Projections of Temperature and Precipitation over Xinjiang Based on CMIP6 Models
-
摘要: 本文使用国际耦合模式比较计划第六阶段(CMIP6)中对新疆当代温度和降水模拟能力较好的20个模式的试验数据,在三种共享社会经济路径(SSPs)情景下,预估了新疆21世纪温度和降水的年和季节变化。根据多模式中位数,相对于1995~2014年,新疆21世纪不断升温,盆地增幅大于山区。在SSP1-2.6、SSP2-4.5和SSP5-8.5情景下,2015~2099年年平均增温趋势分别为0.1°C (10 a)−1、0.3°C (10 a)−1和0.7°C (10 a)−1;2080~2099年区域平均分别升温1.3°C、2.6°C和5.3°C,其中夏季增幅最大。各模式预估的年和季节温度变化符号的区域平均一致性大于90%,模式结果间不确定性范围随时间增加,SSP5-8.5情景下的不确定性较SS1-2.6和SSP2-4.5的更大;除春季外,模式对其它季节温度预估的不确定性高于年平均。新疆21世纪降水不断增加,降水百分比变化的大值区位于塔里木盆地中部,末期SSP5-8.5情景下增幅超过50%。在SSP1-2.6、SSP2-4.5和SSP5-8.5情景下,2015~2099年年降水增幅分别是0.2% (10 a)−1、2% (10 a)−1和4% (10 a)−1;2080~2099年区域平均降水分别增加5%、13%和25%,其中冬季降水增幅更大。各模式预估的新疆降水变化符号的一致性较好,且随时间有所提高,但仍较温度的小;对新疆降水百分比变化预估的不确定性范围随时间增加,其中在SSP5-8.5情景下的最大;各季节降水预估的不确定性较年平均偏大。Abstract: In this study, we project the changes in temperature and precipitation over Xinjiang during the period 2015–2099 relative to the historical period 1995–2014 using 20 global climate models, which have exhibited good performance in simulating climatological temperature and precipitation over this region, from the Coupled Model Intercomparison Project Phase 6 (CMIP6) under the three shared socioeconomic pathways (SSPs). Multimodel median results indicate that annual and seasonal temperatures will increase during the 21st century, with larger values in the basins than those in the mountains. The trends of annual temperature changes under SSP1-2.6, SSP2-4.5, and SSP5-8.5 are expected to be 0.1°C (10 a)−1, 0.3°C (10 a)−1, and 0.7°C (10 a)−1, respectively. The regionally averaged temperature will increase by 1.3°C, 2.6°C, and 5.3°C, respectively, during the period 2080–2099, with the strongest warming occurring in the summertime. The regionally averaged consistency in the sign of the projected annual and seasonal temperature changes is greater than 90%, and the inter-model uncertainty will increase with time, with larger values occurring under SSP5-8.5 than those occurring under SSP1-2.6 and SSP2-4.5. Except for springtime, larger uncertainties occur in the projection of seasonal temperatures than that in the annual case. Precipitation is expected to increase over Xinjiang during the 21st century. The projected maximum increase of more than 50% will be located in the central Tarim Basin under the SSP5-8.5 scenario during 2080–2099. Under the SSP1-2.6, SSP2-4.5, and SSP5-8.5 scenarios, the trends of changes in annual precipitation from 2015 to 2099 are 0.2% (10 a)−1, 2% (10 a)−1, and 4% (10 a)−1, respectively, and annual precipitation increases by a regional average of 5%, 13%, and 25% during 2080–2099. The largest increase in precipitation will occur in winter. The inter-model consistency in the sign of projected annual and seasonal precipitation changes increases with time but is weaker than its temperature counterpart. The inter-model uncertainty for precipitation projections is expected to increase with time, with the largest magnitude occurring under SSP5-8.5. The inter-model uncertainty of seasonal precipitation projections is larger than that of annual projections.
