Physically Consistent Atmospheric Variational Objective Analysis Model and Its Applications over the Tibetan Plateau. Part II: Characteristics of Cloud–Precipitation, Heat, and Moisture in the Naqu Region
-
摘要: 本文利用约束变分客观分析法构建的物理协调大气变分客观分析模型,通过融合地面、探空、卫星等多源观测资料和ERA-Interim再分析资料,建立了青藏高原那曲试验区5年(2013~2017年)长时间序列的热力、动力相协调的大气分析数据集,并以此分析那曲试验区大气的基本环境特征与云—降水演变和大气动力、热力的垂直结构。分析表明:(1)试验区350 hPa以上风速的季节变化非常明显,风速在冬季11月至次年2月达到最大(>50 m s−1),盛夏7~8月风速的垂直变化最弱,温度的垂直变化最强,大气高湿区在夏秋雨季位于350~550 hPa,在冬春干季升至300~400 hPa。(2)试验区6~7月上旬降水最多;春、秋、冬三季,300~400 hPa高度层作为大气上升运动和下沉运动的交界处,是云量的集中区;夏季,增多的水汽和增强的大气上升运动导致高云和总云量明显增多,中、低云减少。(3)夏季的地表潜热通量与大气总的潜热释放最强,大气净辐射冷却最弱,高原地区较强的地面感热导致试验区500 hPa以下的近地面全年存在暖平流,500 hPa以上则由于强烈的西风和辐射冷却存在冷平流。此外,试验区整层大气全年以干平流为主,但在夏季出现了较弱的湿平流。(4)视热源Q1具有明显的垂直分层特征:全年500 hPa以下大气表现为冷源,300~500 hPa和100~150 hPa表现为热源,150~300 hPa则在冬春干季表现为冷源,在夏秋雨季表现为热源,不同高度层的冷、热源的形成原因不同,其中夏季由于增强的上升运动、感热垂直输送和水汽凝结潜热以及高云的形成,因此几乎整层大气表现为热源。
-
关键词:
- 物理协调大气变分客观分析模型 /
- 那曲试验区 /
- 云—降水 /
- 上升运动 /
- 热源结构
Abstract: This study sets up a long-term (2013–2017) dynamically and thermodynamically consistent atmospheric dataset over the Tibetan Plateau-Naqu analysis region that is derived by a constrained variational objective analysis with ground-based, sounding, and satellite measurements as well as ERA-Interim reanalysis data. Annual evolutions of atmospheric basic environments, cloud precipitation, and large-scale dynamic and thermal structures in the Naqu analysis region are analyzed using averaged results from the five-year dataset. Results show that: (1) The seasonal variation of the wind speed above 350 hPa is significant with a maximum (>50 m s−1) from November to February in the next year. The vertical variation of the wind speed is the weakest, while that of the temperature is the strongest from July to August. The high-humidity area is located at 350–550 hPa in summer and autumn but at 300–400 hPa in winter and spring. (2) There is rich precipitation in the analysis region from June to early July. The 300–400 hPa layer (as the junction of atmospheric ascending and descending motion) is the cloud concentration area in spring, autumn, and winter. However, the enhanced atmospheric ascending convection and water vapor in summer lead to an increase of high clouds and total clouds and a decrease of medium and low clouds. (3) The surface latent heat flux and the total air-column latent heat are the strongest, whereas the air-column net radiative cooling is the weakest in summer. The strong surface sensible heating in the plateau results in the horizontal warm advection below 500 hPa, while the strong westerly and radiative cooling cause the cold advection above 500 hPa. In addition, the analysis region is characterized by dry advection in the whole year. However, there is a weak moist advection in summer. (4) The apparent heat source Q1 has obvious vertical stratification characteristics, i.e., showing diabatic cooling below 500 hPa and diabatic heating in 300–500 hPa and 100–150 hPa in the whole year. Meanwhile, the 150–300 hPa layer has diabatic cooling in the dry seasons (winter and spring) and diabatic heating in the wet seasons (from the end of spring to autumn). In summer, the entire air column is almost dominated by the diabatic heating because of the enhanced ascending motion, net latent heating, transport of sensible heat by rising turbulence, and existence of high clouds. -
