高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

黑河流域降水统计—动力降尺度问题研究

苏海锋 戴新刚 熊喆 延晓冬

苏海锋, 戴新刚, 熊喆, 等. 2023. 黑河流域降水统计—动力降尺度问题研究[J]. 大气科学, 47(3): 642−654 doi: 10.3878/j.issn.1006-9895.2201.21081
引用本文: 苏海锋, 戴新刚, 熊喆, 等. 2023. 黑河流域降水统计—动力降尺度问题研究[J]. 大气科学, 47(3): 642−654 doi: 10.3878/j.issn.1006-9895.2201.21081
SU Haifeng, DAI Xin’ gang, XIONG Zhe, et al. 2023. Study on Statistical–Dynamical Downscaling for Precipitation in the Heihe River Basin [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 47(3): 642−654 doi: 10.3878/j.issn.1006-9895.2201.21081
Citation: SU Haifeng, DAI Xin’ gang, XIONG Zhe, et al. 2023. Study on Statistical–Dynamical Downscaling for Precipitation in the Heihe River Basin [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 47(3): 642−654 doi: 10.3878/j.issn.1006-9895.2201.21081

黑河流域降水统计—动力降尺度问题研究

doi: 10.3878/j.issn.1006-9895.2201.21081
基金项目: 国家自然科学基金项目41675087、42061144015,国家重点研发计划项目2016YFA0600404
详细信息
    作者简介:

    苏海锋,男,1982年出生,博士研究生,主要从事气候变化研究。E-mail: 5150340@qq.com

    通讯作者:

    戴新刚,E-mail: daixg@mail.iap.ac.cn

  • 中图分类号: P426

Study on Statistical–Dynamical Downscaling for Precipitation in the Heihe River Basin

Funds: National Natural Science Foundation of China (Grants 41675087, 42061144015), National Key R&D Program of China (Grant 2016YFA0600404)
  • 摘要: 依据区域气候模式RIEMS2.0输出的3 km高分辨率数据和站点降水记录分析了中国西北黑河流域降水的动力降尺度和统计—动力降尺度问题,检验了多种因子组合下多元线性回归(MLR)和贝叶斯模式平均(BMA)降尺度模型,评估了降尺度降水的均方根误差、相关系数、方差百分率及“负降水”偏差率等方面的统计特征。结果表明,动力降尺度降水相关系数最高,误差也最大,降水方差达到观测值的1.5~2倍;除相关系数外,统计—动力降尺度模型的几个统计特征均最优,纯统计模型次之。检验表明,仅用700 hPa位势高度场、经向风和比湿等构建的统计降尺度模型估计的站点降水相关系数较低,均方根误差也较大。当在统计降尺度模型中引入模式降水因子后站点降水的估计得到明显改善,其中MLR类模型的降水相关系数和方差百分率均明显高于BMA类模型,均方根误差二者相当,但前者“负降水”出现频次明显大于后者,“负降水”偏差主要出现在降水稀少的冬半年及黑河中、下游干旱或极端干旱区,上游出现频率较低,其中MLR类模型“负降水”出现频次明显高于BMA类模型,后者仅出现在黑河中、下游地区。包含模式降水因子的统计—动力降尺度模型能减少“负降水”出现的频次。此外,降尺度模型估计降水的统计特征随季节变化,其中7种降尺度模型估计的站点降水误差与站点气候降水量成比例,但相对误差与之相反。这些评估结果表明,即使用高分辨率动力降尺度估计干旱区站点降水也存在明显偏差,需要结合统计降尺度模型进一步降低站点降水估计的不确定性。
  • 图  1  黑河流域14个气象站点的分布。数字1~14分别表示14个气象站点(额济纳旗、拐子湖、玉门镇、鼎新、金塔、酒泉、高台沟、阿拉善右旗、托勒、野牛沟、张掖、祁连、山丹、永昌)

    Figure  1.  Distribution of 14 meteorological observatories in the Heihe River basin. Numbers 1–14 represent 14 meteorological observatories (Eji’ naqi, Guaizihu, Yumenzhen, Dingxin, Jinta, Jiuquan, Gaotaigou, Alashanyouqi, Tuole, Yeniugou, Zhangye, Qilian, Shandan, Yongchang)

