高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

地形追随垂直运动方程在南疆极端暴雨中的诊断分析

周括 冉令坤 蔡仁 屈涛 陈蕾

周括, 冉令坤, 蔡仁, 等. 2022. 地形追随垂直运动方程在南疆极端暴雨中的诊断分析[J]. 大气科学, 46(3): 745−761 doi: 10.3878/j.issn.1006-9895.2201.21194
引用本文: 周括, 冉令坤, 蔡仁, 等. 2022. 地形追随垂直运动方程在南疆极端暴雨中的诊断分析[J]. 大气科学, 46(3): 745−761 doi: 10.3878/j.issn.1006-9895.2201.21194
ZHOU Kuo, RAN Lingkun, CAI Ren, et al. 2022. Diagnostic Analysis of Terrain Following Vertical Motion Equation in Southern Xinjiang Extreme Rainstorms [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 46(3): 745−761 doi: 10.3878/j.issn.1006-9895.2201.21194
Citation: ZHOU Kuo, RAN Lingkun, CAI Ren, et al. 2022. Diagnostic Analysis of Terrain Following Vertical Motion Equation in Southern Xinjiang Extreme Rainstorms [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 46(3): 745−761 doi: 10.3878/j.issn.1006-9895.2201.21194

地形追随垂直运动方程在南疆极端暴雨中的诊断分析

doi: 10.3878/j.issn.1006-9895.2201.21194
基金项目: 国家重点研发计划项目2018YFC1507104,中国科学院战略性先导科技专项XDA17010105,吉林省科技发展计划项目20180201035SF
详细信息
    作者简介:

    周括,男,1992年出生,博士研究生,主要从事中尺度动力学与数值模拟研究。E-mail: iap_zhouk@163.com

    通讯作者:

    冉令坤,E-mail: rlk@mail.iap.ac.cn

  • 中图分类号: P433

Diagnostic Analysis of Terrain Following Vertical Motion Equation in Southern Xinjiang Extreme Rainstorms

Funds: National Key Research and Development Program (Grant 2018YFC1507104), Strategic Priority Research Program of the Chinese Academy of Sciences (Grant XDA17010105), Science and Technology Development Plan Project of Jilin Province (20180201035SF)
  • 摘要: 针对2021年6月15~17日发生在昆仑山脉北坡的南疆极端暴雨过程,本文综合考虑地形对暴雨发生、发展的作用后,利用地形追随坐标控制方程并采用Boussinesq近似推导建立了地形追随坐标的非静力平衡广义垂直运动方程。诊断结果表明,经向气压梯度力耦合经向散度项(项一)、垂直气压梯度力耦合纬向散度项(项二)和非绝热加热经向梯度项(项三)是激发暴雨垂直运动发展演变的三个主要强迫项。项一体现了偏北风逐渐增强,在昆仑山脉的阻挡下导致经向辐合增强,触发了垂直上升运动。经向气流辐合始终是对流活动最主要的强迫过程,其次为纬向气流辐合。在地形追随坐标形式下,经向和垂直气压梯度能够增强项一和项二。对流发展阶段,水汽辐合与非绝热加热过程增强了非绝热加热经向梯度,促进了垂直上升运动发展。在地形的影响下,对流层中高层西风过山气流波动特征明显。重力波活动导致的高层辐散进一步促进了山脉迎风坡对流活动。经向和纬向气流辐合、非绝热加热过程以及重力波活动等多个因素共同造成了此次南疆极端暴雨。
  • 图  1  2021年6月15日00时(协调世界时,下同)(a)200 hPa 风场(箭矢,单位:m s−1)和大于30 m s−1风速(填色,单位:m s−1)、(b)500 hPa高度场(黑色等值线,单位:gpm)、(c)700 hPa 高度场(黑色等值线,单位:gpm)和风场(箭矢,单位:m s−1)、(d)近地面水汽通量(箭矢,单位:g cm−1 hPa−1 s−1)及水汽通量散度(填色,单位:10−7 g cm−2 hPa−1 s−1)。图c中填色表示地形高度(单位:m)

    Figure  1.  (a) Wind field (arrows, units: m s−1) and wind speed more than 30 m s−1 (shadings, units: m s−1) at 200 hPa, (b) 500-hPa geopotential height (black contours, units: gpm), (c) geopotential height (black contours, units: gpm) and wind field (arrows, units: m s−1) at 700 hPa, (d) water vapor fluxes (arrows, units: g cm−1 hPa−1 s−1) and water vapor fluxes divergence (shadings, units: 10−7 g cm−2 hPa−1 s−1) at 0000 UTC on 15 June 2021. In Fig. c, the shaded areas denote the topographical height (units: m)

    图  2  2021年6月(a、b)15日00时、(c、d)16日00时、(e、f)17日00时实况(左列)与模拟(右列)的24 h累计降水量(单位:mm)分布。红色方框表示南疆暴雨区域