图 1 2014年8月那曲站地表(a)感热通量和(b)潜热通量的时间变化。实线为那曲站边界层综合观测结果,虚线为ERA-Interim再分析资料结果
Figure 1. Time series of surface (a) sensible heat flux and (b) latent heat flux at Naqu station in August 2014. The solid lines denote results from the boundary-layer at Naqu station, the dashed lines denote results from the ERA-Interim reanalysis data
图 2 2013~2017年青藏高原那曲试验区物理协调大气变分客观分析模型输出的平均的(a、b)风速(单位:m s−1)、(c、d)气温(单位:°C)、(e、f)相对湿度:(a、c、e)高空场;(b)10 m风速;(d)2 m气温;(f)2 m相对湿度。紫色线、绿色线、红色线和蓝色线分别为02、08、14和20时(北京时,下同)的结果,黑线为日平均的结果
Figure 2. (a, b) Wind speed (units: m s−1), (c, d) temperature (units: °C), and (e, f) relative humidity derived from the physically consistent atmospheric variational objective analysis model averaged in the Tibetan Plateau-Naqu analysis region during 2013–2017: (a, c, e) Upper-level fields; (b) 10-m wind speed, (d) 2-m temperature; (f) 2-m relative humidity. The purple, green, red, and blue lines denote the results at 0200 BJT (Beijing time), 0800 BJT, 1400 BJT, and 2000 BJT, respectively, the black lines correspond to the result of the daily average
图 3 2013~2017年青藏高原那曲试验区(a)CERES观测和(b)ERA5再分析资料平均的总云量(黑线)、低云量(紫线)、中云量(蓝线)和高云量(红线),(c)ERA5再分析资料云量的高度—时间剖面
Figure 3. Total cloud fraction (black line), low cloud fraction (purple line), mid cloud fraction (blue line), and high cloud fraction (red line) obtained from (a) CERES (Clouds and the Earth’ s Radiant Energy System) and (b) ERA5-reanalysis data averaged in the Tibetan Plateau-Naqu analysis region during 2013–2017. (c) Time–pressure cross section of cloud fraction obtained from ERA5-reanalysis data averaged in the Tibetan Plateau-Naqu analysis region during 2013–2017
图 4 2013~2017年青藏高原那曲试验区物理协调大气变分客观分析模型输出的平均的(a)地面降水率(实线)和蒸发率(点线),(b)地表感热通量(实线)和潜热通量(点线),(c)整层大气总潜热加热(点线)、净辐射加热(虚线)、总热量平流(细实线)和局地热量收支变化(粗实线),(d)整层大气总水汽平流(实线)和局地水汽收支变化(点线)
Figure 4. Heat and moisture budgets derived from the physically consistent atmospheric variational objective analysis model averaged in the Tibetan Plateau-Naqu analysis region during 2013–2017: (a) Surface rain rate (solid line) and evaporation rate (dotted line); (b) surface sensible (solid line) and latent (dotted line) heat fluxes; (c) column-integrated latent heating (dotted line), net radiative heating (dashed line), total heat advection (thin solid line), and local heat storage (thick solid line); (d) column-integrated total moisture advection (solid line) and local moisture storage (dotted line)
图 5 2013~2017年青藏高原那曲试验区物理协调大气变分客观分析模型输出的平均的垂直速度(单位:hPa h−1):(a)时间—高度剖面,黑色线为地面降水率(单位:mm d−1);(b)春(紫色线)、夏(绿色线)、秋(红色线)、冬(蓝色线)四季及年平均(黑线)的垂直廓线
Figure 5. Vertical velocity (units: hPa h−1) derived from the physically coordinated atmospheric analysis model in the Tibetan Plateau-Naqu analysis region during 2013–2017: (a) Time–pressure cross section, the black line represents the surface rainfall rate (units: mm d−1); (b) profiles for spring (purple line), summer (green line), autumn (red line), winter (blue line), and annual mean (black line)
图 9 2013~2017年青藏高原那曲试验区物理协调大气变分客观分析模型输出的平均的整层大气垂直积分后的Q1(黑色粗线)、Q2(黑色细线)和Q1-Q2-Qrad(灰色线)
Figure 9. Column-integrated Q1 (bold black line), Q2 (thin black line), and Q1-Q2-Qrad (gray line) derived from the physically coordinated atmospheric analysis model in the Tibetan Plateau-Naqu analysis region during 2013–2017. Qrad represents the net column-integrated radiative heating
-