-
Key words:
- CMIP6 /
- Temperature /
- Precipitation /
- Projection /
- Xinjiang
-
图 2 相对于1995~2014年,在SSP1-2.6(蓝色)、SSP2-4.5(橙色)和SSP5-8.5(红色)情景下,20个CMIP6模式模拟的2015~2099年新疆区域平均年温度变化时间序列(左图,单位:°C)和2080~2099年的年温度变化(右图,单位:°C)。实线表示多模式中位数,阴影区为多模式模拟结果的5%~95%范围
Figure 2. Time series of regionally averaged annual temperature changes over Xinjiang from 2015 to 2099 (left-hand side panel) and annual temperature changes during 2080–2099 (right panel) relative to 1995–2014 (units: °C), as derived from 20 CMIP6 models under SSP1-2.6 (blue), SSP2-4.5 (orange), and SSP5-8.5 (red), respectively. The solid line and the shading represent the multimodel median and the range of 5%–95% of individual models, respectively
图 3 相对于1995~2014年,在SSP1-2.6、SSP2-4.5和SSP5-8.5情景下,基于20个CMIP6模式的中位数预估,21世纪近期(左列)、中期(中间列)和末期(右列)新疆年温度变化(填色,单位:°C)及多模式预估结果的不确定性(阴影,单位:°C)。黑色实心点表示大于80%的模式通过95%的显著性检验;各图左上角数字代表区域平均的年温度变化(不确定性)
Figure 3. Changes in annual temperature (color, units: °C) in the near- (left column), the middle- (middle column), and the long- (right column) terms during the 21st century relative to 1995–2014 over Xinjiang as derived from the median of 20 CMIP6 models under SSP1-2.6, SSP2-4.5, and SSP5-8.5, respectively, and inter-model uncertainty (shading, units: °C) of temperature projections from individual models. The black solid dots indicate that more than 80% of individual models are statistically significant at the 95% confidence level. The regionally averaged annual temperature change (inter-model uncertainty) is provided in the top-left corner of each panel
图 4 同图3,但为SSP5-8.5情景下的春季(MAM)、夏季(JJA)、秋季(SON)和冬季(DJF)温度变化(单位:°C)。空心点表示50%~80%的模式通过95%的显著性检验
Figure 4. Same as Fig. 3, but for the temperature changes in spring (MAM), summer (JJA), autumn (SON), and winter (DJF) under SSP5-8.5 (units: °C). The hollow dots indicate that 50%–80% of individual models are statistically significant at the 95% confidence level
表 1 本文使用的20个CMIP6全球气候模式的基本信息
Table 1. Basic information of the 20 CMIP6 (Coupled Model Intercomparison Project Phase 6) global climate models used in this study
序号 模式名称 所属国家或地区 所属机构简称 水平分辨率(纬向×经向) 积分时段 01 AWI-CM-1-1-MR 德国 AWI 0.9375°×~0.9° 2015~2100 02 BCC-CSM2-MR 中国 BCC 1.125°×~1.1° 2015~2100 03 CAMS-CSM-1-0 中国 CAMS 1.125°×~1.1° 2015~2099 04 CESM2-WACCM 美国 NCAR 1.25°×~0.9° 2015~2100 05 CanESM5 加拿大 CCCma 2.8125°×~2.8° 2015~2100 06 EC-Earth3-Veg 欧洲十国 EC-Earth-Consortium 0.703125°×~0.7° 2015~2100 07 EC-Earth3 欧洲十国 EC-Earth-Consortium 0.703125°×~0.7° 2015~2100 08 FGOALS-f3-L 中国 CAS 1.25°×1.0° 2015~2100 09 FGOALS-g3 中国 CAS 2.0°×~2.0° 2015~2100 10 GFDL-ESM4 美国 NOAA-GFDL 1.25°×1.0° 2015~2100 11 INM-CM4-8 俄罗斯 INM 2.0°×1.5° 2015~2100 12 INM-CM5-0 俄罗斯 INM 2.0°×1.5° 2015~2100 13 IPSL-CM6A-LR 法国 IPSL 2.5°×~1.3° 2015~2100 14 KACE1.0-G 韩国 NIMS-KMA 1.875°×1.25° 2015~2100 15 MIROC6 日本 MIROC 1.40625°×~1.4° 2015~2100 16 MPI-ESM1-2-HR 德国 MPI-M 0.9375°×~0.9° 2015~2100 17 MPI-ESM1-2-LR 德国 MPI-M 1.875°×~1.9° 2015~2100 18 NESM3 中国 NUIST 1.875°×~1.9° 2015~2100 19 NorESM2-LM 挪威 NCC 2.5°×~1.9° 2015~2100 20 NorESM2-MM 挪威 NCC 1.25°×~0.9° 2015~2100 注:第5列“~”表示“约” 表 2 根据20个CMIP6模式中位数,相对于1995~2014年,在SSP1-2.6、SSP2-4.5和SSP5-8.5情景下,21世纪近期(2021~2040年)、中期(2041~2060年)和末期(2080~2099年),新疆的年和季节温度、降水变化的区域平均值及模式间预估结果的不确定性
