高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于Ka波段云雷达观测的中国西天山降雨云宏微观物理特征研究

张晋茹 杨莲梅 刘凡 李建刚 周玉淑

张晋茹, 杨莲梅, 刘凡, 等. 2023. 基于Ka波段云雷达观测的中国西天山降雨云宏微观物理特征研究[J]. 大气科学, 47(3): 756−768 doi: 10.3878/j.issn.1006-9895.2112.21112
引用本文: 张晋茹, 杨莲梅, 刘凡, 等. 2023. 基于Ka波段云雷达观测的中国西天山降雨云宏微观物理特征研究[J]. 大气科学, 47(3): 756−768 doi: 10.3878/j.issn.1006-9895.2112.21112
ZHANG Jinru, YANG Lianmei, LIU Fan, et al. 2023. Macro–Micro Physical Characteristics of Rainfall Clouds in the West Tianshan Mountains Based on Ka-Band Cloud Radar [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 47(3): 756−768 doi: 10.3878/j.issn.1006-9895.2112.21112
Citation: ZHANG Jinru, YANG Lianmei, LIU Fan, et al. 2023. Macro–Micro Physical Characteristics of Rainfall Clouds in the West Tianshan Mountains Based on Ka-Band Cloud Radar [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 47(3): 756−768 doi: 10.3878/j.issn.1006-9895.2112.21112

基于Ka波段云雷达观测的中国西天山降雨云宏微观物理特征研究

doi: 10.3878/j.issn.1006-9895.2112.21112
基金项目: 国家重点研发计划“重大自然灾害监测预警与防范”重点专项2018YFC1507102,国家自然科学基金项目U2003106,新疆维吾尔自治区引进高层次人才天池计划项目(2019)
详细信息
    作者简介:

    张晋茹,女,1992出生,硕士,助理研究员,主要从事大气探测研究。E-mail: 751639350@qq.com

    通讯作者:

    杨莲梅,E-mail: yanglm@idm.cn;李建刚,E-mail:shzljg_qxj@163.com

  • 中图分类号: P412

Macro–Micro Physical Characteristics of Rainfall Clouds in the West Tianshan Mountains Based on Ka-Band Cloud Radar

Funds: National Key Research and Development Program "Monitoring, Warning and Prevention of Major Natural Disasters" Key Project (Grant 2018YFC1507102), National Natural Science Foundation of China (Grant U2003106), Flexible Talents Introducing Project of Xinjiang (2019)
  • 摘要: 利用Ka毫米波云雷达与自动气象站降雨资料,研究了西天山地区2019年和2020年5~8月的降雨云宏微观特性。结果表明:(1)降雨主要发生在夜间,累积降雨量集中在21:00(北京时间,下同)至次日07:00,降雨频次和累积降雨量相关系数为0.71。大雨强频次虽最少,但对总累积降雨量贡献较显著。(2)小雨强、中雨强、大雨强平均反射率因子最大值分别为30 dBZ、35.8 dBZ和39.5 dBZ,最大平均液态水含量分别为1.5 g m−3、4.2 g m−3和7.3 g m−3。(3)不同降雨强度对应的反射率因子都有两个集中区域,2.0~4.4 km反射率因子集中在15~26 dBZ,地面附近的小雨强、中雨强、大雨强对应的反射率因子分别集中在24~32 dBZ、29~38 dBZ和31~42 dBZ。1.75 km以下中雨强和大雨强液态含水量小于1 g m−3的频率明显少于小雨强,降雨强度的越大降雨粒子径向速度越集中。
  • 图  1  新源气象站位置(43°27′ N,83°18′ E,海拔:928 m)和毫米波云雷达、雨量计图

    Figure  1.  Location of Xinyuan Meteorological Station (XY, 43°27′ N, 83°18′ E, 928 m above sea level) and the photos of the millimeter-wave cloud and rain gauge

    图  2  2019年5月5日新源气象站05:00~14:00降雨时反射率因子高度—时空分布

    Figure  2.  Height–time distribution of reflectivity factor during rainfall at XY from 0500 BJT (Beijing time) to 1400 BJT on 5 May 2019

    图  3  新源气象站降雨频次、累积降雨量日变化(2019年5~8月、2020年5~8月数据)

    Figure  3.  Diurnal variation of rainfall frequency and cumulative rainfall at XY (Data for May–August 2019 and May–August 2020)