[1] 敖婷, 李跃清. 2015. 夏季青藏高原及周边热力特征与东亚降水的区域关系 [J]. 高原气象, 34(5): 1204−1216. doi: 10.7522/j.issn.1000-0534.2014.00100Ao Ting, Li Yueqing. 2015. Summertime thermal characteristics over Qinghai–Xizang Plateau and surrounding areas and its relationship with precipitation in East Asia [J]. Plateau Meteorology (in Chinese), 34(5): 1204−1216. doi: 10.7522/j.issn.1000-0534.2014.00100 [2] Bao H Y, Yang K, Wang C H. 2017. Characteristics of GLDAS soil-moisture data on the Tibet Plateau [J]. Sciences in Cold and Arid Regions, 9(2): 127−141. [3] Barnett T P, Dümenil L, Schlese U, et al. 1989. The effect of Eurasian snow cover on regional and global climate variations [J]. J. Atmos. Sci., 46(5): 661−686. doi: 10.1175/1520-0469(1989)046<0661:TEOESC>2.0.CO;2 [4] 伯玥, 王艺, 李嘉敏, 等. 2016. 青藏高原地区云水时空变化特征及其与降水的联系 [J]. 冰川冻土, 38(6): 1679−1690. doi: 10.7522/j.issn.1000-0240.2016.0195Bo Yue, Wang Yi, Li Jiamin, et al. 2016. Temporal and spatial variation features of cloud water and its relation to precipitation over the Tibetan Plateau [J]. Journal of Glaciology and Geocryology (in Chinese), 38(6): 1679−1690. doi: 10.7522/j.issn.1000-0240.2016.0195 [5] Chen L X, Reiter E R, Feng Z Q. 1985. The atmospheric heat source over the Tibetan Plateau: May–August 1979 [J]. Mon. Wea. Rev., 113(10): 1771−1790. doi: 10.1175/1520-0493(1985)113<1771:tahsot>2.0.co;2 [6] Chen L X, Schmidt F, Li W. 2003. Characteristics of the atmospheric heat source and moisture sink over the Qinghai–Tibetan Plateau during the second TIPEX of summer 1998 and their impact on surrounding monsoon [J]. Meteor. Atmos. Phys., 83(1): 1−18. doi: 10.1007/s00703-002-0546-x [7] Chen B, Xu X D, Yang S, et al. 2012. On the origin and destination of atmospheric moisture and air mass over the Tibetan Plateau [J]. Theor. Appl. Climatol., 110(3): 423−435. doi: 10.1007/s00704-012-0641-y [8] Chen J H, Wu X Q, Yin Y, et al. 2015. Characteristics of heat sources and clouds over eastern China and the Tibetan Plateau in boreal summer [J]. J. Climate, 28(18): 7279−7296. doi: 10.1175/JCLI-D-14-00859.1 [9] 戴晓燕. 2005. 青藏高原中尺度对流系统东移与长江流域暴雨过程的关系研究 [D]. 华东师范大学硕士学位论文. Dai Xiaoyan. 2005. A study on the relationship between the trajectories of mesoscale convective system over the Tibetan Plateau and intensive precipitation in the Yangtze River basin [D]. M. S. thesis (in Chinese), East China Normal University. [10] Duan A M, Wu G X. 2010. Weakening trend in the atmospheric heat source over the Tibetan Plateau during recent decades. Part I: Observations [J]. J. Climate, 21(13): 3149−3164. doi: 10.1175/2007JCLI1912.1 [11] Fu Y F, Liu G S, Wu G X, et al. 2006. Tower mast of precipitation over the central Tibetan Plateau summer [J]. Geophys. Res. Lett., 33(5): L05802. doi: 10.1029/2005GL024713 [12] 傅慎明, 孙建华, 赵思雄, 等. 2011. 梅雨期青藏高原东移对流系统影响江淮流域降水的研究 [J]. 气象学报, 69(4): 581−600. doi: 10.11676/qxxb2011.051Fu Shenming, Sun Jianhua, Zhao Sixiong, et al. 2011. A study of the impacts of the eastward propagation of convective cloud systems over the Tibetan Plateau on the rainfall of the Yangtze–Huai River basin [J]. Acta Meteorologica Sinica (in Chinese), 69(4): 581−600. doi: 10.11676/qxxb2011.051 [13] 季国良, 姚兰昌, 袁福茂, 等. 1986. 1982年冬季青藏高原地面和大气的加热场特征 [J]. 中国科学B辑, 16(2): 214−224.Ji Guoliang, Yao Lanchang, Yuan Fumao, et al. 1986. Characteristics of surface and atmospheric heating over the Tibetan Plateau in the winter of 1982 [J]. Science in China Series B:Chemistry (in Chinese), 16(2): 214−224. [14] 姜晓玲. 2016. 