Table 2. Regionally averaged annual and seasonal temperature and precipitation changes over Xinjiang projected by the median of 20 CMIP6 models under the SSP1-2.6, SSP2-4.5, and SSP5-8.5 scenarios in the near (2021–2040)-, middle (2041–2060)-, and long (2080–2099)-terms of the 21st century relative to 1995–2014. The regionally averaged inter-model uncertainty of the projected temperature and precipitation changes among the models is listed in the brackets
温度变化/°C(不确定性/°C) 降水变化(不确定性) 前期 中期 末期 前期 中期 末期 SSP1-2.6 年平均 0.9(1.1) 1.3(1.1) 1.3(1.1) 4%(10%) 7%(11%) 5%(12%) 春季 0.8(0.8) 1.2(0.9) 1.3(0.9) 8%(18%) 8%(18%) 6%(17%) 夏季 1.1(1.4) 1.5(1.4) 1.6(1.4) −1%(22%) −1%(22%) 1%(25%) 秋季 1.0(1.3) 1.4(1.4) 1.3(1.4) 1%(19%) 6%(21%) 2%(20%) 冬季 0.9(1.3) 1.3(1.2) 1.3(1.2) 12%(21%) 12%(21%) 11%(20%) SSP2-4.5 年平均 1.0(1.1) 1.8(1.1) 2.6(1.2) 4%(10%) 9%(14%) 13%(18%) 春季 0.8(0.9) 1.4(1.0) 2.2(1.0) 4%(16%) 10%(18%) 17%(24%) 夏季 1.1(1.3) 2.0(1.5) 3.0(1.5) 2%(30%) 2%(30%) 1%(29%) 秋季 0.9(1.4) 1.8(1.4) 2.6(1.5) 4%(18%) 7%(21%) 12%(27%) 冬季 0.9(1.3) 1.7(1.2) 2.6(1.4) 18%(23%) 18%(23%) 29%(29%) SSP5-8.5 年平均 1.1(1.1) 2.3(1.3) 5.3(1.8) 4%(11%) 9%(15%) 25%(27%) 春季 0.9(1.0) 2.0(1.1) 4.8(1.7) 5%(16%) 11%(20%) 28%(34%) 夏季 1.4(1.4) 2.6(1.6) 5.8(2.2) 1%(24%) −1%(26%) 2%(38%) 秋季 1.1(1.4) 2.3(1.6) 5.3(2.2) 5%(21%) 9%(25%) 22%(38%) 冬季 1.0(1.2) 2.1(1.3) 5.1(1.9) 10%(20%) 21%(26%) 59%(54%) -
[1] Chen L, Frauenfeld O W. 2014. Surface air temperature changes over the twentieth and twenty-first centuries in China simulated by 20 CMIP5 models [J]. J. Climate, 27(11): 3920−3937. doi: 10.1175/JCLI-D-13-00465.1 [2] Diffenbaugh N S, Giorgi F. 2012. Climate change hotspots in the CMIP5 global climate model ensemble [J]. Climatic Change, 114(3): 813−822. doi: 10.1007/s10584-012-0570-x [3] Eyring V, Bony S, Meehl G A, et al. 2016. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization [J]. Geosci. Model Dev., 9(5): 1937−1958. doi: 10.5194/gmd-9-1937-2016 [4] Gleick P H, Adams R M, Amasino R M, et al. 2010. Climate change and the integrity of science [J]. Science, 328(5979): 689−690. doi: 10.1126/science.328.5979.689 [5] Hawkins E, Sutton R. 2011. The potential to narrow uncertainty in projections of regional precipitation change [J]. Climate Dyn., 37(1–2): 407–418. doi:10.1007/s00382-010-0810-6 [6] IPCC. 2021. Summary for policymakers[M]//Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Masson-Delmotte V, Zhai P, Pirani A, et al., Eds. Cambridge: Cambridge University Press. [7] Jiang Y A, Chen Y, Zhao Y Z, et al. 2013. Analysis on changes of basic climatic elements and extreme events in Xinjiang, China during 1961–2010 [J]. Adv. Climate Change Res., 4(1): 20−29. doi: 10.3724/SP.J.1248.2013.020 [8] Jiang D B, Hu D, Tian Z P, et al. 2020. Differences between CMIP6 and CMIP5 models in simulating climate over China and the East Asian monsoon [J]. Adv. Atmos. Sci., 37(10): 1102−1118. doi: 10.1007/s00376-020-2034-y [9] Li Q H, Chen Y N, Shen Y J, et al. 2011. Spatial and temporal trends of climate change in Xinjiang, China [J]. J. Geogr. Sci., 21(6): 