双周振荡(Quasi-Biweekly Oscillation,QBWO)的主要模态(南部集中型)强度的年际变化与中国东部降水异常之间的联系,并从环流异常演变的角度进行解释。在高原QBWO年际强度偏强年,长江以南地区夏季降水异常与高原南部QBWO扰动呈显著正相关。在高原QBWO强度偏弱年,江淮地区和华南地区降水异常呈偶极型分布。进一步分析揭示,在高原QBWO强度偏强(弱)年,起源于西北太平洋地区的低纬度季节内信号主要表现为向西(西北)方向传播的特征,中高纬度准正压的季节内信号主要表现为向南(西南)方向传播的特征,且低纬度西(西北)传的信号与中高纬南(西南)传的信号共同作用引起中国不同的异常降水型。低纬度向西(西北)方向传播的QBWO信号传播至阿拉伯海(高原东南侧)后减弱消失,中高纬地区向南(西南)传播的信号与低纬度西(西北)传的信号汇合后继续向西(西北)方向传播,最终减弱消失。Abstract: Using China’s high-resolution grid rainfall data as well as the National Centers for Environmental Prediction/ National Center for Atmospheric Research (NCEP/NCAR) and ERA-Interim reanalysis data from 1979 to 2018, the relationship between the interannual variation of the main mode (southern concentrated pattern) of the quasi-biweekly oscillation (QBWO) of diabatic heating over the Tibetan Plateau (TP) during boreal summer and rainfall anomaly over eastern China is investigated. When the interannual intensity of QBWO over TP is strong, a significant positive correlation exists between the summer rainfall anomaly in the south of the Yangtze River and QBWO over southern TP. In the weak years, rainfall anomalies in the Jianghuai region and South China characterize a dipole pattern. Additionally, in the strong (weak) years, the low-latitude intraseasonal signal originating in the Northwest Pacific region mainly shows a westward (northwestward) propagation, and the mid-high-latitude quasi-barotropic intraseasonal signal mainly shows a southward (southwestward) propagation. The combined effect of signals from low latitudes propagating westward (northwestward) and mid-to-high latitudes propagating southward (southwestward) cause different abnormal rainfall patterns in China. The low-latitude QBWO signal propagating westward (northwestward) weakens and disappears after reaching the Arabian Sea (southeast of TP). The southward (southwestward) signal in the mid-high-latitude converges with the westward (northwestward) signal in the low-latitude, continues propagating westward, and finally weakens and disappears.
-
图 2 1979~2018年高原非绝热加热准双周振荡(QBWO)强度距平序列(柱状,对应左侧纵坐标)以及强度3~7年Butterworth带通滤波后的标准化时间序列(折线,对应右侧纵坐标);折线上的大圆标记表示高、低指数年份
Figure 2. Quasi-Biweekly Oscillation (QBWO) intensity anomaly of diabatic heating over TP for 1979–2018 (bars, corresponding to the left ordinate) and normalized time series of 3–7-year Butterworth band-pass filtered intensity (the solid line corresponds to the right ordinate); the large circle marks on the solid line indicate high and low index years
图 3 (a)高指数年和(b)低指数年对应的逐年PC1(10~30天非绝热加热EOF第一模态对应时间系数)标准化序列以及8个位相划分示意图(水平实线表示零线,水平虚线表示±0.75个标准差)
Figure 3. Normalized PC1 (principal components corresponding to EOF1 of 10–30-day filtered diabatic heating) series of (a) high index year and (b) low index year and 8-phase division diagrams (the horizontal solid line represents the zero line; the horizontal dashed line represents ±0.75 standard deviations)
图 4 高指数年夏季10~30天降水合成(单位:mm d–1)(打点区域表示通过90%置信水平检验区域);红色矩形框表示长江以南关键区(23°~31°N,106°~120°E)
