Dynamic Analysis and Local Circulation Numerical Simulation of a Warm-sector Mountain Rainstorm Event in the Western Sichuan Basin
-
摘要: 本文利用国家基本站和区域自动站逐小时雨量、FY-2G卫星TBB、ERA5再分析等资料,对2017年7月23日发生在四川盆地西部的一次暖区山地暴雨事件进行动力诊断分析和数值模拟试验。主要得到以下结果:(1)此次暖区山地突发性暴雨发生在西太平洋副热带高压边缘的弱天气形势背景下,盆地西部前期高温、高能的环境条件与伸入盆地的东南风受到龙门山脉的强迫抬升是这次暴雨触发的诱因。(2)山地—平原环流在夜间的转换使背景东南风形成深厚的倾斜上升运动,是暴雨增强和中尺度对流云团重组发展的原因。(3)进一步通过数值模拟得出,山地—平原环流受近地面热力扰动驱动。在白天,盆地西部山坡为正虚温扰动区,而同一高度的平原则是负虚温扰动,山地—平原环流从平原吹向山地;到了夜晚,虚温扰动在山地、平原两侧的分布发生反转,山地—平原环流因此转为从山地吹向平原;当去除模式地面热源时,近地面的热力扰动几乎消失,盆地西部山地—平原环流无法形成,与山地—平原环流对应的辐合区随之消失,导致模拟的过程累积降水量显著减少、强降水中心消失。Abstract: Based on the hourly precipitation data from automatic weather stations, FY-2G TBB data, and ERA5 reanalysis data, dynamic analysis and numerical experiments are performed for a warm-sector mountain rainstorm event in the western Sichuan Basin on 23 July 2017. The results showed that: (1) The warm-sector mountain torrential rainstorm occurred at the edge of the West Pacific subtropical high under the background of weak synoptic forcing. The high temperature and high energy in the western Sichuan Basin and the southeast wind intruding into the basin, lifted by Longmen Mountain, induced this rainstorm. (2) The conversion of the mountain–plain circulation is the reason for the intensification of the rainstorm and the reorganization of the mesoscale convective cloud clusters. (3) Moreover, the mountain–plain circulation uplifts the background wind that causes the upward sloping motion. Further study of the results of the numerical simulation showed that the mountain–plain circulation is driven by near-surface thermal perturbation. In the daytime, a positive virtual temperature disturbance area on the hillside of the western Sichuan Basin is detected, and a plain-to-mountain flow is developed. After sunset, the distribution of the virtual temperature disturbance on the mountain and plain is reversed. Therefore, the mountain–plain circulation shifts from mountain to plain. When the model surface heat source is removed, the near-surface thermal perturbation tends to disappear, and the mountain–plain circulation does not form in the western Sichuan Basin. Consequently, the convergence area related to the mountain–plain circulation dissipates, resulting in the decline of the simulated cumulative precipitation and the disappearance of the heavy precipitation center.
