高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

极端暴雨威胁下的城市内涝风险预警系统研究

曹雪健 戚友存 李梦迪 杨志达 倪广恒

曹雪健, 戚友存, 李梦迪, 等. 2022. 极端暴雨威胁下的城市内涝风险预警系统研究[J]. 大气科学, 46(4): 953−964 doi: 10.3878/j.issn.1006-9895.2112.21191
引用本文: 曹雪健, 戚友存, 李梦迪, 等. 2022. 极端暴雨威胁下的城市内涝风险预警系统研究[J]. 大气科学, 46(4): 953−964 doi: 10.3878/j.issn.1006-9895.2112.21191
CAO Xuejian, QI Youcun, LI Mengdi, et al. 2022. Early Warning System of Urban Waterlogging under the Threat of Extreme Rainfall Events [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 46(4): 953−964 doi: 10.3878/j.issn.1006-9895.2112.21191
Citation: CAO Xuejian, QI Youcun, LI Mengdi, et al. 2022. Early Warning System of Urban Waterlogging under the Threat of Extreme Rainfall Events [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 46(4): 953−964 doi: 10.3878/j.issn.1006-9895.2112.21191

极端暴雨威胁下的城市内涝风险预警系统研究

doi: 10.3878/j.issn.1006-9895.2112.21191
基金项目: 国家重点研发计划项目2018YFC1507505,中国科学院百人计划
详细信息
    作者简介:

    曹雪健,男,1993年出生,博士研究生,主要从事城市水文气象研究。E-mail: caoxj17@163.com

    通讯作者:

    戚友存,E-mail: youcun.qi@igsnrr.ac.cn;倪广恒,E-mail: ghni@tsinghua.edu.cn

  • 中图分类号: P338

Early Warning System of Urban Waterlogging under the Threat of Extreme Rainfall Events

Funds: National Key Research and Development Program of China (Grant 2018YFC1507505), Hundred Talents Program of Chinese Academy of Sciences
  • 摘要: 传统内涝风险预报系统多基于单一降雨产品驱动城市水文水动力模型的模式,难以解决由于暴雨观测或数值模拟带来的不确定性问题。综合利用多源降雨(雷达、地面雨量计,地面雨滴谱)、积水观测数据,有利于提高内涝预报精度,改善风险空间描述。因此,为了进一步加强洪涝预测能力以更好地应对极端暴雨威胁,本研究提出了基于综合观测的城市内涝风险预警系统,并在北京市清河流域进行了初步实践和检验。该系统包含六个模块,融合了新兴的降雨积水观测技术,引入了主流的降雨临近预报方法,采用了成熟的城市雨洪模拟手段,可为道路交通提供实时的积水深度和风险等级,为城市内涝灾害应急管理提供内涝风险预测和预警产品。
  • 图  1  城市降雨综合观测设备:(a)雨量计;(b)雨滴谱仪;(c)天气雷达

    Figure  1.  Urban rainfall observation equipment: (a) Rain gauge; (b) disdrometer; (c) weather radar

    图  2  城市内涝灾害风险预警系统技术框架

    Figure  2.  Technical framework of the urban waterlogging warning system

    图  3  基于X波段双偏振雷达的混合降雨定量估计流程

    Figure  3.  Flowchart of the mixed quantitative rainfall estimation, based on X-band dual-polarization radar

    图  4  北京清河流域“7·15”暴雨(2018年)内涝灾害风险模拟及评估

    Figure  4.  Simulation and assessment of the rainstorm on 15 July 2018 waterlogging risk in the Qing River basin in Beijing

    图  5  X波段双偏振天气雷达降水反演的7个典型对流性降雨过程的降雨总量(彩色阴影,单位:mm)空间分布

    Figure  5.  Spatial distribution of total rainfall retrieved from the X-band dual-polarization weather radar in seven typical convective rainfall processes

    图  6  X波段双偏振雷达降雨反演产品评估

    Figure  6.  Evaluation of the X-band dual-polarization radar rainfall retrieval products

    图  7  7个典型对流性降雨过程的最大积水深度空间分布

    Figure  7.  Spatial distribution of the maximum ponding depth for seven convective rainfall processes

    图  8  7个典型对流性降雨过程的内涝灾害风险分级

    Figure  8.  Waterlogging risk distribution for seven convective rainfall processes

    表  1  基于积水深度的内涝灾害等级划分标准

    Table  1.   Classification standard of risk based on waterlogging depth

    风险等级积水深度/m危险程度
    1≥0.5可能造成人员伤亡
    2[0.3, 0.5)显著影响行人交通,大部分机动车无法通行
    3[0.15, 0.3)影响行人通行,车辆行驶缓慢
    4<0.15积水不会淹没路边路缘石,基本不影响行人和机动车通行
    下载: 导出CSV

