Microphysical Characteristics of A Cold Front Snowstorm Event in the West Tianshan Mountains
-
摘要: 基于二维视频雨滴谱仪联合毫米波云雷达、风廓线雷达、微波辐射计、GPS/MET水汽等垂直探测设备,对2020年2月18~19日西天山地区一次冷锋暴雪过程进行了微物理特征研究。本文设计了雪花及霰粒子分类算法,用于定量研究降雪微物理特征。结果表明:(1)冷锋入侵、动力强迫阶段,降雪粒子类型主要为雪花,微物理过程主要为凝华增长及聚并增长;(2)冷锋控制、大风降温阶段,降雪粒子类型主要为雪花、霰粒子,微物理过程主要是聚并增长及凇附过程,同时聚并增长有利于凇附过程的发生;(3)在冷锋过境阶段,由于云顶温度升高、大气冰核减少、充足的过冷水,有利于凇附过程的发生。不同于南京地区的降雪,西天山地区降雪,雪花直径及雪强偏小,但霰粒子对雪强有较大贡献。通过两种融化模型,拟合出相应的雨滴谱及其Gamma分布,发现与本地层状云降水的特征相似。Abstract: Based on a two-dimensional video disdrometer, combined with cloud radar, wind profile radar, microwave radiometer, GPS/MET water vapor, and other vertically-scanning instruments, the microphysical characteristics of a cold front snowstorm event in the West Tianshan Mountain on February 18 and 19, 2020, were analyzed and studied. A classification algorithm for the snowflake and graupel was designed to quantitatively study the microphysical characteristics of the snowfall. The results show that (1) in the cold front invasion and dynamic forcing stage, the precipitation particles are mainly snowflakes and the microphysical processes are deposition and aggregation; (2) in the stage of cold front control bringing wind chill, the precipitation particles are snowflakes and graupel, and the microphysical processes are aggregation and riming, with the aggregation exhibiting a positive impact on the riming; (3) in the cold front passage, less ice nucleation and enough subcooled water favor riming due to the rise of the cloud top temperature. Unlike those in Nanjing, the snowflake diameter and snow intensity in the West Tianshan Mountains are relatively small, but graupel has a greater contribution to the snow intensity. The raindrop size and Gamma distributions are fitted using two melting models, similar to the characteristics of local stratiform cloud precipitation.
-
Key words:
- West Tianshan region /
- Solid precipitation /
- Riming /
- Microphysical characteristics
-
图 2 2020年2月18日12:00 500 hPa位势高度场(等值线,单位:dagpm)、温度场(红色虚线,单位:°C)以及风场(黑色箭头,单位:m s−1)(红色方框为西天山地区)
Figure 2. Geopotential height (contours, units: dagpm), Temperature (red dotted line, units: °C), Wind (black arrow, units: m s−1) at 1200 UTC February 18, 2020. The red box represents the western Tianshan Mountain area
图 4 2020年2月18日00:00至19日05:00新源站MP-3000型微波辐射计观测数据:(a)温度(单位:K);(b)水汽含量(单位:g m−3);(c)液水含量(单位:g m−3);(d)相对湿度
Figure 4. (a) Temperature (units: K), (b) water vapour content (WVC, units: g m−3), (c) liquid water content (LWC, units: g m−3), and (d) relative humidity data observed using the MP-3000 microwave radiometer at Xinyuan station from 0000 UTC February 18 to 0500 UTC February 19, 2020
图 5 二维视频雨滴谱仪2DVD探测粒子的分类:(a)雪花;(b)霰粒子。图中黑色虚线为雪花的V–Deq(粒子速度—粒子等效体积直径)关系,红色虚线为雨的V–Deq关系
Figure 5. 2DVD (Two Dimensional Video Disdrometer) particle classification: (a) Snowflake; (b) graupel. The black dotted line corresponds to the V–Deq (particle velocity–particle equivalent volume diameter) relationship of snowflakes, and the red dotted line denotes the V–Deq relationship of rain
图 6 2020年2月18日00:00至19日07:00新源站KPS-HMB型单通道毫米波云雷达观测数据:(a)反射率因子(填色;单位:dBZ),虚线为温度廓线(单位:°C);(b)径向速度(填色;单位:m s−1),红色虚线液水含量(单位:g m−3)
Figure 6. Observation data of the Xinyuan station’ s KPS-HMB single-channel millimeter-wave cloud radar from 0000 UTC February 18 to 0700 UTC February 19, 2020: (a) Reflectivity factor (shaded, units: dBZ), the gray dotted line denotes the temperature profile (units: °C); (b) radial velocity (shaded, units: m s−1); the red dotted line denotes the liquid water content (units: g m−3)