    图  2  1980~2012年模式模拟与观测的黑河流域站点年降水量均方根误差(单位:mm):(a)上游;(b)中游;(c)下游;(d)区域站点平均

    Figure  2.  RMSE (root mean square error, units: mm) of the annual precipitation between simulated and observed at the stations in the Heihe River basin during 1980–2012: (a) Upper reaches; (b) middle reaches; (c) lower reaches; (d) average over the regional stations

    图  3  1980~2012年降尺度模型估计与观测的黑河流域站点年降水量的相关系数:(a)上游;(b)中游;(c)下游;(d)区域站点平均

    Figure  3.  Correlation coefficients between the precipitation estimated by downscaling models and the observation at the stations in the Heihe River basin during 1980–2012: (a) Upper reaches; (b) middle reaches; (c) lower reaches; (d) average over regional stations

    图  4  1980~2012年降尺度模型估计的与观测的黑河流域站点年降水量方差百分率:(a)上游;(b)中游;(c)下游;(d)区域站点平均

    Figure  4.  Percentage of the precipitation variance between estimated by downscaling models and observed at the stations in the Heihe River basin during 1980–2012: (a) Upper reaches; (b) middle reaches; (c) lower reaches; (d) average over regional stations

    图  5  1980~2012年降尺度模型估计的与观测的黑河流域月降水量均方根误差(左)、相对均方根误差(右):(a、b)上游;(c、d)中游;(e、f)下游

    Figure  5.  RMSE (left) and relative RMSE (right) of monthly precipitation between estimated by downscaling models and observed at the stations in the Heihe River basin during 1980–2012: (a, b) Upper reaches; (c, d) middle reaches; (e, f) lower reaches

    图  6  1980~2012年降尺度模型估计的与观测的黑河流域月降水量相关系数:(a)上游;(b)中游;(c)下游

    Figure  6.  Correlation coefficients of the monthly precipitation between estimated by downscaling models and observed at the stations in the Heihe River basin during 1980–2012: (a) Upper reaches; (b) middle reaches; (c) lower reaches

    图  7  1980~2012年降尺度模型估计的与观测的黑河流域月降水量方差百分率:(a)上游;(b)中游;(c)下游

    Figure  7.  Percentage of monthly precipitation variance estimated by downscaling models and observed in the Heihe River basin during 1980–2012: (a) Upper reaches; (b) middle reaches; (c) lower reaches

    图  8  1980~2012年降尺度模型估计的黑河流域站点平均月降水量“负降水”次数:(a)上游;(b)中游;(c)为下游

    Figure  8.  Negative monthly precipitation number estimated by downscaling models averaged in the Heihe River basin during 1980–2012: (a) Upper reaches; (b) middle reaches; (c) lower reaches

    表  1  黑河流域气象观测站点信息

    Table  1.   Information of meteorological stations in the Heihe River basin

    序号站点编号站点名称站点位置海拔高度/m年平均降水量/mm
    152267额济纳旗(101.0°N,42.0°E)940.531.8
    252378拐子湖(102.3°N,41.4°E)960.039.9
    352436玉门镇(97.0°N,40.3°E)1526.066.7
    452446鼎新(99.5°N,40.3°E)1177.453.3
    552447金塔(98.9°N,40°E)1270.562.1
    652533酒泉(98.5°N,39.8°E)1477.287.8
    752546高台沟(99.8°N,39.4°E)1332.2110.4
    852576阿拉善右旗(101.7°N,39.2°E)1510.1115.4
    952633托勒(98.4°N,39.0°E)3367.0292.9
    1052645野牛沟(99.6°N,38.4°E)3320.0412.5
    1152652张掖(100.4°N,38.9°E)1482.7130.5
    1252657祁连(100.3°N,38.2°E)2787.4406.8
    1352661山丹(101.1°N,38.8°E)1764.6199.4
    1452674永昌(102.0°N,38.2°E)1976.9201.7
    下载: 导出CSV