    表  2  基于积水深度和积水时间的内涝灾害等级划分标准

    Table  2.   Classification standard of risk based on waterlogging depth and duration

    风险等级积水深度/m积水时间/min危险程度
    1>0.4城市交通、基础设施和各类建筑受到威胁
    2[0.3, 0.4)>15城市交通受到严重影响
    3[0.15, 0.3)>30城市交通不便
    4<0.15一般积水
    下载: 导出CSV

    表  3  2017~2018年北京清河流域典型降雨个例特性汇总

    Table  3.   Characteristic summary of typical rainfall cases in the Qing River basin in Beijing during 2017–2018

    降雨个例日期(协调世界时)流域平均降雨总量/mm
    流域平均降雨峰值/mm h−1
    风暴移动方向
    E12017年7月13~14日51.3220.95
    E22017年8月8日11.8223.54
    E32017年8月11~12日34.5922.78
    E42017年8月22日35.0511.12
    E52018年7月15~17日116.6429.42
    E62018年8月7~8日18.3621.30
    E72018年8月10~11日20.8926.62
    下载: 导出CSV
  • [1] Acosta-Coll M, Ballester-Merelo F, Martinez-Peiró M, et al. 2018. Real-time early warning system design for pluvial flash floods—A review [J]. Sensors, 18(7): 2255. doi: 10.3390/s18072255
    [2] Ashley W S, Ashley S T. 2008. Flood fatalities in the United States [J]. J. Appl. Meteor. Climatol., 47(3): 805−818. doi: 10.1175/2007JAMC1611.1
    [3] Cao X J, Qi Y C, Ni G H. 2021. Significant impacts of rainfall redistribution through the roof of buildings on urban hydrology [J]. J. Hydrometeorol., 22(4): 1007−1023. doi: 10.1175/JHM-D-20-0220.1
    [4] Cao X J, Lyu H, Ni G H, et al. 2020a. Spatial scale effect of surface routing and its parameter upscaling for urban flood simulation using a grid-based model [J]. Water Resour. Res., 56(2): e2019WR025468. doi: 10.1029/2019WR025468
    [5] Cao X J, Ni G H, Qi Y C, et al. 2020b. Does subgrid routing information matter for urban flood forecasting? A multiscenario analysis at the land parcel scale [J]. J. Hydrometeorol., 21(9): 2083−2099. doi: 10.1175/JHM-D-20-0075.1
    [6] Chen X L, Zhang H, Chen W J, et al. 2021. Urbanization and climate change impacts on future flood risk in the Pearl River Delta under shared socioeconomic pathways [J]. Sci. Total Environ., 762: 143144. doi: 10.1016/j.scitotenv.2020.143144
    [7] Du S Q, Cheng X T, Huang Q X, et al. 2019. Brief communication: Rethinking the 1998 China floods to prepare for a nonstationary future [J]. Nat. Hazards Earth Syst. Sci., 19(3): 715−719. doi: 10.5194/nhess-19-715-2019
    [8] Duncan A P, Keedwell E C, Djordjević S, et al. 2013. Machine learning-based early warning system for urban flood management [C]//International Conference on Flood Resilience: Experiences in Asia and Europe. Exeter: ICFR.
    [9] Giangrande S E, McGraw R, Lei L. 2013. An application of linear programming to polarimetric radar differential phase processing [J]. J. Atmos. Oceanic Technol., 30(8): 1716−1729. doi: 10.1175/JTECH-D-12-00147.1
    [10] Hallegatte S, Green C, Nicholls R J, et al. 2013. Future flood losses in major coastal cities [J]. Nat. Climate Change, 3(9): 802−806. doi: 10.1038/nclimate1979
    [11] 郝莹, 陈靖, 王元, 等. 2019. 基于高时空分辨率降水预报产品的城市内涝预警研究 [J]. 暴雨灾害, 38(3): 229−237. doi: 10.3969/j.issn.1004-9045.2019.03.005

    Hao Y, Chen J, Wang Y, et al. 2019. Research on urban waterlogging risk early warning based on high spatial–temporal resolution precipitation forecast products [J]. Torr. Rain Dis. (in Chinese), 38(3): 229−237. doi: 10.3969/j.issn.1004-9045.2019.03.005
    [12] 侯天宇, 梁好, 霍凯, 等. 2021. 基于智能物联网技术的天津城市积水监测预警系统 [J]. 气象研究与应用, 42(1): 85−89. doi: 10.19849/j.cnki.CN45-1356/P.2021.1.15