    图  4  新源气象站各雨强(a)降雨频次、(b)累积降雨量日变化(2019年5~8月、2020年5~8月数据)

    Figure  4.  Diurnal variation of the (a) rainfall frequency and (b) cumulative rainfall of each rainfall intensity at XY (Data for May–August 2019 and May–August 2020)

    图  5  新源气象站降雨云顶高的日变化箱型图(2019年5~8月、2020年5~8月数据)

    Figure  5.  Box plot of diurnal variation of rainfall cloud top height at XY (Data for May–August 2019 and May–August 2020)

    图  6  新源气象站反射率因子在降雨期间的归一化等频率高度图(2019年5~8月、2020年5~8月数据):(a)00:00~03:00;(b)03:00~06:00;(c)06:00~09:00;(d)09:00~12:00;(e)12:00~15:00;(f)15:00~18:00;(g)18:00~21:00;(h)21:00~24:00

    Figure  6.  Normalized contoured frequency by the altitude diagram of reflectivity factor during the rainfall period at XY (Data for May–August 2019 and May–August 2020): (a) 0000–0300 BJT; (b) 0300–0600 BJT; (c) 0600–0900 BJT; (d) 0900–1200 BJT; (e) 1200–1500 BJT; (f) 1500–1800 BJT; (g) 1800–2100 BJT; (h) 2100–2400 BJT

    图  7  新源气象站各雨强降雨云垂直廓线(2019年5~8月、2020年5~8月数据):(a)平均反射率因子;(b)平均液态含水量

    Figure  7.  Vertical profile of each heavy rain cloud at XY (Data for May–August 2019 and May–August 2020): (a) Average reflectivity factor; (b) average liquid water content (LWC)

    图  9  新源气象站降雨云液态含水量归一化等频率高度图(2019年5~8月、2020年5~8月数据):(a)小雨强;(b)中雨强;(c)大雨强

    Figure  9.  Normalized contoured frequency by the altitude diagram of rainfall cloud liquid water content at XY (Data for May–August 2019 and May–August 2020): (a) Light rain intensity; (b) moderate rain intensity; (c) heavy rain intensity

    图  8  新源气象站降雨云反射率因子归一化等频率高度图(2019年5~8月、2020年5~8月数据):(a)小雨强;(b)中雨强;(c)大雨强

    Figure  8.  Normalized contoured frequency by the altitude diagram of rainfall cloud reflectivity factor at XY (Data for May–August 2019 and May–August 2020): (a) Light rain intensity; (b) moderate rain intensity; (c) heavy rain intensity

    图  10  新源气象站降雨云径向速度归一化等频率高度图(2019年5~8月、2020年5~8月数据):(a)小雨强;(b)中雨强;(c)大雨强

    Figure  10.  Normalized contoured frequency by the altitude diagram of rainfall cloud radial velocity at XY (Data for May–August 2019 and May–August 2020): (a) Light rain intensity; (b) moderate rain intensity; (c) heavy rain intensity

    表  1  毫米波云雷达主要参数

    Table  1.   Main performance indexes of the Ka-band millimeter-wave cloud radar system

    参数名称参数值
    工作频率35 GHz±500 MHz
    波束宽度≤0.4°
    发射功率≤500 W
    天线增益≥52 dB
    天线直径1.8 m
    探测范围0.21~15 km
    时间分辨率1 min
    空间分辨率30 m
    发射波长8.6 mm
    下载: 导出CSV

    表  2  毫米波云雷达三种探测模式(边界层模式、中云模式、卷云模式)对应的工作参数

    Table  2.   Detailed parameters of the boundary layer, middle cloud, and cirrus observation modes of Ka-band millimeter-wave cloud radar

    项目边界层模式中云模式卷云模式
    脉冲宽度0.2 µs8 µs24 µs
    脉压比140120
    脉冲重复
    周期
    60 µs120 µs167 µs
    相干积
    累数
    211
    非相干积
    累数
    323232
    FTT点数256256256
    探测盲区210 m1.2 km3.8 km
    探测能力−18.23 dBZ@5 km−32.54 dBZ@5 km−30.78 dBZ@10 km
    下载: 导出CSV