1007−1018. doi: 10.1007/s11442-011-0896-8 [10] Li B F, Chen Y N, Shi X. 2012. Why does the temperature rise faster in the arid region of Northwest China? [J]. J. Geophys. Res., 117(D16): D16115. doi: 10.1029/2012JD017953 [11] Li B F, Chen Y N, Chen Z S, et al. 2016. Why does precipitation in Northwest China show a significant increasing trend from 1960 to 2010? [J]. Atmos. Res., 167: 275−284. doi: 10.1016/j.atmosres.2015.08.017 [12] Luo M, Liu T, Frankl A, et al. 2018. Defining spatiotemporal characteristics of climate change trends from downscaled GCMs ensembles: How climate change reacts in Xinjiang, China [J]. Int. J. Climatol., 38(5): 2538−2553. doi: 10.1002/joc.5425 [13] Oliver E C J, Donat M G, Burrows M T, et al. 2018. Longer and more frequent marine heatwaves over the past century [J]. Nat. Commun., 9(1): 1324. doi: 10.1038/s41467-018-03732-9 [14] O’ Neill B C, Tebaldi C, van Vuuren D P, et al. 2016. The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6 [J]. Geosci. Model Dev., 9(9): 3461−3482. doi: 10.5194/gmd-9-3461-2016 [15] Peng D D, Zhou T J. 2017. Why was the arid and semiarid Northwest China getting wetter in the recent decades? [J]. J. Geophys. Res. Atmos., 122(17): 9060−9075. doi: 10.1002/2016JD026424 [16] Rong X Y, Li J, Chen H M, et al. 2021. The CMIP6 historical simulation datasets produced by the climate system model CAMS-CSM [J]. Adv. Atmos. Sci., 38(2): 285−295. doi: 10.1007/s00376-020-0171-y [17] Rossati A. 2017. Global warming and its health impact [J]. Int. J. Occup. Environ. Med., 8(1): 7−20. doi: 10.15171/ijoem.2017.963 [18] 施雅风, 沈永平, 胡汝骥. 2002. 西北气候由暖干向暖湿转型的信号、影响和前景初步探讨 [J]. 冰川冻土, 24(3): 219−226. doi: 10.3969/j.issn.1000-0240.2002.03.001Shi Y F, Shen Y P, Hu R J. 2002. Preliminary study on signal, impact and foreground of climatic shift from warm-dry to warm-humid in Northwest China [J]. J. Glaciol. Geocryol. (in Chinese), 24(3): 219−226. doi: 10.3969/j.issn.1000-0240.2002.03.001 [19] 施雅风, 沈永平, 李栋梁, 等. 2003. 中国西北气候由暖干向暖湿转型的特征和趋势探讨 [J]. 第四纪研究, 23(2): 152−164. doi: 10.3321/j.issn:1001-7410.2003.02.005Shi Y F, Shen Y P, Li D L, et al. 2003. Discussion on the present climate change from warm-dry to warm-wet in Northwest China [J]. Quat. Sci. (in Chinese), 23(2): 152−164. doi: 10.3321/j.issn:1001-7410.2003.02.005 [20] Shugar D H, Burr A, Haritashya U K, et al. 2020. Rapid worldwide growth of glacial lakes since 1990 [J]. Nat. Climate Change, 10(10): 939−945. doi: 10.1038/s41558-020-0855-4 [21] Stouffer R J, Eyring V, Meehl G A, et al. 2017. CMIP5 scientific GAPS and recommendations for CMIP6 [J]. Bull. Am. Meteor. Soc., 98(1): 95−105. doi: 10.1175/BAMS-D-15-00013.1 [22] Tian D, Guo Y, Dong W J. 2015. Future changes and uncertainties in temperature and precipitation over China based on CMIP5 models [J]. Adv. Atmos. Sci., 32(4): 487−496. doi: 10.1007/s00376-014-4102-7 [23] Turco M, Palazzi E, von Hardenberg J, et al. 2015. Observed climate change hotspots [J]. Geophys. Res. Lett., 42(9): 3521−3528. doi: 10.1002/2015GL063891 [24] Wang L, Chen W. 2014. A CMIP5 multimodel projection of future temperature, precipitation, and climatological drought in China [J]. Int. J. Climatol., 34(6): 2059−2078. doi: 10.1002/joc.3822 [25] Wang Y J, Zhou B T, Qin D H, et al. 2017. Changes in mean and extreme temperature and precipitation over the arid region of northwestern China: Observation and projection [J]. Adv. Atmos. Sci., 34(3): 289−305. doi: 10.1007/s00376-016-6160-5 [26] 王晓欣, 姜大膀, 郎咸梅. 2019. CMIP5多模式预估的1.5°C升温背景下中国气温和降水变化 [J]. 