    表  2  统计和动力降尺度模型的基本信息

    Table  2.   Information of statistical–dynamical downscaling models

    序号模型名称方法因子
    1BMA1BMAh700 (3PCs)、v700q700
    2MLR1MLRh700 (3PCs)、v700q700
    3BMA2BMA模式降水(3PCs)、h700 (3PCs)、v700q700
    4MLR2MLR模式降水(3PCs)、h700 (3PCs)、v700q700
    5BMA3BMA模式站点降水、h700 (3PCs)、v700q700
    6MLR3MLR模式站点降水、h700 (3PCs)、v700q700
    7RIEMS动力降尺度模式站点降水(双线性插值获得)
    注: h700 (3PCs)和模式降水(3PCs)分别表示站点周围49个格点模式700 hPa位势高度场的前3个主分量和站点周围49个格点模式降水的前3个主成分。v700q700分别表示模式700 hPa站点上空格点四个角平均值的经向风和比湿。
    下载: 导出CSV
  • [1] Chen H P, Sun J Q, Lin W Q, et al. 2020. Comparison of CMIP6 and CMIP5 models in simulating climate extremes [J]. Science Bulletin, 65(17): 1415−1418. doi: 10.1016/j.scib.2020.05.015
    [2] Chen J, Zhang X J. 2021. Challenges and potential solutions in statistical downscaling of precipitation [J]. Climatic Change, 165(3–4): 63. doi:10.1007/s10584-021-03083-3
    [3] Chen J, Brissette F P, Leconte R. 2014. Assessing regression-based statistical approaches for downscaling precipitation over North America [J]. Hydrological Processes, 28(9): 3482−3504. doi: 10.1002/hyp.9889
    [4] 陈杰, 许崇育, 郭生练, 等. 2016. 统计降尺度方法的研究进展与挑战 [J]. 水资源研究, 5(4): 299−313. doi: 10.12677/jwrr.2016.54037

    Chen Jie, Xu Chongyu, Guo Shenglian, et al. 2016. Progress and challenge in statistically downscaling climate model outputs [J]. Journal of Water Resources Research (in Chinese), 5(4): 299−313. doi: 10.12677/jwrr.2016.54037
    [5] 陈丽娟, 李维京, 张培群, 等. 2003. 降尺度技术在月降水预报中的应用 [J]. 应用气象学报, 14(6): 648−655.

    Chen Lijuan, Li Weijing, Zhang Peiqun, et al. 2003. Application of a new downscaling model to monthly precipitation forecast [J]. Journal of Applied Meteorological Science, 14(6): 648−655.
    [6] 陈晓晨, 徐影, 许崇海, 等. 2014. CMIP5全球气候模式对中国地区降水模拟能力的评估 [J]. 气候变化研究进展, 10(3): 217−225. doi: 10.3969/j.issn.1673-1719.2014.03.011

    Chen Xiaochen, Xu Ying, Xu Chonghai, et al. 2014. Assessment of precipitation simulations in China by CMIP5 multi-models [J]. Climate Change Research (in Chinese), 10(3): 217−225. doi: 10.3969/j.issn.1673-1719.2014.03.011
    [7] 程国栋, 肖洪浪, 徐中民, 等. 2006. 中国西北内陆河水问题及其应对策略——以黑河流域为例 [J]. 冰川冻土, 28(3): 406−413.

    Cheng Guodong, Xiao Honglang, Xu Zhongmin, et al. 2006. Water issue and its countermeasure in the inland river basins of Northwest China—A case study in Heihe River basin [J]. Journal of Glaciology and Geocryology (in Chinese), 28(3): 406−413.
    [8] Dai X G, Wang P. 2017. A new classification of large-scale climate regimes around the Tibetan Plateau based on seasonal circulation patterns [J]. Advances in Climate Change Research, 8(1): 26−36. doi: 10.1016/j.accre.2017.01.001
    [9] Dai X G, Wang P. 2018. Identifying the early 2000s hiatus associated with internal climate variability [J]. Scientific Report, 8: 13602. doi: 10.1038/s41598-018-31862-z
    [10] 戴新刚, 汪萍. 2020. 亚洲中部干旱气候研究综述与机理分析 [J]. 沙漠与绿洲气象, 14(1): 1−12. doi: 10.12057/j.issn.1002-0799.2020.01.001