图 7 2020年2月18日10:20至19日03:55新源站2DVD观测数据:(a)粒子中值体积直径(D0),粒子最大直径(Dmax);(b)粒子数浓度(Nt);(c)雪花和霰粒子的雪强(SR)
Figure 7. Observation data from Xinyuan station 2DVD from 1020 UTC February 18 to 0355 UTC February 19, 2020: (a) Median volume diameter (D0) particles and the maximum diameter (Dmax) particles; (b) particle number concentration (Nt); (c) snow rate (SR) of snowflake and graupel
图 8 2020年2月18日10:20至19日03:55新源站2DVD观测数据:(a)粒子大小分布(PSD);(b)粒子速度分布(PVD)。彩色阴影表示数量(单位:个)
Figure 8. Observation data from Xinyuan station 2DVD from 1020 UTC February 18 to 0355 UTC February 19, 2020: (a) PSD (particle size distribution); (b) PVD (particle velocity distribution). Color shadows represent quantity (units: count)
图 9 2020年2月18日(a)10:20~16:00、(b)16:05~23:55、(c)19日00:00~03:55粒子大小分布及Gamma分布。红实线是雪粒子Gamma分布;黑色实线是MC模型Gamma分布;蓝色实线是FC模型雨粒子Gamma分布;红色点是雪粒子分布;黑色点是MC模型雨滴分布;蓝色点是FC模型雨滴分布
Figure 9. Particle size and gamma distributions during (a) 1020 UTC–1600 UTC, (b) 1605 UTC–2355 UTC 18 February, and (c) 0000 UTC–0355 UTC 19 February 2020. The solid red line is the gamma distribution of snow particles. The solid black line is the MC model gamma distribution. The solid blue line is the rain particle gamma distribution of the FC model. The red dots are snow particles; the black dots are the MC model raindrop distribution; and the blue dots represent the FC model raindrop distribution
表 1 毫米波云雷达主要参数
Table 1. Key parameters of cloud radar
工作频率 极化方式 天线增益 波束宽度 探测范围 时间分辨率 35.5 GHz 单发单收线极化 ≥52 dB ≤0.4° 120 m~20 km 1 min 表 2 风廓线雷达主要参数
Table 2. Key parameters of wind profile radar
工作频率 最小探测高度 最大探测高度 时间分辨率 高度分辨率 波束宽度 1320 MHz 60 m ≥3 km 五波束≤6min ≤60 m(低模式)
≤120 m(高模式)≤6° -
[1] Bernauer F, Hürkamp K, Rühm W, et al. 2016. Snow event classification with a 2D video disdrometer—A decision tree approach [J]. Atmospheric Research, 172–173: 186–195. doi:10.1016/j.atmosres.2016.01.001 [2] Brandes E A, Zhang G F, Vivekanandan J. 2002. Experiments in rainfall estimation with a polarimetric radar in a subtropical environment [J]. Journal of Applied Meteorology and Climatology, 41(6): 674−685. doi: 10.1175/1520-0450(2002)041<0674:EIREWA>2.0.CO;2 [3] Brandes E A, Ikeda K, Zhang G F, et al. 2007. A statistical and physical description of hydrometeor distributions in Colorado snowstorms using a video disdrometer [J]. Journal of Applied Meteorology and Climatology, 46(5): 634−650. doi: 10.1175/JAM2489.1 [4] Brandes E A, Ikeda K, Thompson G, et al. 2008. Aggregate terminal velocity/temperature relations [J]. Journal of Applied Meteorology and Climatology, 47(10): 2729−2736. doi: 10.1175/2008JAMC1869.1 [5] Bukovčić P, Zrnić D, Zhang G F. 2017. Winter precipitation liquid-ice phase transitions revealed with polarimetric radar and 2DVD observations in central Oklahoma [J]. Journal of Applied Meteorology and Climatology, 56(5): 1345−1363. doi: 10.1175/JAMC-D-16-0239.1 [6] Bukovčić P, Ryzhkov A, Zrnić D, et al. 2018. Polarimetric radar relations for quantification of snow based on disdrometer data [J]. Journal of Applied Meteorology and Climatology, 57(1): 103−120. doi: 10.1175/JAMC-D-17-0090.1 [7] Chen F H, Huang W, Jin L Y, et al. 2011. Spatio–temporal precipitation variations in the arid central Asia in the context of global warming [J]. Sci. China Earth Sci., 54(12): 1812−1821. doi: 10.1007/s11430-011-4333-8 [8] 陈羿辰, 金永利, 丁德平, 等. 2018. 毫米波测云雷达在降雪观测中的应用初步分析 [J]. 