Figure 4. Composite of 10–30-day rainfall for high index years (units: mm d−1) (the dotted area is statistically significant at 90% confidence level ); the red rectangular box indicates the key area of the south of the Yangtze River (23°–31°N, 106°–120°E)
图 6 对RIhigh指数回归的整层水汽通量(矢量,单位:kg m−1 s−1;黑色表示通过95%置信水平检验)和整层水汽通量散度(阴影,单位:10−5 kg m−2 s−1;仅绘制通过95%置信水平检验的区域)。其中字母“A”和“C”分别表示反气旋性、气旋性环流异常。d0即0天,表示与RIhigh同期变化的环流异常;d−2即−2天,表示RIhigh超前2天的环流异常
Figure 6. Regression of vertically integrated water vapor flux (vector, units: kg m−1 s−1; the black vector is statistically significant at 95% confidence level) and the divergence of the water vapor flux (shaded, units: 10−5 kg m−2 s−1; only areas statistically significant at 95% confidence level are drawn) against RIhigh. Letters “A” and “C” indicate anticyclonic and cyclonic circulation anomaly, respectively. D 0, day 0, means simultaneous regression with RIhigh and circulation anomaly ; d−2, day −2, means 2-day lead from d 0
图 8 对RIhigh指数回归的非绝热加热异常(阴影,单位:W m−2;仅绘制通过95%置信水平检验的区域)、500 hPa流函数(等值线间隔为1.0×105 m2 s−1;虚线为负值并略去零线)和500 hPa水平风场(矢量,单位:m s−1;黑色表示通过95%置信水平检验)。其中字母“A”和“C”分布表示反气旋性、气旋性环流异常
Figure 8. Regression of diabatic heating anomaly (shading, units: W m−2; only areas statistically significant at 95% confidence level are drawn), 500 hPa flow function (isoline interval = 1.0 × 105 m2 s−1, the dashed line corresponds to the negative value, and the zero line is omitted) and 500 hPa horizontal wind field (vector, units: m s−1; the black vector is statistically significant at 95% confidence level) against RIhigh. Letters “A” and “C” indicate anticyclonic and cyclonic circulation anomaly, respectively
-
[1] Annamalai H, Slingo J M. 2001. Active/break cycles: Diagnosis of the intraseasonal variability of the Asian summer monsoon [J]. Climate Dyn. , 18(1–2): 85–102. doi: 10.1007/s003820100161 [2] 包庆, Wang Bin, 刘屹岷, 等. 2008. 青藏高原增暖对东亚夏季风的影响——大气环流模式数值模拟研究 [J]. 大气科学, 32(5): 997−1005. doi: 10.3878/j.issn.1006-9895.2008.05.01Bao Qing, Wang Bin, Liu Yimin, et al. 2008. The impact of the Tibetan Plateau warming on the East Asian summer monsoon—A study of numerical simulation [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 32(5): 997−1005. doi: 10.3878/j.issn.1006-9895.2008.05.01 [3] Chen X Y, Wang H J, Xue F, et al. 2001. Intraseasonal oscillation: The global coincidence and its relationship with ENSO cycle [J]. Adv. Atmos. Sci., 18(3): 445−453. doi: 10.1007/BF02919323 [4] 陈悦, 李文铠, 郭维栋. 2019. 青藏高原季风的季节内振荡特征 [J]. 高原气象, 38(6): 1158−1171. doi: 10.7522/j.issn.1000-0534.2019.00001Chen Yue, Li Wenkai, Guo Weidong. 2019. Characteristics of the intraseasonal oscillation of Qinghai–Tibetan Plateau monsoon [J]. Plateau Meteor. (in Chinese), 38(6): 1158−1171. doi: 10.7522/j.issn.1000-0534.2019.00001 [5] Dee D P, Uppala S M, Simmons A J, et al. 2011. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system [J]. Quart. J. Roy. Meteor. Soc., 137(656): 553−597. doi: 10.1002/qj.828 [6] Duan A M, Wu G X. 2005. Role of the Tibetan Plateau thermal forcing in the summer climate patterns over subtropical Asia [J]. Climate Dyn., 24(7): 793−807. doi: 10.1007/s00382-004-0488-8 [7] Duchon C E. 1979. Lanczos filtering in one and two dimensions [J]. J. Appl. Meteor. Climatol., 18(8): 1016−1022. doi: 10.1175/1520-0450(1979)018<1016:LFIOAT>2.0.CO;2 [8] 巩远发, 许美玲, 何金海, 等. 2006. 夏季青藏高原东部降水变化与副热带高压带活动的研究 [J]. 气象学报, 64(1): 90−99. doi: 10.3321/j.issn:0577-6619.2006.01.009Gong Yuanfa, Xu Meiling, He Jinhai, et al. 2006. On the relationship between the eastern Tibet Plateau rainfall and subtropical high shift in summer [J]. Acta Meteor. Sinica (in Chinese), 64(1): 90−99. doi: 10.3321/j.issn:0577-6619.2006.01.009 [9] 韩翔, 赵海坤, 孙齐. 2018. 夏季热带大气准双周振荡对西北太平洋台风生成的影响 [J]. 热带气象学报, 34(4): 524−534. doi: 10.16032/j.issn.1004-4965.2018.04.010Han Xiang, Zhao Haikun, Sun Qi. 2018. Effects of quasi-biweekly oscillation of tropical atmosphere on typhoon formation in northwest Pacific [J]. Journal of Tropical Meteorology (in Chinese), 34(4): 524−534. doi: 10.16032/j.issn.1004-4965.2018.04.010 [10] 黄荣辉, 张振洲, 黄刚, 等. 1998. 夏季东亚季风区水汽输送特征及其与南亚季风区水汽输送的差别 [J]. 大气科学, 22(4): 460−469. doi: 10.3878/j.issn.1006-9895.1998.04.08Huang Ronghui, Zhang Zhenzhou, Huang Gang, et al. 1998. Characteristics of the water vapor transport in East Asian monsoon region and its difference from that in South Asian monsoon region in summer [J]. Chinese Journal of Atmospheric Sciences (Scientia Atmospherica Sinica) (in Chinese), 22(4): 460−469. doi: 10.3878/j.issn.1006-9895.1998.04.08 [11] 贾燕, 管兆勇. 2010. 江淮流域夏季降水异常与西北太平洋副热带30~60天振荡强度年际变化的联系 [J]. 大气科学, 34(4): 691−702. doi: 10.3878/j.issn.1006-9895.2010.04.03Jia Yan, Guan Zhaoyong. 2010. Associations of summertime rainfall anomalies over the Changjiang–Huaihe River valley with the interannual variability of 30–60-day oscillation intensity in the northwestern Pacific [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 34(4): 691−702. doi: 10.3878/j.issn.1006-9895.2010.04.03 [12] Jia X L, Chen L J, Ren F M, et al. 2011. Impacts of the MJO on winter rainfall and circulation in China [J]. Adv. Atmos. Sci., 28(3): 521−533. doi: 10.1007/s00376-010-9118-z [13] 贾燕, 王黎娟, 张佳婷. 2013. SVD揭示的东亚地区低频振荡强度与中国夏季降水的联系 [J]. 热带气象学报, 29(5): 813−823. doi: 10.3969/j.issn.1004-4965.2013.05.011Jai Yan, Wang Lijuan, Zhang Jiating. 2013. Association of 30–60-day intraseasonal oscillation intensity in eastern China with the summertime rainfall in China as revealed by SVD analysis [J]. Journal of Tropical Meteorology (in Chinese), 29(5): 813−823. doi: 10.3969/j.issn.1004-4965.2013.05.011 [14] Kistler R, Kalnay E, Collins W, et al. 2001. The NCEP-NCAR 50–year reanalysis: Monthly means CD–ROM and documentation [J]. Bull. Amer. Meteor. Soc., 82(2): 247−268. doi: 10.1175/1520-0477(2001)082<0247:TNNYRM>2.3.CO;2 [15] Krishnamurti T N, Gadgil S. 1985. On the structure of the 30 to 50 day mode over the globe during FGGE [J]. Tellus A, 37A(4): 336−360. doi: 10.1111/j.1600-0870.1985.tb00432.x [16] 李崇银. 1991. 30~60天大气振荡的全球特征 [J]. 