青藏高原试验区物理协调大气分析模型的研究与应用 [D]. 中国气象科学研究院硕士学位论文. Jiang Xiaoling. 2016. Constrained objective analysis over Tibetan Plateau: Method and application [D]. M. S. thesis (in Chinese), Chinese Academy of Meteorological Sciences. [15] 江吉喜, 范梅珠. 2002. 夏季青藏高原上的对流云和中尺度对流系统 [J]. 大气科学, 26(2): 263−270. doi: 10.3878/j.issn.1006-9895.2002.02.12Jiang Jixi, Fan Meizhu. 2002. Convective clouds and mesoscale convective systems over the Tibetan Plateau in summer [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 26(2): 263−270. doi: 10.3878/j.issn.1006-9895.2002.02.12 [16] 江吉喜, 项续康, 范梅珠. 1996. 青藏高原夏季中尺度强对流系统的时空分布 [J]. 应用气象学报, 7(4): 473−478.Jiang Jixi, Xiang Xukang, Fan Meizhu. 1996. The spatial and temporal distributions of severe mesoscale convective systems over Tibetan Plateau in summer [J]. Journal of Applied Meteorological Science (in Chinese), 7(4): 473−478. [17] 李时越, 杨凯, 王澄海. 2018. 陆面模式CLM4.5在青藏高原土壤冻融期的偏差特征及其原因 [J]. 冰川冻土, 40(2): 322−334. doi: 10.7522/j.issn.1000-0240.2018.0037Li Shiyue, Yang Kai, Wang Chenghai. 2018. Bias characteristics of land surface model (CLM4.5) over the Tibetan Plateau during soil freezing-thawing period and its causes [J]. Journal of Glaciology and Geocryology (in Chinese), 40(2): 322−334. doi: 10.7522/j.issn.1000-0240.2018.0037 [18] 李文静, 罗斯琼, 郝晓华, 等. 2021. 青藏高原东部不同季节积雪过程对地表能量和土壤水热影响的观测研究 [J]. 高原气象, 40(3): 455−471. doi: 10.7522/j.issn.1000-0534.2020.000001Li Wenjing, Luo Siqiong, Hao Xiaohua, et al. 2021. Observations of east Qinghai–Xizang Plateau snow cover effects on surface energy and water exchange in different seasons [J]. Plateau Meteorology (in Chinese), 40(3): 455−471. doi: 10.7522/j.issn.1000-0534.2020.000001 [19] Luo H B, Yanai M. 1983. The large-scale circulation and heat sources over the Tibetan Plateau and surrounding areas during the early summer of 1979. Part I: Precipitation and kinematic analyses [J]. Mon. Wea. Rev., 111(5): 922−944. doi: 10.1175/1520-0493(1983)111<0922:TLSCAH>2.0.CO;2 [20] Luo H B, Yanai M. 1984. The large-scale circulation and heat sources over the Tibetan Plateau and surrounding areas during the early summer of 1979. Part II: Heat and moisture budgets [J]. Mon. Wea. Rev., 112(5): 966−989. doi: 10.1175/1520-0493(1984)112<0966:TLSCAH>2.0.CO;2 [21] Luo Y L, Zhang R H, Qian W M, et al. 2011. Intercomparison of deep convection over the Tibetan Plateau–Asian monsoon region and subtropical North America in boreal summer using CloudSat/CALIPSO data [J]. J. Climate, 24(8): 2164−2177. doi: 10.1175/2010jcli4032.1 [22] 满子豪, 翁白莎, 杨裕恒, 等. 2020. 青藏高原冻融过程期划分及发展趋势研究 [J]. 水电能源科学, 38(7): 16−19,29.Man Zihao, Weng Baisha, Yang Yuheng, et al. 2020. Study on division and development trend of freezing-thawing process period in the Qinghai–Tibet Plateau [J]. Water Resources and Power (in Chinese), 38(7): 16−19,29. [23] 庞紫豪. 2018. 基于物理协调大气分析模型的青藏高原试验区云和降水过程的研究 [D]. 中国气象科学研究院硕士学位论文. Pang Zihao. 2018. The analysis on characteristics of cloud and precipitation process in Tibetan Plateau experimental region based on constrained objective variational analysis [D]. M. S. thesis (in Chinese), Chinese Academy of Meteorological Sciences. [24] 庞紫豪, 王东海, 姜晓玲, 等. 2019. 基于变分客观分析方法的青藏高原试验区夏季对流降水过程热动力特征分析 [J]. 