大气科学, 42(1): 134−149. doi: 10.3878/j.issn.1006-9895.1705.17121Chen Yichen, Jin Yongli, Ding Deping, et al. 2018. Preliminary analysis on the application of millimeter wave cloud radar in snow observation [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 42(1): 134−149. doi: 10.3878/j.issn.1006-9895.1705.17121 [9] Grazioli J, Tuia D, Monhart S, et al. 2014. Hydrometeor classification from two-dimensional video disdrometer data [J]. Atmos. Meas. Tech., 7(9): 2869−2882. doi: 10.5194/amt-7-2869-2014 [10] Huang G J, Bringi V N, Cifelli R, et al. 2010. A methodology to derive radar reflectivity-liquid equivalent snow rate relations using C-band radar and a 2D video disdrometer [J]. J. Atmos. Oceanic Technol., 27(4): 637−651. doi: 10.1175/2009JTECHA1284.1 [11] Huang G J, Bringi V N, Moisseev D, et al. 2015. Use of 2D-video disdrometer to derive mean density–size and Ze–SR relations: Four snow cases from the light precipitation validation experiment [J]. Atmospheric Research, 153: 34−48. doi: 10.1016/j.atmosres.2014.07.013 [12] 黄钰, 郭学良, 毕凯, 等. 2020. 北京延庆山区降雪云物理特征的垂直观测和数值模拟研究 [J]. 大气科学, 44(2): 356−370. doi: 10.3878/j.issn.1006-9895.1903.18258Huang Yu, Guo Xueliang, Bi Kai, et al. 2020. Vertical observation and numerical simulation of the clouds physical characteristics of snow-producing over Yanqing Mountain area in Beijing [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 44(2): 356−370. doi: 10.3878/j.issn.1006-9895.1903.18258 [13] Ishizaka M, Motoyoshi H, Nakai S, et al. 2013. A new method for identifying the main type of solid hydrometeors contributing to snowfall from measured size-fall speed relationship [J]. J. Meteor. Soc. Japan Ser. Ⅱ, 91(6): 747−762. doi: 10.2151/jmsj.2013-602 [14] 贾星灿, 马新成, 毕凯, 等. 2018. 北京冬季降水粒子谱及其下落速度的分布特征 [J]. 气象学报, 76(1): 148−159. doi: 10.11676/qxxb2017.085Jia Xingcan, Ma Xincheng, Bi Kai, et al. 2018. Distributions of particle size and fall velocities of winter precipitation in Beijing [J]. Acta Meteorologica Sinica (in Chinese), 76(1): 148−159. doi: 10.11676/qxxb2017.085 [15] Kruger A, Krajewski W F. 2002. Two-dimensional video disdrometer: A description [J]. J. Atmos. Oceanic Technol., 19(5): 602−617. doi: 10.1175/1520-0426(2002)019<0602:TDVDAD>2.0.CO;2 [16] Lee J E, Jung S H, Park H M, et al. 2015. Classification of precipitation types using fall velocity–diameter relationships from 2D-video distrometer measurements [J]. Advances in Atmospheric Sciences, 32(9): 1277−1290. doi: 10.1007/s00376-015-4234-4 [17] Li H R, Tiira J, Von Lerber A, et al. 2020. Towards the connection between snow microphysics and melting layer: Insights from multi-frequency and dual-polarization radar observations during BAECC [J]. Atmos. Chem. Phys., 20(15): 9547−9562. doi: 10.5194/acp-20-9547-2020 [18] 李遥, 牛生杰, 吕晶晶, 等. 2019. 2018年冬季南京三次暴雪过程微物理特征分析 [J]. 大气科学, 43(5): 1095−1108. doi: 10.3878/j.issn.1006-9895.1811.18189Li Yao, Niu Shengjie, Lv Jingjing, et al. 2019. Analysis on microphysical characteristics of three blizzard processes in Nanjing in the winter of 2018 [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 43(5): 1095−1108. doi: 10.3878/j.issn.1006-9895.1811.18189 [19] Lin Y L, Farley R D, Orville H D. 1983. Bulk parameterization of the snow field in a cloud model [J]. Journal of Applied Meteorology and Climatology, 22(6): 1065−1092. doi: 10.1175/1520-0450(1983)022<1065:BPOTSF>2.0.CO;2 [20] 刘凡, 杨莲梅. 2019. 伊犁河谷初冬降水条件下风廓线雷达评估分析 [J]. 沙漠与绿洲气象, 13(5): 34−40. doi: 10.12057/j.issn.1002-0799.2019.05.005Liu Fan, Yang Lianmei. 