大气科学, 15(3): 66−76. doi: 10.3878/j.issn.1006-9895.1991.03.10Li Chongyin. 1991. Global characteristics of 30–60 day atmospheric oscillation [J]. Chinese Journal of Atmospheric Sciences (Scientia Atmospherica Sinica) (in Chinese), 15(3): 66−76. doi: 10.3878/j.issn.1006-9895.1991.03.10 [17] 李跃清. 1991. 100 hPa 30~50天大气低频振荡与南亚高压东西变动的关系 [J]. 四川气象, 11(4): 7−11.Li Yueqing. 1991. The relationship between 30–60-d’s atmospheric low frequency oscillation in 100 hPa and the longitudinal changes of South Asian high [J]. Sichuan Meteorology (in Chinese), 11(4): 7−11. [18] 李永华, 卢楚翰, 徐海明, 等. 2011. 夏季青藏高原大气热源与西南地区东部旱涝的关系 [J]. 大气科学, 35(3): 422−434. doi: 10.3878/j.issn.1006-9895.2011.03.04Li Yonghua, Lu Chuhan, Xu Haiming, et al. 2011. Contemporaneous relationships between summer atmospheric heat source over the Tibetan Plateau and drought/flood in eastern Southwest China [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 35(3): 422−434. doi: 10.3878/j.issn.1006-9895.2011.03.04 [19] 李国平, 卢会国, 黄楚惠, 等. 2016. 青藏高原夏季地面热源的气候特征及其对高原低涡生成的影响 [J]. 大气科学, 40(1): 131−141. doi: 10.3878/j.issn.1006-9895.1504.15125Li Guoping, Lu Huiguo, Huang Chuhui, et al. 2016. A climatology of the surface heat source on the Tibetan Plateau in summer and its impacts on the formation of the Tibetan Plateau vortex [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 40(1): 131−141. doi: 10.3878/j.issn.1006-9895.1504.15125 [20] 李华凝, 姚素香, 储鹏. 2018. 东亚季风区冬季经向风的季节内变化及其可能机理 [J]. 大气科学学报, 41(4): 494−501. doi: 10.13878/j.cnki.dqkxxb.20170805001Li Huaning, Yao Suxiang, Chu Peng. 2018. Intraseasonal variation of winter meridional wind in East Asian monsoon region and its possible mechanism [J]. Transactions of Atmospheric Sciences (in Chinese), 41(4): 494−501. doi: 10.13878/j.cnki.dqkxxb.20170805001 [21] 林厚博, 游庆龙, 焦洋, 等. 2016. 青藏高原及附近水汽输送对其夏季降水影响的分析 [J]. 高原气象, 35(2): 309−317. doi: 10.7522/j.issn.1000-0534.2014.00146Lin Houbo, You Qinglong, Jiao Yang, et al. 2016. Water vapor transportation and its influences on precipitation in summer over Qinghai–Xizang Plateau and its surroundings [J]. Plateau Meteor. (in Chinese), 35(2): 309−317. doi: 10.7522/j.issn.1000-0534.2014.00146 [22] 刘炜, 周顺武, 杨双艳. 2012. 青藏高原大气低频振荡研究进展 [J]. 干旱气象, 30(1): 107−113,129. doi: 10.3969/j.issn.1006-7639.2012.01.019Liu Wei, Zhou Shunwu, Yang Shuangyan. 2012. Progress in research on low frequency oscillation over the Tibetan Plateau [J]. Journal of Arid Meteorology (in Chinese), 30(1): 107−113,129. doi: 10.3969/j.issn.1006-7639.2012.01.019 [23] 罗会邦, 陈蓉. 1995. 夏半年青藏高原东部大气热源异常对环流和降水的影响 [J]. 气象科学, 15(4): 41−50.Luo Huibang, Chen Rong. 1995. The impact of the anomalous heat sources over the eastern Tibetan Plateau on the circulation over east Asia in summer half year [J]. Scientia Meteorologica Sinica (in Chinese), 15(4): 41−50. [24] Madden R A, Julian P R. 1971. Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific [J]. J. Atmos. Sci., 28(5): 702−708. doi: 10.1175/1520-0469(1971)028<0702:DOADOI>2.0.CO;2 [25] Madden R A, Julian P R. 1972. Description of global-scale circulation cells in the tropics with a 40–50 day period [J]. J. Atmos. Sci., 29(6): 1109−1123. doi: 10.1175/1520-0469(1972)029<1109:DOGSCC>2.0.CO;2 [26] 毛江玉, 吴国雄. 2005. 1991年江淮梅雨与副热带高压的低频振荡 [J]. 气象学报, 63(5): 762−770. doi: 10.11676/qxxb2005.073Mao Jiangyu, Wu Guoxiong. 2005. Intraseasonal variability in the Yangtze–Huaihe River rainfall and subtropical high during the 1991 Meiyu period [J]. Acta Meteor. Sinica (in Chinese), 63(5): 762−770. doi: 10.11676/qxxb2005.073 [27] Salby M L, Hendon H H. 1994. Intraseasonal behavior of clouds, temperature, and motion in the tropics [J]. J. Atmos. Sci., 51(15): 2207−2224. doi: 10.1175/1520-0469(1994)051<2207:IBOCTA>2.0.CO;2 [28] 申乐琳, 何金海, 周秀骥, 等. 2010. 近50年来中国夏季降水及水汽输送特征研究 [J]. 气象学报, 68(6): 918−931. doi: 10.11676/qxxb2010.087Shen Lelin, He Jinhai, Zhou Xiuji, et al. 2010. The regional variabilities of the summer rainfall in China and its relation with anomalous moisture transport during the recent 50 years [J]. Acta Meteor. Sinica (in Chinese), 68(6): 918−931. doi: 10.11676/qxxb2010.087 [29] 孙国武, 陈葆德. 1988. 青藏高原上空大气低频波的振荡及其经向传播 [J]. 大气科学, 12(3): 250−256. doi: 10.3878/j.issn.1006-9895.1988.03.04Sun Guowu, Chen Baode. 1988. Oscillation characteristics and meridional propagation of atmospheric low frequency waves over the Qinghai–Xizang Plateau [J]. Chinese Journal of Atmospheric Sciences (Scientia Atmospherica Sinica) (in Chinese), 12(3): 250−256. doi: 10.3878/j.issn.1006-9895.1988.03.04 [30] 孙颖, 丁一汇. 2002. 青藏高原热源异常对1999年东亚夏季风异常活动的影响 [J]. 大气科学, 26(6): 817−828. doi: 10.3878/j.issn.1006-9895.2002.06.10Sun Ying, Ding Yihui. 2002. Influence of anomalous heat sources over the Tibetan Plateau on the anomalous activities of the 1999 east Asian summer monsoon [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 26(6): 817−828. doi: 10.3878/j.issn.1006-9895.2002.06.10 [31] 万超, 范广洲, 华维, 等. 2015. 青藏高原夏季风和南海夏季风低频振荡的关系 [J]. 高原气象, 34(2): 318−326. doi: 10.7522/j.issn.1000-0534.2014.00020Wan Chao, Fan Huangzhou, Hua Wei, et al. 2015. Study on relationship of low frequency oscillation between summer monsoon in Qinghai–Xizang Plateau and summer monsoon in South China Sea [J]. Plateau Meteor. (in Chinese), 34(2): 318−326. doi: 10.7522/j.issn.1000-0534.2014.00020 [32] Wang M R, Duan A M. 2015. Quasi-biweekly oscillation over the Tibetan Plateau and its link with the Asian Summer Monsoon [J]. J. Climate, 28(12): 4921−4940. doi: 10.1175/JCLI-D-14-00658.1 [33] 王黎娟, 葛静. 2016. 夏季青藏高原大气热源低频振荡与南亚高压东西振荡的关系 [J]. 大气科学, 40(4): 853−863. doi: 10.3878/j.issn.1006-9895.1509.15164Wang Lijuan, Ge Jing. 2016. Relationship between low-frequency oscillations of atmospheric heat source over the Tibetan Plateau and longitudinal oscillations of the South Asia high in the summer [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 40(4): 853−863. doi: 10.3878/j.issn.1006-9895.1509.15164 [34] 王群, 周文君, 张福颖, 等. 2015. 南亚高压位置与中南半岛和青藏高原热源变化的关系 [J]. 