-
图 1 (a)2017年7月23日17时至24日05时12 h累计降水量(单位:mm)分布,线段EF是图2、4中垂直剖面位置;(b)代表站点小时雨量(实线)、降水区(29°~33°N,102°~105°E)1 h累计雨量≥20 mm站点个数(虚线)随时间演变
Figure 1. (a) Distribution of the 12-h accumulated precipitation (units: mm) from 1700 BJT (Beijing time) on 23 July 2017 to 0500 BJT on 24 July 2017, EF denotes the position of the cross section in Figs. 2 and 4; (b) temporal evolution of the hourly precipitation (solid lines) in the representative stations and the number of stations (dashed lines) with 1-h cumulative precipitation more than 20 mm in the precipitation zone (29°–33°N, 102°–105°E)
图 2 2017年7月23日14时(a)500 hPa高度场(等值线,单位:dagpm)、风场(风羽,单位:m s−1),(b)200 hPa高度场(等值线,单位:dagpm)、散度场(彩色阴影,单位:10−4 s−1);2017年7月23日17时(c)海平面气压场(等值线,单位:hPa),(d)沿图1a中线段EF(强降水中心)的暖平流(彩色阴影,单位:10−4 K s−1)、假相当位温(等值线,单位:K)纬向—垂直剖面
Figure 2. (a) Geopotential height (contours, units: dagpm) and wind (barbs, units: m s−1) at 500 hPa, (b) geopotential height (contours, units: dagpm) and divergence (color shadings, units: 10−4 s−1) at 200 hPa at 1400 BJT on 23 July 2017; (c) sea level pressure (contours, units: hPa), (d) cross section of warm advection (color shadings, units: 10−4 K s−1) and potential pseudo-equivalent temperature (contours, units: K) along EF (heavy precipitation center) in Fig. 1a at 1700 BJT on 23 July 2017
图 3 2017年7月23日17时850 hPa(a)水汽通量(矢量,单位:kg m−1 hPa−1 s−1)、整层可降水量(填色,单位:mm),(b)暖平流(填色,单位:10−4 K s−1)、假相当位温(等值线,单位:K)
Figure 3. (a) Water vapor fluxes (vectors, units: kg m−1 hPa−1 s−1) and vertical integrated precipitable water vapor (shadings, units: mm), (b) warm advection (shadings, units: 10−4 K s−1) and potential pseudo-equivalent temperature (contours, units: K) at 850 hPa at 1700 BJT on 23 July 2017
图 4 2017年7月23日17时(a)850 hPa垂直速度(填色,单位:Pa s−1)、风场(风羽,单位:m s−1),(c)垂直速度(填色,单位:Pa s−1)和合成风场(矢量)沿图1a中线段EF的垂直剖面;2017年7月23日21时(b)850 hPa散度(填色,单位:10−4 s−1)、风场(风羽,单位:m s−1),(d)散度(填色,单位:10−4 s−1)、相较于前一时次的东南风速增量(等值线,单位:m s−1)、合成风场(矢量)沿线段EF垂直剖面。图b中棕色实线为切变线,图c、d中合成风场为Vcosθ(单位:m s−1)与−5 ω(单位:Pa s−1)的合成,θ为实际风向与东南风向的夹角
Figure 4. (a) Vertical velocity (shadings, units: Pa s−1) and wind (barbs, units: m s−1) at 850 hPa, (c) cross section of vertical velocity (shadings, units: Pa s−1) and constructed wind (vectors) along line EF in Fig. 1a at 1700 BJT on 23 July 2017; (b) divergence (shadings, units: 10−4 s−1) and wind (barbs, units: m s−1) at 850 hPa, (d) cross section of divergence (shadings, units: 10−4 s−1), increment (contours, units: m s−1) of the southeast wind speed deviated from the last time, and constructed wind field (vectors) at 2100 BJT on 23 July 2017. In Fig. b. the brown solid line denotes the shear line. In Figs. c, d, constructed wind is consisting of Vcosθ (units: m s−1) and −5 ω (units: Pa s−1), where θ denotes the angle between the real wind direction and the southeast wind
图 5 2017年7月23日(a)20时、(b)21时、(c)22时、(d)24日00时FY-2G卫星TBB(填色,单位:°C)和850 hPa风场(风羽,单位:m s−1)。图c、d中的棕色实线为切变线