    表  3  回波分类法经验公式

    Table  3.   Empirical formula of echo classification

    回波强度Z分类反演方法经验关系
    Z<−17 dBZLWC=4.564Ze0.5Atlas
    −17 dBZZ<5 dBZLWC=0.457Ze0.19Baedi
    Z≥5 dBZLWC=0.02584Ze0.633Krasnov
    下载: 导出CSV
  • [1] Ackerman T P, Stokes G M. 2003. The atmospheric radiation measurement program [J]. Phys. Today, 56(1): 38−44. doi: 10.1063/1.1554135
    [2] Atlas D. 1954. The estimation of cloud parameters by radar [J]. J. Atmos. Sci., 11(4): 309−317. doi: 10.1175/1520-0469(1954)011<0309:TEOCPB>2.0.CO;2
    [3] Baedi R J P, de Wit J J M, Russchenberg H W J, et al. 2000. Estimating effective radius and liquid water content from radar and lidar based on the CLARE98 data-set [J]. Phys. Chem. Earth, Part B: Hydrol. , Oceans Atmos., 25(10–12): 1057–1062. doi:10.1016/S1464-1909(00)00152-0
    [4] Bu L B, Pan H L, Kumar K R, et al. 2016. LIDAR and millimeter-wave cloud RADAR (MWCR) techniques for joint observations of cirrus in Shouxian (32.56˚N, 116.78˚E), China [J]. J. Atmos. Sol. -Terr. Phys., 148: 64−73. doi: 10.1016/j.jastp.2016.08.013
    [5] 常祎, 郭学良. 2016. 青藏高原那曲地区夏季对流云结构及雨滴谱分布日变化特征 [J]. 科学通报, 61(15): 1706−1720. doi: 10.1360/N972015-01292

    Chang Yi, Guo Xueliang. 2016. Characteristics of convective cloud and precipitation during summer time at Naqu over Tibetan Plateau [J]. Chinese Science Bulletin (in Chinese), 61(15): 1706−1720. doi: 10.1360/N972015-01292
    [6] Chen S S, Kerns B W, Guy N, et al. 2016. Aircraft observations of dry air, the ITCZ, convective cloud systems, and cold pools in MJO during DYNAMO [J]. Bull. Amer. Meteor. Soc., 97(3): 405−423. doi: 10.1175/BAMS-D-13-00196.1
    [7] 陈羿辰, 金永利, 丁德平, 等. 2018. 毫米波测云雷达在降雪观测中的应用初步分析 [J]. 大气科学, 42(1): 134−149. doi: 10.3878/j.issn.1006-9895.1705.17121

    Chen Yichen, Jin Yongli, Ding Deping, et al. 2018. Preliminary analysis on the application of millimeter wave cloud radar in snow observation [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 42(1): 134−149. doi: 10.3878/j.issn.1006-9895.1705.17121
    [8] Fu Y F, Lin Y H, Liu G S, et al. 2003. Seasonal characteristics of precipitation in 1998 over East Asia as derived from TRMM PR [J]. Adv. Atmos. Sci., 20(4): 511−529. doi: 10.1007/BF02915495
    [9] Guo J P, Liu H, Li Z Q, et al. 2018. Aerosol-induced changes in the vertical structure of precipitation: A perspective of TRMM precipitation radar [J]. Atmos. Chem. Phys., 18(18): 13329−13343. doi: 10.5194/acp-18-13329-2018
    [10] Harrison E F, Minnis P, Barkstrom B R, et al. 1990. Seasonal variation of cloud radiative forcing derived from the earth radiation budget experiment [J]. J. Geophys. Res.: Atmos., 95(D11): 18687−18703. doi: 10.1029/JD095iD11p18687
    [11] 黄秋霞, 赵勇, 何清. 2015a. 新疆伊犁河谷夏季降水日变化特征 [J]. 冰川冻土, 37(2): 369−375. doi: 10.7522/j.issn.1000-0240.2015.0040

    Huang Qiuxia, Zhao Yong, He Qing. 2015a. The daily variation characteristics of summer precipitation over the Yili River valley, Xinjiang [J]. Journal of Glaciology and Geocryology (in Chinese), 37(2): 369−375. doi: 10.7522/j.issn.1000-0240.2015.0040
    [12] 黄秋霞, 赵勇, 何清, 等. 2015b. 伊宁市主汛期降水日变化特征 [J]. 干旱区研究, 32(4): 742−747. doi: 10.13866/j.azr.2015.04.15