大气科学学报, 38(5): 716−720. doi: 10.13878/j.cnki.dqkxxb.20140309015Wang Qun, Zhou Wenjun, Zhang Fuying, et al. 2015. Relationship between South Asia High’s position and changes of heat sources over Indo–China Peninsula and Tibetan Plateau [J]. Transactions of Atmospheric Sciences (in Chinese), 38(5): 716−720. doi: 10.13878/j.cnki.dqkxxb.20140309015 [35] Wang M R, Wang J, Duan A M, et al. 2018. Coupling of the quasi-biweekly oscillation of the Tibetan Plateau summer monsoon with the Arctic Oscillation [J]. Geophys. Res. Lett., 45(15): 7756−7764. doi: 10.1029/2018GL077136 [36] Wei W, Zhang R H, Yang S, et al. 2019. Quasi-biweekly oscillation of the South Asian high and its role in connecting the Indian and East Asian summer rainfalls [J]. Geophys. Res. Lett., 46(24): 14742−14750. doi: 10.1029/2019GL086180 [37] 吴佳, 高学杰. 2013. 一套格点化的中国区域逐日观测资料及与其它资料的对比 [J]. 地球物理学报, 56(4): 1102−1111. doi: 10.6038/cjg20130406Wu Jia, Gao Xuejie. 2013. A gridded daily observation dataset over China region and comparison with the other datasets [J]. Chinese J. Geophys. (in Chinese), 56(4): 1102−1111. doi: 10.6038/cjg20130406 [38] 夏芸, 管兆勇, 王黎娟. 2008. 2003年江淮流域强降水过程与30~70 d天低频振荡的联系 [J]. 南京气象学院学报, 31(1): 33−41. doi: 10.3969/j.issn.1674-7097.2008.01.005Xia Yun, Guan Zhaoyong, Wang Lijuan. 2008. Association of 30–70 d oscillations with the heavy rainfall over Changjiang–Huaihe River valley in summer 2003 [J]. Journal of Nanjing Institute of Meteorology (in Chinese), 31(1): 33−41. doi: 10.3969/j.issn.1674-7097.2008.01.005 [39] 向洋, 李维京. 2016. 春季中国西南降水与青藏高原及周边非绝热加热之间的关系 [J]. 气候变化研究进展, 12(5): 422−431. doi: 10.12006/j.issn.1673-1719.2016.009Xiang Yang, Li Weijing. 2016. The relationship between the precipitation over southwest China and the diabatic heating over Qinghai–Tibetan Plateau and its vicinity in spring [J]. Climate Change Research (in Chinese), 12(5): 422−431. doi: 10.12006/j.issn.1673-1719.2016.009 [40] Yanai M, Esbensen S, Chu J H. 1973. Determination of bulk properties of tropical cloud clusters from large-scale heat and moisture budgets [J]. J. Atmos. Sci., 30(4): 611−627. doi: 10.1175/1520-0469(1973)030<0611:DOBPOT>2.0.CO;2 [41] 杨严, 徐海明. 2015. 青藏高原春季500 hPa纬向风季节内振荡特征及其与我国南方降水的关系 [J]. 南京信息工程大学学报(自然科学版), 7(1): 58−67. doi: 10.3969/j.issn.1674-7070.2015.01.007Yang Yan, Xu Haiming. 2015. Oscillation characteristics of 500 hPa zonal winds over the Tibetan Plateau in spring and its association with precipitation in South China [J]. Journal of Nanjing University of Information Science and Technology (Natural Science Edition) (in Chinese), 7(1): 58−67. doi: 10.3969/j.issn.1674-7070.2015.01.007 [42] Yang S Y, Li T. 2016a. Intraseasonal variability of air temperature over the mid-high latitude Eurasia in boreal winter [J]. Climate Dyn., 47(7–8): 2155–2175. doi:10.1007/s00382-015-2956-8 [43] Yang S Y, Li T. 2016b. Zonal shift of the South Asian High on the subseasonal time–scale and its relation to the summer rainfall anomaly in China [J]. Quart. J. Roy. Meteor. Soc., 142(699): 2324−2335. doi: 10.1002/qj.2826 [44] Yang S Y, Li T. 2017. Causes of intraseasonal diabatic heating variability over and near the Tibetan Plateau in boreal summer [J]. Climate Dyn., 49(7): 2385−2406. doi: 10.1007/s00382-016-3463-2 [45] 杨双艳, 李天明. 2020. 