    Dai Xin’ gang, Wang Ping. 2020. A review of aridity studies for central Asia with mechanism analysis [J]. Desert and Oasis Meteorology (in Chinese), 14(1): 1−12. doi: 10.12057/j.issn.1002-0799.2020.01.001
    [11] Dee D P, Uppala S M, Simmons A J, et al. 2011. The ERA-interim reanalysis: Configuration and performance of the data assimilation system [J]. Quart. J. Roy. Meteor. Soc., 137(656): 553−597. doi: 10.1002/qj.828
    [12] Denis B, Laprise R, Caya D, et al. 2002. Downscaling ability of one-way nested regional climate models: The Big-Brother Experiment [J]. Climate Dyn., 18(8): 627−646. doi: 10.1007/s00382-001-0201-0
    [13] Dickinson R E, Errico R M, Giorgi F, et al. 1989. A regional climate model for the western United States [J]. Climatic Change, 15(3): 383−422. doi: 10.1007/BF00240465
    [14] Duan Q Y, Ajami N K, Gao X G, et al. 2007. Multi-model ensemble hydrologic prediction using Bayesian model averaging [J]. Advances in Water Resources, 30(5): 1371−1386. doi: 10.1016/j.advwatres.2006.11.014
    [15] 段青云, 夏军, 缪驰远, 等. 2016. 全球气候模式中气候变化预测预估的不确定性 [J]. 自然杂志, 38(3): 182−188. doi: 10.3969/j.issn.0253-9608.2016.03.004

    Duan Qingyun, Xia Jun, Miao Chiyuan, et al. 2016. The uncertainty in climate change projections by global climate models [J]. Chinese Journal of Nature (in Chinese), 38(3): 182−188. doi: 10.3969/j.issn.0253-9608.2016.03.004
    [16] 范丽军, 符淙斌, 陈德亮. 2005. 统计降尺度法对未来区域气候变化情景预估的研究进展 [J]. 地球科学进展, 20(3): 320−329. doi: 10.3321/j.issn:1001-8166.2005.03.009

    Fan Lijun, Fu Congbin, Chen Deliang. 2005. Review on creating future climate change scenarios by statistical downscaling techniques [J]. Advances in Earth Science (in Chinese), 20(3): 320−329. doi: 10.3321/j.issn:1001-8166.2005.03.009
    [17] Frey-Buness F, Heimann D, Sausen R. 1995. A statistical–dynamical downscaling procedure for global climate simulations [J]. Theor. Appl. Climatol. , 50(3–4): 117–131. doi:10.1007/BF00866111
    [18] 符淙斌, 王淑瑜, 熊喆, 等. 2004. 亚洲区域气候模式比较计划的进展 [J]. 气候与环境研究, 9(2): 225−239. doi: 10.3878/j.issn.1006-9585.2004.02.01

    Fu Congbin, Wang Shuyu, Xiong Zhe, et al. 2004. Progress report on regional climate model intercomparison project for Asia [J]. Climatic and Environmental Research (in Chinese), 9(2): 225−239. doi: 10.3878/j.issn.1006-9585.2004.02.01
    [19] Fuentes U, Heimann D. 1996. Verification of statistical–dynamical downscaling in the Alpine region [J]. Climate Research, 7(2): 151−168. doi: 10.3354/cr007151
    [20] Fuentes U, Heimann D. 2000. An improved statistical–dynamical downscaling scheme and its application to the Alpine precipitation climatology [J]. Theor. Appl. Climatol., 65(3–4): 119–135. doi:10.1007/s007040070038
    [21] Gao X J, Giorgi F. 2017. Use of the RegCM system over East Asia: Review and perspectives [J]. Engineering, 3(5): 766−772. doi: 10.1016/J.ENG.2017.05.019
    [22] 高艳红, 程国栋. 2008. 黑河流域陆地—大气相互作用研究的几点思考 [J]. 地球科学进展, 23(7): 779−784. doi: 10.3321/j.issn:1001-8166.2008.07.018