Figure 5. TBB (shadings, units: °C) from the FY-2G satellite and 850-hPa wind (barbs, units: m s−1) at (a) 2000 BJT, (b) 2100 BJT, and (c) 2200 BJT on July 23 2017, and (d) 0000 BJT on July 24 2017. In Figs. c, d, the brown solid lines denote the shear line
图 6 (a)盆地西部地形(填色,单位:m)和加密自动站的站点(黑色点)分布;(b)图6a中矩形框内所有站点经三点平滑后平均纬向风(单位:m s−1),(c)雅安、乐山站位温(曲线,单位:K)和两站之间平均风场(风羽,单位:m s−1)随时间演变曲线。图b、c中矩形框为暴雨发生时段
Figure 6. (a) Distributions of topography (shadings, units: m) of the western Sichuan Basin and the automatic weather stations (black dots); (b) time series of the regional mean zonal wind speed (units: m s−1) after three-point smoothing in the rectangle in Fig. 6a; (c) time series of the potential temperature (θ, lines, units: K) and mean wind field (barbs, units: m s−1) in Yaan station and Leshan station. In Figs. b and c, the rectangle denotes the period of heavy rain
图 9 四川盆地西部平均10 m(a)风向[单位:(°)]、(b)风速(单位:m s−1)随时间演变曲线,黑(蓝)色线为观测(模拟)。图a中红色实线为东西风分界线。2017年7月23日(c)08时温江、(d)20时宜宾探空站观测和模拟的风廓线(风羽,单位:m s−1)
Figure 9. Time series of the regional mean 10-m wind (a) direction [units: (°)] and (b) speed (units: m s−1) in the western Sichuan Basin obtained from the automatic weather stations (black lines) and WRF simulation data (blue lines). In Fig. a, the red solid line denotes the boundary between east and west winds. Wind profiles (barbs, units: m s−1) obtained from the observations and simulations at (c) 0800 BJT 23 July 2017 at Wenjiang sounding station and (d) 2000 BJT 23 July 2017 at Yibin sounding station
图 10 (a–c)控制试验、(d–f)敏感试验中扰动虚温(填色,单位:K)和扰动纬向风速(等值线,单位:m s−1)沿30°N的垂直剖面:(a、d)23日14时;(b、e)23日21时;(c、f)24日02时。扰动虚温为剖面内(30°N,102°~104°E)相对于高度平均值的偏差,扰动纬向风速为相对于日平均值的偏差。图a–c中红色箭头表示山地—平原环流方向
Figure 10. Cross section of the perturbation virtual temperature (shadings, units: K) and perturbation zonal wind speed (contours, units: m s−1) along 30°N from the (a–c) control experiment and (d–f) sensitivity experiment at (a, d) 1400 BJT on 23 July 2017, (b, e) 2100 BJT on 23 July 2017, (c, f) 0200 BJT on 24 July 2017. Perturbation virtual temperature is deviation from the mean height in (30°N, 102°–104°E), perturbation zonal wind speed is deviation from the daily mean zonal wind speed. In Figs. a–c, the red arrow denotes the direction of the mountain–plain circulation
图 11 2017年7月23日19时(左)、21时(右)(a、b)CTRL试验、(c、d)SEN试验模拟的975 m高度上的散度(填色,单位:10−4 s−1)和风场(风羽,单位:m s−1)。图a、b中棕色实线为切变线
Figure 11. Distribution of the simulated divergence (shadings, units: 10−4 s−1) and wind (barbs, units: m s−1) at 975-m height of from (a, b) CTRL experiment, (c, d) SEN experiment at 1900 BJT (left) and 2100 BJT (right) on 23 July 2017. In Figs. a and b, the brown solid line denotes the shear line
-