    Hou T Y, Liang H, Huo K, et al. 2021. Tianjin urban water logging monitoring and early warning system based on intelligent internet of things technology [J]. J. Meteor. Res. Appl. (in Chinese), 42(1): 85−89. doi: 10.19849/j.cnki.CN45-1356/P.2021.1.15
    [13] 姜灵峰. 2018. 近76年我国洪涝灾损度变化特征分析 [J]. 气象科技进展, 8(5): 11−16. doi: 10.3969/j.issn.2095-1973.2018.05.002

    Jiang L F. 2018. Analysis on the characteristics of flood disaster damage in China in recent 76 years [J]. Adv. Meteor. Sci. Technol. (in Chinese), 8(5): 11−16. doi: 10.3969/j.issn.2095-1973.2018.05.002
    [14] Jiang J C, Liu J Z, Qin C Z, et al. 2018. Extraction of urban waterlogging depth from video images using transfer learning [J]. Water, 10(10): 1485. doi: 10.3390/w10101485
    [15] 卢丽. 2017. 北京市清河流域极端降水及防汛预警指标研究 [D]. 中国农业大学博士学位论文. Lu L. 2017. Extreme precipitation characteristics and flood warning indexes in Qinghe basin in Beijing [D]. Ph. D. dissertation (in Chinese), China Agricultural University.
    [16] Lyu H, Ni G H, Cao X J, et al. 2018. Effect of temporal resolution of rainfall on simulation of urban flood processes [J]. Water, 10(7): 880. doi: 10.3390/w10070880
    [17] 马建立, 陈明轩, 李思腾, 等. 2019. 线性规划在X波段双线偏振多普勒天气雷达差分传播相移质量控制中的应用 [J]. 气象学报, 77(3): 516−528. doi: 10.11676/qxxb2019.023

    Ma J L, Chen M X, LI S T, et al. 2019. Application of linear programming on quality control of differential propagation phase shift data for X-band dual linear polarimetric Doppler weather radar [J]. Acta Meteor. Sinica (in Chinese), 77(3): 516−528. doi: 10.11676/qxxb2019.023
    [18] Miller J D, Hutchins M. 2017. The impacts of urbanisation and climate change on urban flooding and urban water quality: A review of the evidence concerning the United Kingdom [J]. J. Hydrol. :Reg. Stud., 12: 345−362. doi: 10.1016/j.ejrh.2017.06.006
    [19] Paprotny D, Sebastian A, Morales-Nápoles O, et al. 2018. Trends in flood losses in Europe over the past 150 years [J]. Nat. Commun., 9(1): 1985. doi: 10.1038/s41467-018-04253-1
    [20] Pumo D, Arnone E, Francipane A, et al. 2017. Potential implications of climate change and urbanization on watershed hydrology [J]. J. Hydrol., 554: 80−99. doi: 10.1016/j.jhydrol.2017.09.002
    [21] Smith A, Bates P D, Wing O, et al. 2019. New estimates of flood exposure in developing countries using high-resolution population data [J]. Nat. Commun., 10(1): 1814. doi: 10.1038/s41467-019-09282-y
    [22] Sofia G, Roder G, Fontana G D, et al. 2017. Flood dynamics in urbanised landscapes: 100 years of climate and humans’ interaction [J]. Sci. Rep., 7: 40527. doi: 10.1038/srep40527
    [23] 宋晓猛, 张建云, 占车生, 等. 2013. 气候变化和人类活动对水文循环影响研究进展 [J]. 水利学报, 44(7): 779−790. doi: 10.13243/j.cnki.slxb.2013.07.001

    Song X M, Zhang J Y, Zhan C S, et al. 2013. Review for impacts of climate change and human activities on water cycle [J]. J. Hydraul. Eng. (in Chinese), 44(7): 779−790. doi: 10.13243/j.cnki.slxb.2013.07.001
    [24] 宋晓猛, 张建云, 王国庆, 等. 2014. 变化环境下城市水文学的发展与挑战——II. 城市雨洪模拟与管理 [J]. 水科学进展, 25(5): 752−764. doi: 10.14042/j.cnki.32.1309.2014.05.025

    Song X M, Zhang J Y, Wang G Q, et al. 2014. Development and challenges of urban hydrology in a changing environment. II: Urban stormwater modeling and management [J]. Adv. Water Sci. (in Chinese), 25(5): 752−764. doi: 10.14042/j.cnki.32.1309.2014.05.025
    [25] Thompson E J, Rutledge S A, Dolan B, et al. 2018. Dual-polarization radar rainfall estimation over tropical oceans [J]. J. Appl. Meteor. Climatol., 57(3): 755−775. doi: 10.1175/JAMC-D-17-0160.1
    [26] Van de Beek C, Leijnse H, Stricker J N M, et al. 2010. Performance of high-resolution X-band radar for rainfall measurement in the Netherlands [J]. Hydrol. Earth Syst. Sci., 14(2): 205−221. doi: 10.5194/hess-14-205-2010
    [27] 王成坤, 黄纪萍, 曾胜, 等. 2019. 基于积水特征和暴露脆弱性的城市内涝风险评估 [J]. 中国给水排水, 35(5): 125−130. doi: 10.19853/j.zgjsps.1000-4602.2019.05.023