    Gao Yanhong, Cheng Guodong. 2008. Several points on mass and energy interaction between land surface and atmosphere in the Heihe River basin [J]. Advances in Earth Science (in Chinese), 23(7): 779−784. doi: 10.3321/j.issn:1001-8166.2008.07.018
    [23] 管晓丹, 马洁茹, 黄建平, 等. 2019. 海洋对干旱半干旱区气候变化的影响 [J]. 中国科学: 地球科学, 49(6): 895–912. Guan Xiaodan, Ma Jieru, Huang Jianping, et al. 2019. Impact of oceans on climate change in drylands [J]. Science China Earth Sciences, 62(6): 891–908. doi:10.1007/s11430-018-9317-8
    [24] 韩雪, 魏凤英. 2010. 中国东部夏季降水与东亚垂直环流结构及其预测试验 [J]. 大气科学, 34(3): 533−547. doi: 10.3878/j.issn.1006-9895.2010.03.07

    Han Xue, Wei Fengying. 2010. The influence of vertical atmospheric circulation pattern over East Asia on summer precipitation in the east of China and its forecasting test [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 34(3): 533−547. doi: 10.3878/j.issn.1006-9895.2010.03.07
    [25] Hellström C, Chen D L, Achberger C, et al. 2001. Comparison of climate change scenarios for Sweden based on statistical and dynamical downscaling of monthly precipitation [J]. Climate Research, 19(1): 45−55. doi: 10.3354/cr019045
    [26] Hugonnet R, McNabb R, Berthier E, et al. 2021. Accelerated global glacier mass loss in the early twenty-first century [J]. Nature, 592(7856): 726−731. doi: 10.1038/s41586-021-03436-z
    [27] IPCC. 2014. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [M]. Cambridge, UK and New York, USA: Cambridge University Press, 1132pp.
    [28] 刘赛艳, 黄强, 王义民, 等. 2015. 基于统计降尺度和CMIP5模式的泾河流域气候要素模拟与预估 [J]. 农业工程学报, 31(23): 138−144. doi: 10.11975/j.issn.1002-6819.2015.23.018

    Liu Saiyan, Huang Qiang, Wang Yimin, et al. 2015. Simulation and prediction of climatic elements in Jinghe River basin using downscaling method and CMIP5 [J]. Transactions of the Chinese Society of Agricultural Engineering (in Chinese), 31(23): 138−144. doi: 10.11975/j.issn.1002-6819.2015.23.018
    [29] 刘芸芸, 丁一汇. 2020. 2020年超强梅雨特征及其成因分析 [J]. 气象, 46(11): 1393−1404. doi: 10.7519/j.issn.1000-0526.2020.11.001

    Liu Yunyun, Ding Yihui. 2020. Characteristics and possible causes for the extreme Meiyu in 2020 [J]. Meteorological Monthly (in Chinese), 46(11): 1393−1404. doi: 10.7519/j.issn.1000-0526.2020.11.001
    [30] 马柱国, 符淙斌, 杨庆, 等. 2018. 关于我国北方干旱化及其转折性变化 [J]. 大气科学, 42(4): 951−961. doi: 10.3878/j.issn.1006-9895.1802.18110

    Ma Zhuguo, Fu Congbin, Yang Qing, et al. 2018. Drying trend in northern China and its shift during 1951–2016 [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 42(4): 951−961. doi: 10.3878/j.issn.1006-9895.1802.18110
    [31] Mehrotra R, Evans J P, Sharma A, et al. 2014. Evaluation of downscaled daily rainfall hindcasts over Sydney, Australia using statistical and dynamical downscaling approaches [J]. Hydrology Research, 45(2): 226−249. doi: 10.2166/nh.2013.094
    [32] Mo R P, Straus D M. 2002. Statistical–dynamical seasonal prediction based on principal component regression of GCM ensemble integrations [J]. Mon. Wea. Rev., 130(9): 2167−2187. doi: 10.1175/1520-0493(2002)130<2167:SDSPBO>2.0.CO;2
    [33] Murphy J. 1999. An evaluation of statistical and dynamical techniques for downscaling local climate [J]. J. Climate, 12(8): 2256−2284. doi: 10.1175/1520-0442(1999)012<2256:AEOSAD>2.0.CO;2
    [34] 祁晓凡, 李文鹏, 李海涛, 等. 2017. 基于CMIP5模式的干旱内陆河流域未来气候变化预估 [J]. 干旱区地理, 40(5): 987−996. doi: 10.13826/j.cnki.cn65-1103/x.2017.05.008