    Huang Qiuxia, Zhao Yong, He Qing, et al. 2015b. Daily variations characteristics of rainfall in flood season in Yining City [J]. Arid Zone Research (in Chinese), 32(4): 742−747. doi: 10.13866/j.azr.2015.04.15
    [13] Huang W, Chang S Q, Xie C L, et al. 2017. Moisture sources of extreme summer precipitation events in North Xinjiang and their relationship with atmospheric circulation [J]. Adv. Clim. Change Res., 8(1): 12−17. doi: 10.1016/j.accre.2017.02.001
    [14] 黄钰, 郭学良, 毕凯, 等. 2020. 北京延庆山区降雪云物理特征的垂直观测和数值模拟研究 [J]. 大气科学, 44(2): 356−370. doi: 10.3878/j.issn.1006-9895.1903.18258

    Huang Yu, Guo Xueliang, Bi Kai, et al. 2020. Vertical observation and numerical simulation of the clouds physical characteristics of snow-producing over Yanqing Mountain Area in Beijing [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 44(2): 356−370. doi: 10.3878/j.issn.1006-9895.1903.18258
    [15] Kollias P, Rémillard J, Luke E, et al. 2011. Cloud radar Doppler spectra in drizzling stratiform clouds: 1. Forward modeling and remote sensing applications [J]. J. Geophys. Res.: Atmos., 116(D13): D13201. doi: 10.1029/2010JD015237
    [16] Krasnov O A, Russchenberg H W J. 2005. A synergetic radar-lidar technique for the LWC retrieval in water clouds: Description and application to the Cloudnet data [C]//Proceedings of the 32nd Conference of Radar Meteorology.
    [17] 李海飞. 2018. 基于地基云雷达资料的淮南地区云宏微观特征研究[D]. 兰州大学硕士学位论文, 9–11

    Li Haifei. 2018. Macroscopic and microscopic characteristics of clouds based on ground-based cloud radar data in Huainan Area, China [D]. M. S. thesis (in Chinese), Lanzhou University, 9–11.
    [18] 李海飞, 乐满, 杨飞跃, 等. 2017. 基于地基云雷达资料的淮南地区冬季云宏观特征 [J]. 干旱气象, 35(6): 1011−1014,1035. doi: 10.11755/j.issn.1006-7639(2017)-06-1011

    Li Haifei, Yue Man, Yang Feiyue, et al. 2017. Analysis on macroscopic characteristics of winter cloud in Huainan Area of Anhui based on ground-based cloud radar data [J]. Journal of Arid Meteorology (in Chinese), 35(6): 1011−1014,1035. doi: 10.11755/j.issn.1006-7639(2017)-06-1011
    [19] 马宁堃, 刘黎平, 郑佳锋. 2019. 利用Ka波段毫米波雷达功率谱反演云降水大气垂直速度和雨滴谱分布研究 [J]. 高原气象, 38(2): 325−339. doi: 10.7522/j.issn.1000-0534.2018.00127

    Ma Ningkun, Liu Liping, Zheng Jiafeng. 2019. Application of Doppler spectral density data in vertical air motions and drop size distribution retrieval in cloud and precipitation by Ka-band millimeter radar [J]. Plateau Meteorology (in Chinese), 38(2): 325−339. doi: 10.7522/j.issn.1000-0534.2018.00127
    [20] Parish T R, Leon D. 2013. Measurement of cloud perturbation pressures using an instrumented aircraft [J]. J. Atmos. Oceanic Technol., 30(2): 215−229. doi: 10.1175/JTECH-D-12-00011.1
    [21] 彭亮, 陈洪滨, 李柏. 2012. 3mm多普勒云雷达测量反演云内空气垂直速度的研究 [J]. 大气科学, 36(1): 1−10. doi: 10.3878/j.issn.1006-9895.2012.01.01