中高纬大气ISO对夏季鄂海阻高形成和维持的调节作用 [J]. 大气科学学报, 43(1): 104−115. doi: 10.13878/j.cnki.dqkxxb.20191001010Yang Shuangyan, Li Tianming. 2020. The role of intraseasonal oscillation at mid–high latitudes in regulating the formation and maintenance of Okhotsk blocking in boreal summer [J]. Transactions of Atmospheric Sciences (in Chinese), 43(1): 104−115. doi: 10.13878/j.cnki.dqkxxb.20191001010 [46] 杨双艳, 武炳义, 张人禾, 等. 2013. 夏季欧亚中高纬大气低频振荡的纬向传播特征 [J]. 中国科学: 地球科学, 43(7): 1220–1230. Yang Shuangyan, Wu Bingyi, Zhang Renhe, et al. 2013. The zonal propagating characteristics of low-frequency oscillation over the Eurasian mid-high latitude in boreal summer [J]. Science China Earth Sciences, 56(9): 1566–1575. doi:10.1007/s11430-012-4576-z [47] Yang K, Wu H, Qin J, et al. 2014. Recent climate changes over the Tibetan Plateau and their impacts on energy and water cycle: A review [J]. Global and Planetary Change, 112: 79−91. doi: 10.1016/j.gloplacha.2013.12.001 [48] 姚秀萍, 闫丽朱, 张硕. 2019. 大气非绝热加热作用的研究进展与展望 [J]. 气象, 45(1): 1−16. doi: 10.7519/j.issn.1000-0526.2019.01.001Yao Xiuping, Yan Lizhu, Zhang Shuo. 2019. Research progresses and prospects of atmospheric diabatic heating [J]. Meteorological Monthly (in Chinese), 45(1): 1−16. doi: 10.7519/j.issn.1000-0526.2019.01.001 [49] Zhao R X, Zhang H, Wu G X, et al. 2012. Decadal variations in the season advancement of spring water cycle over Eastern China [J]. Sci. China Earth Sci., 55(8): 1358−1370. doi: 10.1007/s11430-012-4390-7 [50] 赵勇, 李如琦, 杨霞, 等. 2013. 5月青藏高原地区感热异常对北疆夏季降水的影响 [J]. 高原气象, 32(5): 1215−1223. doi: 10.7522/j.issn.1000-0534.2012.00117Zhao Yong, Li Ruqi, Yang Xia, et al. 2013. Impact of the anomaly of surface sensible heat in Qinghai–Xizang Plateau and its surrounding areas on summertime precipitation in northern Xinjiang [J]. Plateau Meteor. (in Chinese), 32(5): 1215−1223. doi: 10.7522/j.issn.1000-0534.2012.00117 [51] Zhou T J. 2003. Comparison of the global air–sea freshwater exchange evaluated from independent datasets [J]. Progress in Natural Science, 13(8): 626−631. doi: 10.1080/10020070312331344150 [52] 周长艳, 李跃清, 李薇, 等. 2005. 青藏高原东部及邻近地区水汽输送的气候特征 [J]. 高原气象, 24(6): 880−888. doi: 10.3321/j.issn:1000-0534.2005.06.006Zhou Changyan, Li Yueqing, Li Wei. 2005. Climatological characteristics of water vapor transport over eastern part of Qinghai–Xizang Plateau and its surroundings [J]. Plateau Meteor. (in Chinese), 24(6): 880−888. doi: 10.3321/j.issn:1000-0534.2005.06.006 [53] 周俊前, 刘新, 李伟平, 等. 2016. 青藏高原春季地表感热异常对西北地区东部降水变化的影响 [J]. 高原气象, 35(4): 845−853. doi: 10.7522/j.issn.1000-0534.2015.00053Zhou Junqian, Liu Xin, Li Weiping, et al. 2016. Relationship between surface sensible heating over the Qinghai–Xizang Plateau and precipitation in the eastern part of Northwest China in spring [J]. Plateau Meteor. (in Chinese), 35(4): 845−853. doi: 10.7522/j.issn.1000-0534.2015.00053 -