    Wang C K, Huang J P, Zeng S, et al. 2019. Urban flooding risk assessment based on coupling of waterlogging characteristics and exposed vulnerability [J]. China Water & Wastewater (in Chinese), 35(5): 125−130. doi: 10.19853/j.zgjsps.1000-4602.2019.05.023
    [28] Wang L P, Ochoa-Rodríguez S, Simões N E, et al. 2013. Radar-raingauge data combination techniques: A revision and analysis of their suitability for urban hydrology [J]. Water Sci. Technol., 68(4): 737−747. doi: 10.2166/wst.2013.300
    [29] 魏军, 俞海洋, 胡会芳, 等. 2019. 石家庄市城市内涝气象风险监测预警系统研制及应用 [J]. 中国农村水利水电(2): 34−38,43. doi: 10.3969/j.issn.1007-2284.2019.02.007

    Wei J, Yu H Y, Hu H F, et al. 2019. Development of meteorological risk monitoring and early warning system for urban waterlogging in Shijiazhuang [J]. China Rural Water and Hydropower (in Chinese)(2): 34−38,43. doi: 10.3969/j.issn.1007-2284.2019.02.007
    [30] WMO. 2013. Reducing and managing risks of disasters in a changing climate [R].
    [31] 徐宗学, 陈浩, 任梅芳, 等. 2020. 中国城市洪涝致灾机理与风险评估研究进展 [J]. 水科学进展, 31(5): 713−724. doi: 10.14042/j.cnki.32.1309.2020.05.008

    Xu Z X, Chen H, Ren M F, et al. 2020. Progress on disaster mechanism and risk assessment of urban flood/waterlogging disasters in China [J]. Adv. Water Sci. (in Chinese), 31(5): 713−724. doi: 10.14042/j.cnki.32.1309.2020.05.008
    [32] 杨扬, 张建云, 戚建国, 等. 2000. 雷达测雨及其在水文中应用的回顾与展望 [J]. 水科学进展, 11(1): 92−98. doi: 10.3321/j.issn:1001-6791.2000.01.017

    Yang Y, Zhang J Y, Qi J G, et al. 2000. Review and prospect on the application of weather radar in hydrology [J]. Adv. Water Sci. (in Chinese), 11(1): 92−98. doi: 10.3321/j.issn:1001-6791.2000.01.017
    [33] 张建云, 王银堂, 贺瑞敏, 等. 2016. 中国城市洪涝问题及成因分析 [J]. 水科学进展, 27(4): 485−491. doi: 10.14042/j.cnki.32.1309.2016.04.001

    Zhang J Y, Wang Y T, He R M, et al. 2016. Discussion on the urban flood and waterlogging and causes analysis in China [J]. Adv. Water Sci. (in Chinese), 27(4): 485−491. doi: 10.14042/j.cnki.32.1309.2016.04.001
    [34] 张培昌, 魏鸣, 黄兴友, 等. 2018. 双线偏振多普勒天气雷达探测原理与应用 [M]. 北京: 气象出版社. Zhang P C, Wei M, Huang X Y, et al. 2018. Dual Polarization Doppler Weather Radar Detection Principle and Application (in Chinese) [M]. Beijing: China Meteorological Press.
    [35] 张哲, 戚友存, 朱自伟, 等. 2021. 深圳S波段与X波段双偏振雷达在定量降水估计中的应用 [J]. 气象学报, 79(5): 786−803. doi: 10.11676/qxxb2021.042

    Zhang Z, Qi Y C, Zhu Z W, et al. 2021. Application of radar quantitative precipitation estimation using S-band and X-band polarimetric radars in Shenzhen [J]. Acta Meteor. Sinica (in Chinese), 79(5): 786−803. doi: 10.11676/qxxb2021.042
    [36] 周天颖, 赖顺仁, 黄崇典, 等. 2016. 运用社交网络分析淹水空间信息之关联性 [J]. 遥感学报, 20(5): 1299−1307. doi: 10.11834/jrs.20166204

    Zhou T, Lai S R, Huang C D, et al. 2016. Social crowd sourcing application in spatial information analysis [J]. J. Remote Sens. (in Chinese), 20(5): 1299−1307. doi: 10.11834/jrs.20166204
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  338
  • HTML全文浏览量:  103
  • PDF下载量:  163
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-09
  • 录用日期:  2022-03-03
  • 网络出版日期:  2022-03-07
  • 刊出日期:  2022-07-19

目录

    /

    返回文章
    返回