    Figure  2.  24-h accumulated precipitation (units: mm) observed (left column) and simulated (right column) at (a, b) 0000 UTC on 15 June 2021, (c, d) 0000 UTC on 16 June 2021, (e, f) 0000 UTC on 17 June 2021. The red boxes denote rainstorm area in southern Xinjiang

    图  3  2021年6月15日(a)02时、(b)09时层结稳定度(填色,单位:K m−1)、相当位温(蓝色等值线,单位:K)和风场(箭矢,单位:m s−1)沿78.35°E剖面。黑色填色表示地形高度(单位:km),红色实线表示模拟1 h累计降水量

    Figure  3.  Cross sections of stratification stability (shadings, units: K m−1), equivalent potential temperature (blue contours, units: K), and wind field (arrows, units: m s−1) along 78.35°E at (a) 0200 UTC on 15 June 2021; (b) 0900 UTC on 15 June 2021. The black shadings denote terrain height (units: km). The red solid lines denote the simulated 1-h accumulated precipitation

    图  4  2021年6月15日02时(左)、15日09时(右)0.863等η面上(a、b)Q 矢量散度(填色,单位:10−6 s−3)叠加1 h累计降水量 (黑色等值线,单位:mm)水平分布,(c、d)Q 矢量散度(填色,单位:10−6 s−3)叠加垂直速度(黑色等值线,单位:m s−1)沿78.35°E剖面

    Figure  4.  (a, b) Horizontal distribution of Q vector divergence (shadings, units: 10−6 s−3) on 0.863 η surface and 1-h accumulated precipitation (black contours, units: mm) at 0200 UTC on 15 June 2021; (c, d) cross sections of Q vector divergence (shadings, units: 10−6 s−3) and vertical velocity (black contours, units: m s−1) along 78.35°E at 0900 UTC on 15 June 2021

    图  5  Q矢量散度(divQ)及其分量(divQ1、divQ2、divQ3)强度(单位:10−6 s−3)在站点(37.24°N, 78.35°E)的(a)整层累加、(b)0.863等η面上的时间演变。左上角的数字代表各项与小时降水量的相关系数,绿色虚线表示1 h累计降水量,下同

    Figure  5.  Time series of Q vector divergence (divQ) and its component (divQ1, divQ2, divQ3) intensity (units: 10−6 s−3) at (37.24°N, 78.35°E): (a) Full level accumulation; (b) 0.863-η level. The values in the top left-hand corner denote correlation coefficients between each term (divQ, divQ1, divQ2, divQ3) and hourly precipitation. The green dashed lines denote the 1-h accumulated precipitation (units: mm), the same below. divQ1, divQ2, divQ3 represent forcing terms of zonal pressure gradient, forcing term of meridional pressure gradient, ageostrophic wind, respectively

    图  6  2021年6月15日(a)02时、(b)09时divQ2项(填色,单位:10−6 s−3)、垂直速度(黑色等值线,单位:m s−1)沿78.35°E剖面。红色实线表示模拟1 h累计降水量(单位:mm)

    Figure  6.  Cross sections of divQ2 term (shadings, units: 10−6 s−3) and vertical velocity (black contours, units: m s−1) along 78.35°E at (a) 0200 UTC, (b) 0900 UTC on 15 June 2021. The red solid lines denote the simulated 1-h accumulated precipitation (units: mm)

    图  7  divQ2项及其分量(divQ2_1、divQ2_2、……、divQ2_8)强度(单位:10−6 s−3)在(37.24°N, 78.35°E)的(a)整层累加、(b)0.863等η面上的时间演变

    Figure  7.  Time series of divQ2 term and its component (divQ2_1, divQ2_2, …, divQ2_8) intensity (units: 10−6 s−3) at (37.24°N, 78.35°E): (a) Full level accumulation; (b) 0.863-η level. divQ2_1, divQ2_2, …, and divQ2_8 represent vertical advection term of meridional pressure gradient force, meridional advection term of meridional pressure gradient force, zonal advection term of meridional pressure gradient force, zonal pressure gradient force coupled with zonal wind shear term, meridional pressure gradient force coupled with meridional wind shear term, vertical pressure gradient force coupled with zonal wind shear term, diabatic heating gradient term, and water mixing ratio coupled with pressure gradient term

    图  8  整层累加的(a)divQ2_5项及其分量(divQ2_5_1、divQ2_5_2)强度(单位:10−6 s−3)、(b)divQ2_6项及其分量(divQ2_6_1、divQ2_6_2)强度(单位:10−6 s−3)、(c)divQ2_7项及其分量(divQ2_7_1、divQ2_7_2)强度(单位:10−6 s−3)在(37.24°N, 78.35°E)的时间演变

    Figure  8.  Time series of full level cumulative intensity (units: 10−6 s−3) at (37.24°N, 78.35°E): (a) divQ2_5 term and its components (divQ2_5_1, divQ2_5_2); (b) divQ2_6 term and its components (divQ2_6_1, divQ2_6_2); (c) divQ2_7 term and its components (divQ2_7_1, divQ2_7_2). divQ2_5_1 and divQ2_5_2 represent meridional pressure gradient force coupled with meridional divergence term and meridional pressure gradient force coupled with vertical shear of meridional wind term, respectively. divQ2_6_1 and divQ2_6_2 represent vertical pressure gradient force coupled with meridional shear of zonal wind term and vertical pressure gradient force coupled with zonal divergence term, respectively. divQ2_7_1 and divQ2_7_2 represent meridional gradient term of diabatic heating and vertical gradient term of diabatic heating, respectively