    Qi Xiaofan, Li Wenpeng, Li Haitao, et al. 2017. Future climate change prediction of arid inland river basin based on CMIP5 model [J]. Arid Land Geography (in Chinese), 40(5): 987−996. doi: 10.13826/j.cnki.cn65-1103/x.2017.05.008
    [35] Raftery A E, Gneiting T, Balabdaoui F, et al. 2005. Using Bayesian model averaging to calibrate forecast ensembles [J]. Mon. Wea. Rev., 133(5): 1155−1174. doi: 10.1175/MWR2906.1
    [36] Su H F, Xiong Z, Yan X D, et al. 2017. Comparison of monthly rainfall generated from dynamical and statistical downscaling methods: A case study of the Heihe River basin in China [J]. Theor. Appl. Climatol., 129(1–2): 437–444. doi:10.1007/s00704-016-1771-4
    [37] Su H F, Xiong Z, Yan X D, et al. 2019. An evaluation of two statistical downscaling models for downscaling monthly precipitation in the Heihe River basin of China [J]. Theor. Appl. Climatol., 138(3–4): 1913–1923. doi:10.1007/s00704-019-02925-6
    [38] 孙丞虎, 崔童, 李维京, 等. 2019. 动力和统计预测信息融合预测方法及对我国夏季降水预测的检验 [J]. 地球物理学报, 62(11): 4110−4119. doi: 10.6038/cjg2019M0646

    Sun Chenghu, Cui Tong, Li Weijing, et al. 2019. A merging method for dynamic model and statistical predictions and evaluation of summer precipitation prediction skill in China [J]. Chinese Journal of Geophysics (in Chinese), 62(11): 4110−4119. doi: 10.6038/cjg2019M0646
    [39] 王会军, 唐国利, 陈海山, 等. 2020. “一带一路”区域气候变化事实、影响及可能风险 [J]. 大气科学学报, 43(1): 1−9. doi: 10.13878/j.cnki.dqkxxb.20191110003

    Wang Huijun, Tang Guoli, Chen Haishan, et al. 2020. The Belt and Road region climate change: Facts, impacts and possible risks [J]. Transactions of Atmospheric Sciences (in Chinese), 43(1): 1−9. doi: 10.13878/j.cnki.dqkxxb.20191110003
    [40] Wetterhall F, Bárdossy A, Chen D L, et al. 2006. Daily precipitation-downscaling techniques in three Chinese regions [J]. Water Resour. Res., 42(11): W11423. doi: 10.1029/2005WR004573
    [41] Widmann M, Bretherton C S, Salathé E P Jr. 2003. Statistical precipitation downscaling over the northwestern United States using numerically simulated precipitation as a predictor [J]. J. Climate, 16(5): 799−816. doi: 10.1175/1520-0442(2003)016<0799:SPDOTN>2.0.CO;2
    [42] Wigley T M L, Jones P D, Briffa K R, et al. 1990. Obtaining sub-grid-scale information from coarse-resolution general circulation model output [J]. J. Geophys. Res.: Atmos., 95(D2): 1943−1953. doi: 10.1029/JD095iD02p01943
    [43] 熊喆, 符淙斌. 2006. RIEMS中积云对流参数化方案对我国降水的影响 [J]. 气候与环境研究, 11(3): 387−394. doi: 10.3878/j.issn.1006-9585.2006.03.16

    Xiong Zhe, Fu Congbin. 2006. Impact of convective parameterization on RIEMS simulation of summer precipitation [J]. Climatic and Environmental Research (in Chinese), 11(3): 387−394. doi: 10.3878/j.issn.1006-9585.2006.03.16
    [44] 熊喆, 延晓冬. 2014. 黑河流域高分辨率区域气候模式建立及其对降水模拟验证 [J]. 科学通报, 59(7): 605–614. Xiong Zhe, Yan Xiaodong. 2013. Building a high-resolution regional climate model for the Heihe River basin and simulating precipitation over this region [J]. Chinese Science Bulletin, 58(36): 4670–4678. doi:10.1007/s11434-013-5971-3
    [45] Xiong Z, Fu C B, Zhang Q. 2006. On the ability of the regional climate model RIEMS to simulate the present climate over Asia [J]. Advances in Atmospheric Sciences, 23(5): 784−791. doi: 10.1007/s00376-006-0784-9
    [46] 熊喆, 符淙斌, 延晓冬. 2009. 区域环境集成系统模式以及对我国夏季季风的模拟研究 [J]. 科学通报, 54(18): 2826–2834.