大气科学, 43(3): 511−524. doi: 10.3878/j.issn.1006-9895.1806.18135Pang Zihao, Wang Donghai, Jiang Xiaoling, et al. 2019. Analysis on thermodynamic characteristics of summer convective precipitation in the Qinghai–Tibet Plateau experimental region based on constrained objective variational analysis [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 43(3): 511−524. doi: 10.3878/j.issn.1006-9895.1806.18135 [25] Schumacher C, Zhang M H, Ciesielski P E. 2007. Heating structures of the TRMM field campaigns [J]. J. Atmos. Sci., 64(7): 2593−2610. doi: 10.1175/JAS3938.1 [26] 尚大成, 王澄海. 2006. 高原地表过程中冻融过程在东亚夏季风中的作用 [J]. 干旱气象, 24(3): 19−22. doi: 10.3969/j.issn.1006-7639.2006.03.004Shang Dacheng, Wang Chenghai. 2006. The effect of the frozen-thaw process in Tibetan Plateau on summer monsoon over eastern Asia [J]. Arid Meteorology (in Chinese), 24(3): 19−22. doi: 10.3969/j.issn.1006-7639.2006.03.004 [27] Sun G H, Hu Z Y, Ma Y M, et al. 2021. Analysis of local land atmosphere coupling characteristics over Tibetan Plateau in the dry and rainy seasons using observational data and ERA5 [J]. Science of The Total Environment, 774: 145138. doi: 10.1016/j.scitotenv.2021.145138 [28] Tang S Q, Xie S C, Zhang Y Y, et al. 2016. Large-scale vertical velocity, diabatic heating and drying profiles associated with seasonal and diurnal variations of convective systems observed in the GoAmazon2014/5 experiment [J]. Atmos. Chem. Phys., 16(22): 14249−14264. doi: 10.5194/acp-16-14249-2016 [29] Tao S Y, Ding Y H. 1981. Observational evidence of the influence of the Qinghai–Xizang (Tibet) Plateau on the occurrence of heavy rain and severe convective storms in China [J]. Bull. Amer. Meteor. Soc., 62(1): 23−30. doi: 10.1175/1520-0477(1981)062<0023:OEOTIO>2.0.CO;2 [30] Waliser D E, Ridout J A, Xie S, et al. 2002. Variational objective analysis for atmospheric field programs: A model assessment [J]. J. Atmos. Sci., 59(24): 3436−3456. doi: 10.1175/1520-0469(2002)059<3436:VOAFAF>2.0.CO;2 [31] 王澄海, 尚大成. 2007. 藏北高原土壤温、湿度变化在高原干湿季转换中的作用 [J]. 高原气象, 26(4): 677−685.Wang Chenghai, Shang Dacheng. 2007. Effect of the variation of the soil temperature and moisture in the transition from dry-season to wet-season over northern Tibet Plateau [J]. Plateau Meteorology (in Chinese), 26(4): 677−685. [32] 王澄海, 崔洋. 2011. 东亚夏季风建立前青藏高原地气温差变化特征 [J]. 气候与环境研究, 16(5): 586−596. doi: 10.3878/j.issn.1006-9585.2011.05.05Wang Chenghai, Cui Yang. 2011. Characteristics of the difference of temperature between surface and atmosphere over the Tibetan Plateau in the early stage of East Asian summer monsoon onset [J]. Climatic and Environmental Research (in Chinese), 16(5): 586−596. doi: 10.3878/j.issn.1006-9585.2011.05.05 [33] Wang C H, Dong W J, Wei Z G. 2003. A study on relationship between freezingthawing processes of the Qinghai–Xizang Plateau and the atmospheric circulation over East Asia [J]. Chinese Journal of Geophysics, 46(3): 438−448. doi: 10.1002/cjg2.3361 [34] 王澄海, 师锐, 左洪超. 2008. 青藏高原西部冻融期陆面过程的模拟分析 [J]. 高原气象, 27(2): 239−248.Wang Chenghai, Shi Rui, Zuo Hongchao. 2008. Analysis on simulation of characteristic of land surface in western Qinghai–Xizang Plateau during frozen and thawing [J]. Plateau Meteorology (in Chinese), 27(2): 239−248. [35] 王同美, 吴国雄, 宇婧婧. 2009. 春季青藏高原加热异常对亚洲热带环流和季风爆发的影响 [J]. 热带气象学报, 25(S1): 92−102. doi: 10.3969/j.issn.1004-4965.2009.Z1.011Wang Tongmei, Wu Guoxiong, Yu Jingjing. 