    Peng Liang, Chen Hongbin, Li Bai. 2012. A case study of deriving vertical air velocity from 3-mm cloud radar [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 36(1): 1−10. doi: 10.3878/j.issn.1006-9895.2012.01.01
    [22] Qiu Y J, Lu C S, Luo S. 2019. Tibetan Plateau cloud structure and cloud water content derived from millimeter cloud radar observations in summer [J]. Pure Appl. Geophys., 176(4): 1785−1796. doi: 10.1007/s00024-018-2034-3
    [23] Reddy N N, Ratnam M V, Basha G, et al. 2018. Cloud vertical structure over a tropical station obtained using long-term high-resolution radiosonde measurements [J]. Atmos. Chem. Phys., 18(16): 11709−11727. doi: 10.5194/acp-18-11709-2018
    [24] Shupe M D. 2007. A ground-based multisensor cloud phase classifier [J]. Geophys. Res. Lett., 34(22): L22809. doi: 10.1029/2007GL031008
    [25] Stephens G L. 2005. Cloud feedbacks in the climate system: A critical review [J]. J. Climate, 18(2): 237−273. doi: 10.1175/JCLI-3243.1
    [26] Villalobos-Puma E, Martinez-Castro D, Flores-Rojas J L, et al. 2020. Diurnal cycle of raindrops size distribution in a valley of the Peruvian Central Andes [J]. Atmosphere, 11(1): 38. doi: 10.3390/atmos11010038
    [27] 汪会, 郭学良. 2018. 青藏高原那曲地区一次深对流云垂直结构的多源卫星和地基雷达观测对比分析 [J]. 气象学报, 76(6): 996−1013. doi: 10.11676/qxxb2018.049

    Wang Hui, Guo Xueliang. 2018. Comparative analyses of vertical structure of a deep convective cloud with multi-source satellite and ground-based radar observational data at Naqu over the Tibetan Plateau [J]. Acta Meteorologica Sinica (in Chinese), 76(6): 996−1013. doi: 10.11676/qxxb2018.049
    [28] 王柳柳, 刘黎平, 余继周, 等. 2017. 毫米波云雷达冻雨—降雪微物理和动力特征分析 [J]. 气象, 43(12): 1473−1486. doi: 10.7519/j.issn.1000-0526.2017.12.003

    Wang Liuliu, Liu Liping, Yu Jizhou, et al. 2017. Microphysics and dynamic characteristic analysis of freezing rain and snow observed by millimeter-wave radar [J]. Meteorological Monthly (in Chinese), 43(12): 1473−1486. doi: 10.7519/j.issn.1000-0526.2017.12.003
    [29] 王振会, 滕煦, 纪雷, 等. 2011. 球形粒子毫米波k-Z关系研究 [J]. 气象学报, 69(6): 1020−1028. doi: 10.11676/qxxb2011.089

    Wang Zhenhui, Teng Xu, Ji Lei, et al. 2011. A study of the relationship between the attenuation coefficient and radar reflectivity factor for spherical particles in clouds at millimeter wavelengths [J]. Acta Meteorologica Sinica (in Chinese), 69(6): 1020−1028. doi: 10.11676/qxxb2011.089
    [30] Wielicki B A, Cess R D, King M D, et al. 1995. Mission to planet earth: Role of clouds and radiation in climate [J]. Bull. Amer. Meteor. Soc., 76(11): 2125−2154. doi: 10.1175/1520-0477(1995)076<2125:MTPERO>2.0.CO;2
    [31] 吴翀, 刘黎平, 翟晓春. 2017. Ka波段固态发射机体制云雷达和激光云高仪探测青藏高原夏季云底能力和效果对比分析 [J]. 大气科学, 41(4): 659−672. doi: 10.3878/j.issn.1006-9895.1701.16170

    Wu Chong, Liu Liping, Zhai Xiaochun. 2017. The comparison of cloud base observations with Ka-band solid-state transmitter-based millimeter wave cloud radar and ceilometer in summer over Tibetan Plateau [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 41(4): 659−672. doi: 10.3878/j.issn.1006-9895.1701.16170
    [32] 杨莲梅, 李霞, 张广兴. 2011. 新疆夏季强降水研究若干进展及问题 [J]. 气候与环境研究, 1(2): 188−198. doi: 10.3878/j.issn.1006-9585.2011.02.08

    Yang Lianmei, Li Xia, Zhang Guangxing. 2011. Some advances and problems in the study of heavy rain in Xinjiang [J]. Climatic and Environmental Research (in Chinese), 1(2): 188−198. doi: 10.3878/j.issn.1006-9585.2011.02.08
    [33] Yi M J. 2019. Differences in cloud vertical structures between the Tibetan Plateau and Eastern China Plains during rainy season as measured by CloudSat/CALIPSO [J]. Adv. Meteorol., 2019: 6292930. doi: 10.1155/2019/6292930
    [34] Yin J F, Wang D H, Zhai G Q, et al. 2013. Observational characteristics of cloud vertical profiles over the continent of East Asia from the CloudSat data [J]. Acta Meteor. Sinica, 27(1): 26−39. doi: 10.1007/s13351-013-0104-0
    [35] 俞小鼎, 姚秀萍, 熊延南, 等. 2006. 多普勒天气雷达原理与业务应用[M]. 北京: 气象出版社, 31pp