    Xiong Zhe, Fu Congbin, Yan Xiaodong. 2009. Regional integrated environmental model system and its simulation of East Asia summer monsoon [J]. Chinese Science Bulletin, 54(22): 4253–4261. doi:10.1007/s11434-009-0669-2
    [47] 徐忠峰, 韩瑛, 杨宗良. 2019. 区域气候动力降尺度方法研究综述 [J]. 中国科学: 地球科学, 49(3): 487–498.

    Xu Zhongfeng, Han Ying, Yang Zongliang. 2019. Dynamical downscaling of regional climate: A review of methods and limitations [J]. Science China Earth Sciences, 62(2): 365–375. doi:10.1007/s11430-018-9261-5
    [48] 张蓓, 戴新刚. 2016. 2006~2013年CMIP5模式中国降水预估误差分析 [J]. 大气科学, 40(5): 981−994. doi: 10.3878/j.issn.1006-9895.1511.15212

    Zhang Bei, Dai Xin’ gang. 2016. Assessment of the deviation of China precipitation projected by CMIP5 models for 2006–2013 [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 40(5): 981−994. doi: 10.3878/j.issn.1006-9895.1511.15212
    [49] 张蓓, 戴新刚, 杨阳. 2019. 21世纪前期中国降水预估及其订正 [J]. 大气科学, 43(6): 1385−1398. doi: 10.3878/j.issn.1006-9895.1902.18221

    Zhang Bei, Dai Xin’ gang, Yang Yang. 2019. Projection of China precipitation and its bias correction for the early 21st century [J]. Climate and Environmental Research, 43(6): 1385−1398. doi: 10.3878/j.issn.1006-9895.1902.18221
    [50] 张冬峰, 高学杰. 2020. 中国21世纪气候变化的RegCM4多模拟集合预估 [J]. 科学通报, 65(23): 2516−2526. doi: 10.1360/TB-2020-0231

    Zhang Dongfeng, Gao Xuejie. 2020. Climate change of the 21st century over China from the ensemble of RegCM4 simulations [J]. Chinese Science Bulletin (in Chinese), 65(23): 2516−2526. doi: 10.1360/TB-2020-0231
    [51] 张杰, 李栋梁. 2004. 祁连山及黑河流域降雨量的分布特征分析 [J]. 高原气象, 23(1): 81−88.

    Zhang Jie, Li Dongliang. 2004. Analysis on distribution character of rainfall over Qilian Mountain and Heihe Valley [J]. Plateau Meteorology (in Chinese), 23(1): 81−88.
    [52] 张济世, 康尔泗, 姚进忠, 等. 2004. 黑河流域水资源生态环境安全问题研究 [J]. 中国沙漠, 24(4): 425−430. doi: 10.3321/j.issn:1000-694X.2004.04.008

    Zhang Jishi, Kang Ersi, Yao Jinzhong, et al. 2004. Research on water resources and eco-environment safety in Heihe River basin [J]. Journal of Desert Research (in Chinese), 24(4): 425−430. doi: 10.3321/j.issn:1000-694X.2004.04.008
    [53] Zhang X L, Yan X D. 2015. A new statistical precipitation downscaling method with Bayesian model averaging: A case study in China [J]. Climate Dyn. , 45(9–10): 2541–2555. doi:10.1007/s00382-015-2491-7
    [54] 周天军, 任俐文, 张文霞. 2021. 2020年梅雨期极端降水的归因探讨和未来风险预估研究 [J]. 中国科学: 地球科学, 51(10): 1637–1649.

    Zhou Tianjun, Ren Liwen, Zhang Wenxia. 2021. Anthropogenic influence on extreme Meiyu rainfall in 2020 and its future risk [J]. Science China Earth Sciences, 64(10): 1633–1644. doi:10.1360/SSTe-2020-0325
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  360
  • HTML全文浏览量:  63
  • PDF下载量:  105
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-14
  • 录用日期:  2022-01-12
  • 网络出版日期:  2022-01-14
  • 刊出日期:  2023-05-15

目录

    /

    返回文章
    返回