2009. The influence of anomalous diabatic heating over Tibetan Plateau in spring on the Asian tropical circulation and monsoon onset [J]. Journal of Tropical Meteorology (in Chinese), 25(S1): 92−102. doi: 10.3969/j.issn.1004-4965.2009.Z1.011 [36] 王东海, 姜晓玲, 张春燕, 等. 2022. 物理协调大气变分客观分析模型及其在青藏高原的应用I: 方法与评估 [J]. 大气科学, 46(3): 621−644. doi: 10.3878/j.issn.1006-9895.2106.21068Wang Donghai, Jiang Xiaoling, Zhang Chunyan, et al. 2022. Physically consistent atmospheric variational objective analysis model and its applications over the Tibetan Plateau. Part I: Method and evaluation [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 46(3): 621−644. doi: 10.3878/j.issn.1006-9895.2106.21068 [37] Wielicki B A, Barkstrom B R, Harrison E F, et al. 1996. Clouds and the earth’s radiant energy system (CERES): An earth observing system experiment [J]. Bull. Amer. Meteor. Soc., 77(5): 853−868. doi: 10.1175/1520-0477(1996)077<0853:CATERE>2.0.CO;2 [38] Wu G X, Zhang Y S. 1998. Tibetan Plateau forcing and the timing of the monsoon onset over South Asia and the South China Sea [J]. Mon. Wea. Rev., 126(4): 913−927. doi: 10.1175/1520-0493(1998)126<0913:TPFATT>2.0.CO;2 [39] Xie S C, Cederwall R T, Zhang M H, et al. 2003. Comparison of SCM and CSRM forcing data derived from the ECMWF model and from objective analysis at the ARM SGP site [J]. J. Geophys. Res., 108(D16): 4499. doi: 10.1029/2003JD003541 [40] Xie S C, Hume T, Jakob C, et al. 2010. Observed large-scale structures and diabatic heating and drying profiles during TWP-ICE [J]. J. Climate, 23(1): 57−79. doi: 10.1175/2009JCLI3071.1 [41] Xie S C, Zhang Y Y, Giangrande S E, et al. 2014. Interactions between cumulus convection and its environment as revealed by the MC3E sounding array [J]. J. Geophys. Res.: Atmos., 119(20): 11784−11808. doi: 10.1002/2014JD022011 [42] 徐祥德, 陶诗言, 王继志, 等. 2002. 青藏高原—季风水汽输送“大三角扇型”影响域特征与中国区域旱涝异常的关系 [J]. 气象学报, 60(3): 257−266. doi: 10.3321/j.issn:0577-6619.2002.03.001Xu Xiangde, Tao Shiyan, Wang Jizhi, et al. 2002. The relationship between water vapor transport features of Tibetan Plateau–Monsoon “large triangle” affecting region and drought–flood abnormality of China [J]. Acta Meteorologica Sinica (in Chinese), 60(3): 257−266. doi: 10.3321/j.issn:0577-6619.2002.03.001 [43] 徐祥德, 赵天良, Lu Chungu, 等. 2014. 青藏高原大气水分循环特征 [J]. 气象学报, 72(6): 1079−1095. doi: 10.11676/qxxb2014.091Xu Xiangde, Zhao Tianliang, Lu Chungu, et al. 2014. Characteristics of the water cycle in the atmosphere over the Tibetan Plateau [J]. Acta Meteorologica Sinica (in Chinese), 72(6): 1079−1095. doi: 10.11676/qxxb2014.091 [44] 徐祥德, 董李丽, 赵阳, 等. 2019. 青藏高原“亚洲水塔”效应和大气水分循环特征 [J]. 科学通报, 64(27): 2830−2841. doi: 10.1360/TB-2019-0203Xu Xiangde, Dong Lili, Zhao Yang, et al. 2019. Effect of the Asian Water Tower over the Qinghai–Tibet Plateau and the characteristics of atmospheric water circulation [J]. Chinese Science Bulletin (in Chinese), 64(27): 2830−2841. doi: 10.1360/TB-2019-0203 [45] 严晓强, 胡泽勇, 孙根厚, 等. 2019. 那曲高寒草地长时间地面热源特征及其气候影响因子分析 [J]. 高原气象, 38(2): 253−263. doi: 10.7522/j.issn.1000-0534.2018.00091Yan Xiaoqiang, Hu Zeyong, Sun Genhou, et al. 2019. Characteristics of long-term surface heat source and its climate influence factors in Naqu alpine meadow [J]. Plateau Meteorology (in Chinese), 38(2): 253−263. doi: 10.7522/j.issn.1000-0534.2018.00091 [46] Yanai M, Li C F. 1994. Mechanism of heating and the boundary layer over the Tibetan Plateau [J]. Mon. Wea. Rev., 122(2): 305−323. doi: 10.1175/1520-0493(1994)122<0305:MOHATB>2.0.CO;2 [47] Yanai M, Esbensen S, Chu J H. 1973. Determination of bulk properties of tropical cloud clusters from large-scale heat and moisture budgets [J]. J. Atmos. Sci., 30(4): 611−627. doi: 10.1175/1520-0469(1973)030<0611:DOBPOT>2.0.CO;2 [48] Yanai M, Li C F, Song Z S. 1992. Seasonal heating of the Tibetan Plateau and its effects on the evolution of the Asian summer monsoon [J]. J. Meteor. Soc. Japan. Ser. II, 70(1B): 319−351. doi: 10.2151/jmsj1965.70.1B_319 [49] 杨凯. 2020. 