大气科学, 43(5): 1158−1170. doi: 10.3878/j.issn.1006-9895.1810.18225Wang X X, Jiang D B, Lang X M. 2019. Temperature and precipitation changes over China under a 1.5°C global warming scenario based on CMIP5 models [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 43(5): 1158−1170. doi: 10.3878/j.issn.1006-9895.1810.18225 [27] Wang Q, Zhai P M, Qin D H. 2020. New perspectives on ‘warming–wetting’ trend in Xinjiang, China [J]. Adv. Climate Change Res., 11(3): 252−260. doi: 10.1016/j.accre.2020.09.004 [28] 王政琪, 高学杰, 童尧, 等. 2021. 新疆地区未来气候变化的区域气候模式集合预估 [J]. 大气科学, 45(2): 407−423. doi: 10.3878/j.issn.1006-9895.2006.20108Wang Z Q, Gao X J, Tong Y, et al. 2021. Future climate change projection over Xinjiang based on an ensemble of regional climate model simulations [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 45(2): 407−423. doi: 10.3878/j.issn.1006-9895.2006.20108 [29] Wu Z T, Zhang H J, Krause C M, et al. 2010. Climate change and human activities: A case study in Xinjiang, China [J]. Climatic Change, 99(3): 457−472. doi: 10.1007/s10584-009-9760-6 [30] 吴佳, 高学杰, 石英, 等. 2011. 新疆21世纪气候变化的高分辨率模拟 [J]. 冰川冻土, 33(3): 479−487.Wu J, Gao X J, Shi Y, et al. 2011. Climate change over Xinjiang region in the 21st century simulated by a high resolution regional climate model [J]. J. Glaciol. Geocryol. (in Chinese), 33(3): 479−487. [31] Wu P, Ding Y H, Liu Y J, et al. 2019. The characteristics of moisture recycling and its impact on regional precipitation against the background of climate warming over Northwest China [J]. Int. J. Climatol., 39(14): 5241−5255. doi: 10.1002/joc.6136 [32] Wu T W, Lu Y X, Fang Y J, et al. 2019. The Beijing Climate Center Climate System Model (BCC-CSM): The main progress from CMIP5 to CMIP6 [J]. Geosci. Model Dev., 12(4): 1573−1600. doi: 10.5194/gmd-12-1573-2019 [33] Xu C H, Xu Y. 2012. The projection of temperature and precipitation over China under RCP scenarios using a CMIP5 multi−model ensemble [J]. Atmos. Oceanic Sci. Lett., 5(6): 527−533. doi: 10.1080/16742834.2012.11447042 [34] 许崇海, 徐影, 罗勇. 2008. 新疆地区21世纪气候变化分析 [J]. 沙漠与绿洲气象, 2(3): 1−7. doi: 10.3969/j.issn.1002-0799.2008.03.001Xu C H, Xu Y, Luo Y. 2008. Climate change of the 21st century in Xinjiang with SRES scenarios [J]. Desert Oasis Meteor. (in Chinese), 2(3): 1−7. doi: 10.3969/j.issn.1002-0799.2008.03.001 [35] Xu H W, Chen H P, Wang H J. 2022. Future changes in precipitation extremes across China based on CMIP6 models [J]. Int. J. Climatol., 42(1): 635−651. doi: 10.1002/joc.7264 [36] Yang X L, Zhou B T, Xu Y, et al. 2021. CMIP6 evaluation and projection of temperature and precipitation over China [J]. Adv. Atmos. Sci., 38(5): 817−830. doi: 10.1007/s00376-021-0351-4 [37] You Q L, Cai Z Y, Wu F Y, et al. 2021. Temperature dataset of CMIP6 models over China: Evaluation, trend and uncertainty [J]. Climate Dyn. , 57(1–2): 17–35. doi: 10.1007/s00382-021-05691-2 [38] 于恩涛, 孙建奇, 吕光辉, 等. 2015. 