[1] 毕宝贵, 刘月巍, 李泽椿. 2005. 地表热通量对陕南强降水的影响 [J]. 地理研究, 24(5): 681−691. doi: 10.3321/j.issn:1000-0585.2005.05.004Bi Baogui, Liu Yuewei, Li Zechun. 2005. The effect of surface thermal forcing on the extremely heavy rainfall in the southern Shaanxi Province during June 8 and 9, 2002 [J]. Geographical Research (in Chinese), 24(5): 681−691. doi: 10.3321/j.issn:1000-0585.2005.05.004 [2] Bao X H, Zhang F Q. 2013. Impacts of the mountain–plains solenoid and cold pool dynamics on the diurnal variation of warm-season precipitation over northern China [J]. Atmos. Chem. Phys., 13(14): 6965−6982. doi: 10.5194/acp-13-6965-2013 [3] 谌芸, 陈涛, 汪玲瑶, 等. 2019. 中国暖区暴雨的研究进展 [J]. 暴雨灾害, 38(5): 483−493. doi: 10.3969/j.issn.1004-9045.2019.05.010Chen Yun, Chen Tao, Wang Lingyao, et al. 2019. A review of the warm-sector rainstorms in China [J]. Torrential Rain and Disasters (in Chinese), 38(5): 483−493. doi: 10.3969/j.issn.1004-9045.2019.05.010 [4] 杜梅, 李国平, 李山山. 2020. 高原横切变线与高原低涡关系的初步研究 [J]. 大气科学, 44(2): 269−281. doi: 10.3878/j.issn.1006-9895.1906.18191Du Mei, Li Guoping, Li Shanshan. 2020. A preliminary study of the relationship between the plateau transverse shear line and plateau vortex [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 44(2): 269−281. doi: 10.3878/j.issn.1006-9895.1906.18191 [5] 何立富, 陈涛, 孔期. 2016. 华南暖区暴雨研究进展 [J]. 应用气象学报, 27(5): 559−569. doi: 10.11898/1001-7313.20160505He Lifu, Chen Tao, Kong Qi. 2016. A review of studies on prefrontal torrential rain in South China [J]. Journal of Applied Meteorological Science (in Chinese), 27(5): 559−569. doi: 10.11898/1001-7313.20160505 [6] 何丽华, 王咏青, 隆璘雪, 等. 2020. 弱天气强迫下一次暖区MCSs发生发展研究 [J]. 大气科学学报, 43(5): 810−823. doi: 10.13878/j.cnki.dqkxxb.20191104002He Lihua, Wang Yongqing, Long Linxue, et al. 2020. Study of the occurrence and development of warm-sector MCSs for weak synoptic forcing [J]. Transactions of Atmospheric Sciences (in Chinese), 43(5): 810−823. doi: 10.13878/j.cnki.dqkxxb.20191104002 [7] Hua S F, Xu X, Chen B J. 2020. Influence of multiscale orography on the initiation and maintenance of a precipitating convective system in North China: A case study [J]. J. Geophys. Res., 125(13): e2019JD031731. doi: 10.1029/2019JD031731 [8] 黄士松. 1986. 华南前汛期暴雨[M]. 广州: 广东科技出版社, 94–95Huang Shisong. 1986. Heavy Rainfalls in the Pre-flood Season in South China (in Chinese) [M]. Guangzhou: Guangdong Science & Technology Press, 94–95. [9] Huang H L, Wang C C, Chen G T J, et al. 2010. The role of diurnal solenoidal circulation on propagating rainfall episodes near the eastern Tibetan Plateau [J]. Mon. Wea. Rev., 138(7): 2975−2989. doi: 10.1175/2010MWR3225.1 [10] Jin X, Wu T W, Li L. 2013. The quasi-stationary feature of nocturnal precipitation in the Sichuan Basin and the role of the Tibetan Plateau [J]. Climate Dyn. , 41(3–4): 977–994. doi:10.1007/s00382-012-1521-y [11] 林晓霞, 冯业荣, 张诚忠, 等. 2017. 华南一次暴雨过程热力和动力特征的诊断分析 [J]. 热带气象学报, 33(6): 975−984. doi: 10.16032/j.issn.1004-4965.2017.06.018Lin Xiaoxia, Feng Yerong, Zhang Chengzhong, et al. 2017. Diagnostic analysis of thermal and dynamic characteristics of a rainstorm process in southern China [J]. Journal of Tropical Meteorology (in Chinese), 33(6): 975−984. doi: 10.16032/j.issn.1004-4965.2017.06.018 [12] 刘晓冉, 李国平. 2014. 一次东移型西南低涡的数值模拟及位涡诊断 [J]. 高原气象, 33(5): 1204−1216. doi: 10.7522/j.issn.1000-0534.2013.00151Liu Xiaoran, Li Guoping. 