青藏高原冻融过程与地表非绝热加热异常对东亚气候影响的研究 [D]. 兰州大学博士学位论文. Yang Kai. 2020. Study on the impacts of soil freeze-thaw process and surface diabatic heating anomalies over Tibetan Plateau on climate in East Asia [D]. Ph. D. dissertation (in Chinese), Lanzhou University. [50] Yang K, Wu H, Qin J, et al. 2014. Recent climate changes over the Tibetan Plateau and their impacts on energy and water cycle: A review [J]. Global and Planetary Change, 112: 79−91. doi: 10.1016/j.gloplacha.2013.12.001 [51] 叶笃正. 1988. 夏季青藏高原上空热力结构、对流活动和与之相关的大尺度环流现象 [J]. 大气科学, 12(S1): 1−12. doi: 10.3878/j.issn.1006-9895.1988.t1.01Ye Duzheng. 1988. The thermal structure and the convective activity over Qinghai–Tibetan Plateau in summer and their interactions with large-scale circulation [J]. Chinese Journal of Atmospheric Sciences (Scientia Atmospherica Sinica) (in Chinese), 12(S1): 1−12. doi: 10.3878/j.issn.1006-9895.1988.t1.01 [52] 叶笃正, 高由禧. 1979. 青藏高原气象学 [M]. 北京: 科学出版社. Ye Duzheng, Gao Youxi. 1979. Meteorology of the Tibetan Plateau [M]. Beijing: China Science Publishing & Media Ltd CSPM). [53] 叶笃正, 顾震潮. 1955. 西藏高原对于东亚大气环流及中国天气的影响 [J]. 科学通报, 6(6): 29−33. doi: 10.1360/csb1955-0-6-29Ye Duzheng, Gu Zhenchao. 1955. Impacts of the Tibetan Plateau on East Asian atmospheric circulation and Chinese weather [J]. Chinese Science Bulletin, 6(6): 29−33. doi: 10.1360/csb1955-0-6-29 [54] 叶笃正, 罗四维, 朱抱真. 1957. 西藏高原及其附近的流场结构和对流层大气的热量平衡 [J]. 气象学报, 28(2): 108−121. doi: 10.11676/qxxb1957.010Yeh T C, Lo S W, Chu P C. 1957. The wind structure and heat balance in the lower troposphere over Tibetan Plateau and its surrounding [J]. Acta Meteorologica Sinica (in Chinese), 28(2): 108−121. doi: 10.11676/qxxb1957.010 [55] 郁淑华. 2008. 夏季青藏高原低涡研究进展述评 [J]. 暴雨灾害, 27(4): 367−372. doi: 10.3969/j.issn.1004-9045.2008.04.016Yu Shuhua. 2008. New research advances of the Tibetan Plateau vortex in summer [J]. Torrential Rain and Disasters, 27(4): 367−372. doi: 10.3969/j.issn.1004-9045.2008.04.016 [56] Zhang M H, Lin J L. 1997. Constrained variational analysis of sounding data based on column-integrated budgets of mass, heat, moisture, and momentum: Approach and application to ARM measurements [J]. J. Atmos. Sci., 54(11): 1503−1524. doi: 10.1175/1520-0469(1997)054<1503:CVAOSD>2.0.CO;2 [57] 张人禾, 周顺武. 2008. 青藏高原气温变化趋势与同纬度带其他地区的差异以及臭氧的可能作用 [J]. 气象学报, 66(6): 916−925. doi: 10.3321/j.issn:0577-6619.2008.06.007Zhang Renhe, Zhou Shunwu. 2008. The air temperature change over the Tibetan Plateau during 1979–2002 and its possible linkage with ozone depletion [J]. Acta Meteorologica Sinica (in Chinese), 66(6): 916−925. doi: 10.3321/j.issn:0577-6619.2008.06.007 [58] Zhang M H, Somerville R C J, Xie S C. 2016. The SCM concept and creation of ARM forcing datasets [J]. Meteor. Monogr., 57(1): 24.1−24.12. doi: 10.1175/AMSMONOGRAPHS-D-15-0040.1 [59] Zhang M H, Lin J L, Cederwall R T, et al. 2001. Objective analysis of ARM IOP data: Method and sensitivity [J]. Mon. Wea. Rev., 129(2): 295−311. doi: 10.1175/1520-0493(2001)129<0295:OAOAID>2.0.CO;2 [60] 张顺利, 陶诗言, 张庆云, 等. 2001. 