    Yu Xiaoding, Yao Xiuping, Xiong Yannan, et al. 2006. Principle and Application of Doppler Weather Radar (in Chinese) [M]. Beijing: China Meteorological Press, 31pp.
    [36] Yuter S E, Houze R A Jr. 1995. Three-dimensional kinematic and microphysical evolution of Florida cumulonimbus. Part II: Frequency distributions of vertical velocity, reflectivity, and differential reflectivity [J]. Mon. Wea. Rev., 123(7): 1941−1963. doi: 10.1175/1520-0493(1995)123<1941:TDKAME>2.0.CO;2
    [37] Zeng Y, Yang L M. 2020. Triggering mechanism of an extreme rainstorm process near the Tianshan Mountains in Xinjiang, an Arid Region in China, based on a numerical simulation [J]. Adv. Meteorol., 2020: 8828060. doi: 10.1155/2020/8828060
    [38] 曾勇, 周玉淑, 杨莲梅. 2019. 新疆西部一次大暴雨形成机理的数值模拟初步分析 [J]. 大气科学, 43(2): 372−388. doi: 10.3878/j.issn.1006-9895.1804.18106

    Zeng Yong, Zhou Yushu, Yang Lianmei. 2019. A preliminary analysis of the formation mechanism for a heavy rainstorm in western Xinjiang by numerical simulation [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 43(2): 372−388. doi: 10.3878/j.issn.1006-9895.1804.18106
    [39] Zeng Y, Yang L M, Zhang Z Y, et al. 2020a. Characteristics of clouds and raindrop size distribution in Xinjiang, using cloud radar datasets and a disdrometer [J]. Atmosphere, 11(12): 1382. doi: 10.3390/atmos11121382
    [40] Zeng Y, Yang L M, Tong Z P, et al. 2020b. Application of multiple detection data in the analysis of snowstorm processes in Xinjiang during the Central Asia extreme precipitation observation test (CAEPOT) [J]. Adv. Meteorol., 2020: 8845667. doi: 10.1155/2020/8845667
    [41] Zeng Y, Yang L M, Tong Z P, et al. 2021. Statistical characteristics of raindrop size distribution during rainy seasons in Northwest China [J]. Adv. Meteorol., 2021: 6667786. doi: 10.1155/2021/6667786
    [42] 张晋茹, 杨莲梅. 2019. 基于毫米波云雷达的伊犁河谷两次强降雪过程云特征观测分析 [J]. 沙漠与绿洲气象, 13(5): 41−48. doi: 10.12057/j.issn.1002-0799.2019.05.006

    Zhang Jinru, Yang Lianmei. 2019. Observation and analysis of cloud characteristics in two heavy snowfall processes in Ili River Valley based on millimeter wave cloud radar [J]. Desert and Oasis Meteorology (in Chinese), 13(5): 41−48. doi: 10.12057/j.issn.1002-0799.2019.05.006
    [43] Zhang Y, Zhou Q, Lv S S, et al. 2019. Elucidating cloud vertical structures based on three-year Ka-band cloud radar observations from Beijing, China [J]. Atmos. Res., 222: 88−99. doi: 10.1016/j.atmosres.2019.02.007
    [44] Zhao C F, Liu L P, Wang Q Q, et al. 2016. Toward understanding the properties of high ice clouds at the Naqu Site on the Tibetan Plateau using ground-based active remote sensing measurements obtained during a short period in July 2014 [J]. J. Appl. Meteorol. Climatol., 55(11): 2493−2507. doi: 10.1175/JAMC-D-16-0038.1
    [45] Zheng J F, Liu L P, Chen H N, et al. 2019. Characteristics of warm clouds and precipitation in South China during the pre-flood season using datasets from a cloud radar, a ceilometer, and a disdrometer [J]. Remote Sensing, 11(24): 3045. doi: 10.3390/rs11243045
    [46] Zhou C, Zelinka M D, Klein S A. 2016. Impact of decadal cloud variations on the Earth’s energy budget [J]. Nat. Geosci., 9(12): 871−874. doi: 10.1038/ngeo2828
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  265
  • HTML全文浏览量:  69
  • PDF下载量:  98
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-01
  • 录用日期:  2022-02-24
  • 网络出版日期:  2022-03-07
  • 刊出日期:  2023-05-15

目录

    /

    返回文章
    返回