2014. Numerical simulation and potential vorticity diagnosis of an eastward moving Southwest vortex [J]. Plateau Meteorology (in Chinese), 33(5): 1204−1216. doi: 10.7522/j.issn.1000-0534.2013.00151 [13] Liu X L, Ma E D, Cao Z B, et al. 2018. Numerical study of a southwest vortex rainstorm process influenced by the eastward movement of Tibetan Plateau vortex [J]. Adv. Meteor., 2018: 9081910. doi: 10.1155/2018/9081910 [14] 卢萍, 宇如聪. 2008. 地表潜热通量对四川地区降水影响的数值分析 [J]. 高原山地气象研究, 28(3): 1−7. doi: 10.3969/j.issn.1674-2184.2008.03.001Lu Ping, Yu Rucong. 2008. Numerical analysis on the impacts of surface latent heat flux transport on Sichuan rainfall process [J]. Plateau and Mountain Meteorology Research (in Chinese), 28(3): 1−7. doi: 10.3969/j.issn.1674-2184.2008.03.001 [15] 罗辉, 肖递祥, 匡秋明, 等. 2020. 四川盆地暖区暴雨的雷达回波特征及分类识别 [J]. 应用气象学报, 31(4): 460−470. doi: 10.11898/1001-7313.20200408Luo Hui, Xiao Dixiang, Kuang Qiuming, et al. 2020. Radar echo characteristics and recognition of warm-sector torrential rain in Sichuan Basin [J]. Journal of Applied Meteorological Science (in Chinese), 31(4): 460−470. doi: 10.11898/1001-7313.20200408 [16] 马月枝, 张霞, 胡燕平. 2017. 2016年7月9日新乡暖区特大暴雨成因分析 [J]. 暴雨灾害, 36(6): 557−565. doi: 10.3969/j.issn.1004-9045.2017.06.009Ma Yuezhi, Zhang Xia, Hu Yanping. 2017. Cause analysis of a warm-sector excessive heavy rainfall event in Xinxiang on 9 July 2016 [J]. Torrential Rain and Disasters (in Chinese), 36(6): 557−565. doi: 10.3969/j.issn.1004-9045.2017.06.009 [17] Mai Z, Fu S M, Sun J H, et al. 2021. Key statistical characteristics of the mesoscale convective systems generated over the Tibetan Plateau and their relationship to precipitation and Southwest vortices [J]. Int. J. Climatol., 41(S1): E875−E896. doi: 10.1002/joc.6735 [18] 覃武, 刘国忠, 赖珍权, 等. 2020. 华南暖区暴雨预报失误及可预报性探讨 [J]. 气象, 46(8): 1039−1052. doi: 10.7519/j.issn.1000-0526.2020.08.004Qin Wu, Liu Guozhong, Lai Zhenquan, et al. 2020. Study on forecast errors and predictability of a warm-sector rainstorm in South China [J]. Meteorological Monthly (in Chinese), 46(8): 1039−1052. doi: 10.7519/j.issn.1000-0526.2020.08.004 [19] 桑建国, 张治坤, 张伯寅. 2000. 热岛环流的动力学分析 [J]. 气象学报, 58(3): 321−327. doi: 10.3321/j.issn:0577-6619.2000.03.007Sang Jianguo, Zhang Zhikun, Zhang Boyin. 2000. Dynamical analyses on heat island circulation [J]. Acta Meteorologica Sinica (in Chinese), 58(3): 321−327. doi: 10.3321/j.issn:0577-6619.2000.03.007 [20] 寿绍文, 励申申, 姚秀萍. 2003. 中尺度气象学[M]. 北京: 气象出版社, 45–46Shou Shaowen, Li Shenshen, Yao Xiuping. 2003. Mesoscale Meteorology (in Chinese) [M]. Beijing: China Meteorological Press, 45–46. [21] 汤欢, 傅慎明, 孙建华, 等. 2020. 一次高原东移MCS与下游西南低涡作用并产生强降水事件的研究 [J]. 大气科学, 44(6): 1275−1290. doi: 10.3878/j.issn.1006-9895.1911.19206Tang Huan, Fu Shenming, Sun Jianhua, et al. 2020. Investigation of severe precipitation event caused by an eastward-propagating MCS originating from the Tibetan Plateau and a downstream Southwest vortex [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 44(6): 1275−1290. doi: 10.3878/j.issn.1006-9895.1911.19206 [22] 田越, 苗峻峰. 2019. 中国地区山谷风研究进展 [J]. 气象科技, 47(1): 41−51. doi: 10.19517/j.1671-6345.20170777Tian Yue, Miao Junfeng. 