1998年夏季中国暴雨洪涝灾害的气象水文特征 [J]. 应用气象学报, 12(4): 442−457. doi: 10.3969/j.issn.1001-7313.2001.04.007Zhang Shunli, Tao Shiyan, Zhang Qingyun, et al. 2001. Meteorological and hydrological characteristics of severe flooding in China during the summer of 1998 [J]. Quarterly Journal of Applied Meteorology (in Chinese), 12(4): 442−457. doi: 10.3969/j.issn.1001-7313.2001.04.007 [61] 张璐, 王慧, 石兴东, 等. 2020. 青藏高原中东部地表感热趋势转折特征及成因分析 [J]. 高原气象, 39(5): 912−924. doi: 10.7522/j.issn.1000-0534.2020.00050Zhang Lu, Wang Hui, Shi Xingdong, et al. 2020. Characteristics and causes of surface sensible heat trend transition in central and eastern Qinghai–Xizang Plateau [J]. Plateau Meteorology (in Chinese), 39(5): 912−924. doi: 10.7522/j.issn.1000-0534.2020.00050 [62] Zhang C Y, Wang D H, Pang Z H, et al. 2021. Observed large-scale structures and diabatic heating profiles of precipitation over the Tibetan Plateau and South China [J]. J. Geophys. Res. :Atmos., 126(7): e2020JD033949. doi: 10.1029/2020JD033949 [63] 赵平, 陈隆勋. 2001. 35年来青藏高原大气热源气候特征及其与中国降水的关系 [J]. 中国科学(D辑), 31(4): 327–332. Zhao Ping, Chen Longxun. 2001. Climatic features of atmospheric heat source/sink over the Qinghai–Xizang Plateau in 35 years and its relation to rainfall in China [J]. Science in China Series D: Earth Sciences, 44(9): 858–864. doi: 10.3969/j.issn.1674-7240.2001.04.009 [64] 赵玉春, 王叶红. 2010. 高原涡诱生西南涡特大暴雨成因的个例研究 [J]. 高原气象, 29(4): 819−831.Zhao Yuchun, Wang Yehong. 2010. A case study on plateau vortex inducing southwest vortex and producing extremely heavy rain [J]. Plateau Meteorology (in Chinese), 29(4): 819−831. [65] 赵平, 李跃清, 郭学良, 等. 2018. 青藏高原地气耦合系统及其天气气候效应: 第三次青藏高原大气科学试验 [J]. 气象学报, 76(6): 833−860. doi: 10.11676/qxxb2018.060Zhao Ping, Li Yueqing, Guo Xueliang, et al. 2018. The Tibetan Plateau surface–atmosphere coupling system and its weather and climate effects: The Third Tibetan Plateau Atmospheric Scientific Experiment [J]. Acta Meteorologica Sinica (in Chinese), 76(6): 833−860. doi: 10.11676/qxxb2018.060 [66] Zhao P, Xu X D, Chen F, et al. 2018. The third atmospheric scientific experiment for understanding the earth–atmosphere coupled system over the Tibetan Plateau and its effects [J]. Bull. Amer. Meteor. Soc., 99(4): 757−776. doi: 10.1175/BAMS-D-16-0050.1 [67] 钟珊珊. 2011. 青藏高原大气热源结构特征及其对中国降水的影响[D]. 南京信息工程大学博士学位论文, 127ppZhong Shanshan. 2011. Structure of Qinghai–Tibetan Plateau heating and its impacts on precipitation in China [D]. Ph. D. dissertation (in Chinese), Nanjing University of Information Science & Technology, 127pp. [68] Zhou S W, Zhang R H. 2005. Decadal variations of temperature and geopotential height over the Tibetan Plateau and their relations with Tibet ozone depletion [J]. Geophys. Res. Lett., 32: L18705. doi: 10.1029/2005GL023496 [69] 朱丽华, 范广洲, 华维. 2015. 全球变暖背景下青藏高原夏季气温在对流层上下反相变化及其与降水和环流的关系 [J]. 大气科学, 39(6): 1250−1262. doi: 10.3878/j.issn.1006-9895.1503.14249Zhu Lihua, Fan Guangzhou, Hua Wei. 2015. Reversed phase change of the temperature in the upper and lower troposphere over the Tibetan Plateau in summer and its relationships to precipitation and atmospheric circulation under the background of global warming [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 39(6): 1250−1262. doi: 10.3878/j.issn.1006-9895.1503.14249 -