2019. Evaluation and analysis of wind profiler radar in early winter precipitation conditions in Ili River valley [J]. Desert and Oasis Meteorology (in Chinese), 13(5): 34−40. doi: 10.12057/j.issn.1002-0799.2019.05.005 [21] Matrosov S Y, Campbell C, Kingsmill D, et al. 2009. Assessing snowfall rates from X-band radar reflectivity measurements [J]. J. Atmos. Oceanic Technol., 26(11): 2324−2339. doi: 10.1175/2009JTECHA1238.1 [22] Roebber P J, Bruening S L, Schultz D M, et al. 2003. Improving snowfall forecasting by diagnosing snow density [J]. Wea. Forecasting, 18(2): 264−287. doi: 10.1175/1520-0434(2003)018<0264:ISFBDS>2.0.CO;2 [23] Tao R T, Zhao K, Huang H, et al. 2021. Snow particle size distribution from a 2-D video disdrometer and radar snowfall estimation in East China [J]. IEEE Trans. Geosci. Remote Sens., 59(1): 196−207. doi: 10.1109/TGRS.2020.2990920 [24] Thurai M, Gatlin P N, Bringi V N. 2016. Separating stratiform and convective rain types based on the drop size distribution characteristics using 2D video disdrometer data [J]. Atmospheric Research, 169: 416−423. doi: 10.1016/j.atmosres.2015.04.011 [25] Ulbrich C W. 1983. Natural variations in the analytical form of the raindrop size distribution [J]. Journal of Applied Meteorology and Climatology, 22(10): 1764−1775. doi: 10.1175/1520-0450(1983)022<1764:NVITAF>2.0.CO;2 [26] 温龙. 2016. 中国东部地区夏季降水雨滴谱特征分析 [D]. 南京大学硕士学位论文. Wen Long. 2016.Microphysical characteristics of the raindrop size distribution observed in East China during the Asian summer monsoon season [D]. M. S. thesis (in Chinese), Nanjing University. [27] 吴玮, 秦其明, 范一大, 等. 2013. 中国雪灾评估研究综述 [J]. 灾害学, 28(4): 152−158. doi: 10.3969/j.issn.1000-811X.2013.04.027Wu Wei, Qin Qiming, Fan Yida, et al. 2013. Review on snow disaster assessment in China [J]. Journal of Catastrophology (in Chinese), 28(4): 152−158. doi: 10.3969/j.issn.1000-811X.2013.04.027 [28] 杨军, 陈宝君, 银燕. 2011. 云降水物理学 [M]. 北京: 气象出版社.Yang Jun, Chen Baojun, Yin Yan. 2011. Physics of Clouds and Precipitation (in Chinese) [M]. Beijing: China Meteorological Press. [29] 杨莲梅, 杨涛, 贾丽红, 等. 2005. 新疆大~暴雪气候特征及其水汽分析 [J]. 冰川冻土, 27(3): 389−396. doi: 10.3969/j.issn.1000-0240.2005.03.011Yang Lianmei, Yang Tao, Jia Lihong, et al. 2005. Analyses of the climate characteristics and water vapor of heavy snow in Xinjiang region [J]. Journal of Glaciology and Geocryology (in Chinese), 27(3): 389−396. doi: 10.3969/j.issn.1000-0240.2005.03.011 [30] 张贵付. 2018. 双偏振雷达气象学 [M]. 闵锦忠, 戚友存, 王世璋, 等译. 北京: 气象出版社.Zhang Guifu. 2018. Weather Radar Polarimetry (in Chinese) [M]. Min Jinzhong, Qi Youcun, Wang Shizhang, et al, trans. Beijing: China Meteorological Press. [31] 张祖熠, 杨莲梅. 2018. 伊宁春季层状云和混合云降水的雨滴谱统计特征分析 [J]. 沙漠与绿洲气象, 12(5): 16−22. doi: 10.12057/j.issn.1002-0799.2018.05.003Zhang Zuyi, Yang Lianmei. 2018. Statistical characteristics of raindrop size distribution for stratiform and mixed cloud precipitation in spring in Yining [J]. Desert and Oasis Meteorology (in Chinese), 12(5): 16−22. doi: 10.12057/j.issn.1002-0799.2018.05.003 [32] Zhang G F, Luchs S, Ryzhkov A, et al. 2011. Winter precipitation microphysics characterized by polarimetric radar and video disdrometer observations in central Oklahoma [J]. Journal of Applied Meteorology and Climatology, 50(7): 1558−1570. doi: 10.1175/2011JAMC2343.1 [33] Zhang Y, Zheng H P, Zhang L F, et al. 2021. Assessing the effect of riming on snow microphysics: The first observational study in East China [J]. J. Geophys. Res.: Atmos., 126(7): e2020JD033763. doi: 10.1029/2020JD033763 -