2019. Overview of mountain–valley breeze studies in China [J]. Meteorological Science and Technology (in Chinese), 47(1): 41−51. doi: 10.19517/j.1671-6345.20170777 [23] 田越, 苗峻峰, 赵天良. 2020. 污染天气下成都东部山地—平原风环流结构的数值模拟 [J]. 大气科学, 44(1): 53−75. doi: 10.3878/j.issn.1006-9895.1812.18209Tian Yue, Miao Junfeng, Zhao Tianliang. 2020. A numerical simulation of mountain–plain breeze circulation during a heavy pollution event in eastern Chengdu [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 44(1): 53−75. doi: 10.3878/j.issn.1006-9895.1812.18209 [24] 万轶婧, 王东海, 梁钊明, 等. 2020. 华南暖区暴雨环境参量的统计分析 [J]. 中山大学学报(自然科学版), 59(6): 51−63. doi: 10.13471/j.cnki.acta.snus.2020.04.08.2020D014Wan Yijing, Wang Donghai, Liang Zhaoming, et al. 2020. Statistical analysis of the environment parameters of warm-sector heavy rainfall in South China [J]. Acta Scientiarum Naturalium Universitatis Sunyatseni (in Chinese), 59(6): 51−63. doi: 10.13471/j.cnki.acta.snus.2020.04.08.2020D014 [25] Wang P Y, Xu Z X, Pan Z T. 1990. A case study of warm sector rainbands in North China [J]. Adv. Atmos. Sci., 7(3): 354−365. doi: 10.1007/BF03179767 [26] Wolyn P G, McKee T B. 1994. The mountain–plains circulation east of a 2-km-high North–South barrier [J]. Mon. Wea. Rev., 122(7): 1490−1508. doi: 10.1175/1520-0493(1994)122<1490:TMPCEO>2.0.CO;2 [27] 肖递祥, 王佳津, 曹萍萍, 等. 2020. 四川盆地突发性暖区暴雨特征及环境场条件分析 [J]. 自然灾害学报, 29(3): 110−118. doi: 10.13577/j.jnd.2020.0312Xiao Dixiang, Wang Jiajin, Cao Pingping, et al. 2020. Characteristics and environmental conditions of the sudden warm-sector rainstorms in Sichuan Basin [J]. Journal of Natural Disasters (in Chinese), 29(3): 110−118. doi: 10.13577/j.jnd.2020.0312 [28] 许鲁君, 刘辉志, 曹杰. 2014. 大理苍山—洱海局地环流的数值模拟 [J]. 大气科学, 38(6): 1198−1210. doi: 10.3878/j.issn.1006-9895.1401.13293Xu Lujun, Liu Huizhi, Cao Jie. 2014. Numerical simulation of local circulation over the Cangshan Mountain–Erhai Lake area in Dali, Southwest China [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 38(6): 1198−1210. doi: 10.3878/j.issn.1006-9895.1401.13293 [29] 徐珺, 毕宝贵, 谌芸, 等. 2018. “5.7”广州局地突发特大暴雨中尺度特征及成因分析 [J]. 气象学报, 76(4): 511−524. doi: 10.11676/qxxb2018.016Xu Jun, Bi Baogui, Chen Yun, et al. 2018. Mesoscale characteristics and mechanism analysis of the unexpected local torrential rain in Guangzhou on 7 May 2017 [J]. Acta Meteorologica Sinica (in Chinese), 76(4): 511−524. doi: 10.11676/qxxb2018.016 [30] 杨康权, 卢萍, 张琳. 2017. 高原低涡影响下的一次暖区强降水特征分析 [J]. 热带气象学报, 33(3): 415−425. doi: 10.16032/j.issn.1004-4965.2017.03.012Yang Kangquan, Lu Ping, Zhang Lin. 2017. Analyses of heavy rainstorm in warm sector under the influence of the low-pressure system of Qinghai–Xizang Plateau [J]. Journal of Tropical Meteorology (in Chinese), 33(3): 415−425. doi: 10.16032/j.issn.1004-4965.2017.03.012 [31] 杨颖璨, 李跃清, 陈永仁. 2018. 高原低涡东移加深过程的结构分析 [J]. 高原气象, 37(3): 702−720. doi: 10.7522/j.issn.1000-0534.2017.00054Yang Yingcan, Li Yueqing, Chen Yongren. 