西部干旱区未来气候变化高分辨率预估 [J]. 干旱区地理, 38(3): 429−437. doi: 10.13826/j.cnki.cn65-1103/x.2015.03.001Yu E T, Sun J Q, Lv G H, et al. 2015. High-resolution projection of future climate change in the northwestern arid regions of China [J]. Arid Land Geogr. (in Chinese), 38(3): 429−437. doi: 10.13826/j.cnki.cn65-1103/x.2015.03.001 [39] 于晓晶, 李淑娟, 赵勇, 等. 2017. CMIP5模式对未来30 a新疆夏季降水的预估 [J]. 沙漠与绿洲气象, 11(5): 53−62. doi: 10.12057/j.issn.1002-0799.2017.05.008Yu X J, Li S J, Zhao Y, et al. 2017. Projected summer precipitation over Xinjiang by multi-CMIP5 models in the next 30 years [J]. Desert Oasis Meteor. (in Chinese), 11(5): 53−62. doi: 10.12057/j.issn.1002-0799.2017.05.008 [40] Zhang G W, Zeng G, Yang X Y, et al. 2021. Future changes in extreme high temperature over China at 1.5°C–5°C global warming based on CMIP6 simulations [J]. Adv. Atmos. Sci., 38(2): 253−267. doi: 10.1007/s00376-020-0182-8 [41] Zhang X L, Hua L J, Jiang D B. 2022. Assessment of CMIP6 model performance for temperature and precipitation in Xinjiang, China [J]. Atmos. Oceanic Sci. Lett, 15(2): 100128. doi:10.1016/j.aosl.2021.100128 [42] Zhao W Y, Chen Y N, Li J L, et al. 2010. Periodicity of plant yield and its response to precipitation in the steppe desert of the Tianshan Mountains region [J]. J. Arid Environ., 74(4): 445−449. doi: 10.1016/j.jaridenv.2009.09.022 [43] Zhao Y, Wang M Z, Huang A N, et al. 2014. Relationships between the West Asian subtropical westerly jet and summer precipitation in northern Xinjiang [J]. Theor. Appl. Climatol., 116(3): 403−411. doi: 10.1007/s00704-013-0948-3 [44] Zhao Y, Yu X J, Yao J Q, et al. 2018. Evaluation of the subtropical westerly jet and its effects on the projected summer rainfall over central Asia using multi-CMIP5 models [J]. Int. J. Climatol., 38(S1): e1176−e1189. doi: 10.1002/joc.5443 [45] 周天军, 邹立维, 陈晓龙. 2019. 第六次国际耦合模式比较计划(CMIP6)评述 [J]. 气候变化研究进展, 15(5): 445−456. doi: 10.12006/j.issn.1673-1719.2019.193Zhou T J, Zou L W, Chen X L. 2019. Commentary on the Coupled Model Intercomparison Project Phase 6 (CMIP6) [J]. Climate Change Res. (in Chinese), 15(5): 445−456. doi: 10.12006/j.issn.1673-1719.2019.193 [46] Zhou T J, Chen Z M, Zou L W, et al. 2020. Development of climate and earth system models in China: Past achievements and new CMIP6 results [J]. J. Meteor. Res., 34(1): 1−19. doi: 10.1007/s13351-020-9164-0 [47] Zhu B L, Xue L Q, Wei G H, et al. 2019. CMIP5 projected changes in temperature and precipitation in arid and humid basins [J]. Theor. Appl. Climatol., 136(3): 1133−1144. doi: 10.1007/s00704-018-2542-1 [48] Zhu H H, Jiang Z H, Li J, et al. 2020. Does CMIP6 inspire more confidence in simulating climate extremes over China? [J]. Adv. Atmos. Sci., 37(10): 1119−1132. doi: 10.1007/s00376-020-9289-1 [49] Zhu X, Ji Z M, Wen X H, et al. 2021. Historical and projected climate change over three major river basins in China from fifth and sixth Coupled Model Intercomparison Project models [J]. Int. J. Climatol., 41(15): 6455−6473. doi: 10.1002/joc.7206 -