2018. The characteristic analysis of an eastwards Plateau Vortex by its strengthening process [J]. Plateau Meteorology (in Chinese), 37(3): 702−720. doi: 10.7522/j.issn.1000-0534.2017.00054 [32] 杨康权, 肖递祥, 罗辉, 等. 2019. 四川盆地西部两次暖区暴雨过程分析 [J]. 气象科技, 47(5): 795−808. doi: 10.19517/j.1671-6345.20180405Yang Kangquan, Xiao Dixiang, Luo Hui, et al. 2019. Analysis of two warm-sector heavy rain processes in western Sichuan Basin [J]. Meteorological Science and Technology (in Chinese), 47(5): 795−808. doi: 10.19517/j.1671-6345.20180405 [33] 曾智琳, 谌芸, 朱克云, 等. 2018. 2017年“5.7”广州特大暴雨的中尺度特征分析与成因初探 [J]. 热带气象学报, 34(6): 791−805. doi: 10.16032/j.issn.1004-4965.2018.06.008Zeng Zhilin, Chen Yun, Zhu Keyun, et al. 2018. Mesoscale characteristic analysis and primary discussion on the formation of the 7 May 2017 torrential rainfall in Guangzhou [J]. Journal of Tropical Meteorology (in Chinese), 34(6): 791−805. doi: 10.16032/j.issn.1004-4965.2018.06.008 [34] Zhang Y C, Sun J H, Fu S M. 2014. Impacts of diurnal variation of mountain–plain solenoid circulations on precipitation and vortices east of the Tibetan Plateau during the Mei-yu season [J]. Adv. Atmos. Sci., 31(1): 139−153. doi: 10.1007/s00376-013-2052-0 [35] 张元春, 李娟, 孙建华. 2019. 青藏高原热力对四川盆地西部一次持续性暴雨影响的数值模拟 [J]. 气候与环境研究, 24(1): 37−49. doi: 10.3878/j.issn.1006-9585.2018.17166Zhang Yuanchun, Li Juan, Sun Jianhua. 2019. Numerical simulation of impacts of the Tibetan Plateau heating on a persistent heavy rainfall in western Sichuan Basin [J]. Climatic and Environmental Research (in Chinese), 24(1): 37−49. doi: 10.3878/j.issn.1006-9585.2018.17166 [36] Zhang Y H, Xue M, Zhu K F, et al. 2019. What is the main cause of diurnal variation and nocturnal peak of summer precipitation in Sichuan Basin, China? The key role of boundary layer low-level jet inertial oscillations [J]. J. Geophys. Res., 124(5): 2643−2664. doi: 10.1029/2018JD029834 [37] Zhang F, Zhang Q H, Sun J Z. 2021. Initiation of an elevated mesoscale convective system with the influence of complex terrain during Meiyu season [J]. J. Geophys. Res., 126(1): e2020JD033416. doi: 10.1029/2020JD033416 [38] 赵庆云, 傅朝, 刘新伟, 等. 2017. 西北东部暖区大暴雨中尺度系统演变特征 [J]. 高原气象, 36(3): 697−704. doi: 10.7522/j.issn.1000-0534.2016.00140Zhao Qingyun, Fu Zhao, Liu Xinwei, et al. 2017. Characteristics of mesoscale system evolution of torrential rain in warm sector over Northwest China [J]. Plateau Meteorology (in Chinese), 36(3): 697−704. doi: 10.7522/j.issn.1000-0534.2016.00140 [39] Zhong L Z, Mu R, Zhang D L, et al. 2015. An observational analysis of warm-sector rainfall characteristics associated with the 21 July 2012 Beijing extreme rainfall event [J]. J. Geophys. Res., 120(8): 3274−3291. doi: 10.1002/2014JD022686 [40] 周玉淑, 颜玲, 吴天贻, 等. 2019. 高原涡和西南涡影响的两次四川暴雨过程的对比分析 [J]. 大气科学, 43(4): 813−830. doi: 10.3878/j.issn.1006-9895.1807.18147Zhou Yushu, Yan Ling, Wu Tianyi, et al. 2019. Comparative analysis of two rainstorm processes in Sichuan Province affected by the Tibetan Plateau Vortex and Southwest Vortex [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 43(4): 813−830. doi: 10.3878/j.issn.1006-9895.1807.18147 -