    图  9  2021年6月15日09时(a)经向散度(填色,单位:10−4 s−1)、气压(红色细实线,单位:hPa)、垂直速度(黑色等值线,单位:m s−1),(b)纬向散度(填色,单位:10−4 s−1)、位势高度(蓝色细实线,单位:gpm)、垂直速度(黑色等值线,单位:m s−1)沿78.35°E剖面(红色实线表示模拟1 h累计降水量);2021年6月15日09时0.981等η面上(c)经向散度(填色,单位:10−4 s−1)、(d)纬向散度(填色,单位:10−4 s−1)叠加风场(箭矢,单位:m s−1)、1 h累计降水量(黑色等值线,单位:mm)水平分布

    Figure  9.  Cross sections of vertical velocity (black contours, units: m s−1) and (a) meridional divergence (shadings, units: 10−4 s−1) and pressure (red thin contours, units: hPa), (b) zonal divergence (shadings, units: 10−4 s−1) and geopotential height (blue thin contours, units: gpm) along 78.35°E at 0900 UTC on 15 June 2021. The red solid lines denote the simulated 1-h accumulated precipitation. Horizontal distributions of wind field (arrows, units: m s−1), 1-h accumulated precipitation (black contours, units: mm), and (c) meridional divergence (shadings, units: 10−4 s−1), (d) zonal divergence (shadings, units: 10−4 s−1) on 0.981 η surface at 0900 UTC on 15 June 2021

    图  10  2021年6月15日09时(a)微物理过程释放的潜热(填色,单位:K s−1)、(b)水汽混合比倾向(填色,单位:g g−1 s−1)叠加垂直速度(黑色等值线,单位:m s−1)沿78.35°E剖面。红色实线表示模拟1 h累计降水量

    Figure  10.  Cross sections of vertical velocity (black contours, units: m s−1) and (a) latent heat (shadings, units: K s−1) from microphysical processes, (b) tendency (shadings, units: g g−1 s−1) of water vapor mixing ratio along 78.35°E at 0900 UTC on 15 June 2021. The red solid lines denote the simulated 1-h accumulated precipitation

    图  11  0.981等η面上经向散度(红色实线,单位:10−4 s−1)、纬向散度(蓝色实线,单位:10−4 s−1)和广义位温(黑色虚线,单位:K)在(37.24°N, 78.35°E)的时间演变

    Figure  11.  Time series of meridional divergence (red solid line, units: 10−4 s−1), zonal divergence (blue solid line, units: 10−4 s−1), and generalized potential temperature (black dashed line, units: K) on 0.981-η level at point (37.24°N, 78.35°E)

    图  12  南疆暴雨发展演变概念图

    Figure  12.  Schematic of the evolution of southern Xinjiang rainstorm

    表  1  垂直运动方程右端主要强迫项物理意义

    Table  1.   Physical meanings of the major forcing terms on right hand side of the vertical motion equation

    物理意义
    divQ2_1经向气压梯度力垂直平流项
    divQ2_2经向气压梯度力经向平流项
    divQ2_3经向气压梯度力纬向平流项
    divQ2_4纬向气压梯度力耦合纬向风切变项
    divQ2_5经向气压梯度力耦合经向风切变项
    divQ2_6垂直气压梯度力耦合纬向风切变项
    divQ2_7非绝热加热梯度项
    divQ2_8水物质强迫耦合气压梯度力作用项
    divQ2_5_1经向气压梯度力耦合经向散度项
    divQ2_5_2经向气压梯度力耦合经向风垂直切变项
    divQ2_6_1垂直气压梯度力耦合纬向风经向切变项
    divQ2_6_2垂直气压梯度力耦合纬向散度项
    divQ2_7_1非绝热加热经向梯度项
    divQ2_7_2非绝热加热垂直梯度项
    下载: 导出CSV
  • [1] 戴新刚, 任宜勇, 陈洪武. 2007. 近50年新疆温度降水配置演变及其尺度特征 [J]. 气象学报, 65(6): 1003−1010. doi: 10.3321/j.issn:0577-6619.2007.06.018

    Dai Xingang, Ren Yiyong, Chen Hongwu. 2007. Multi-scale feature of climate and climate shift in Xinjiang over the past 50 years [J]. Acta Meteor. Sinica (in Chinese), 65(6): 1003−1010. doi: 10.3321/j.issn:0577-6619.2007.06.018
    [2] Davies-Jones R. 1991. The frontogenetical forcing of secondary circulations. Part I: The duality and generalization of the Q vector [J]. J. Atmos. Sci., 48(4): 497−509. doi:10.1175/1520-0469(1991)048<0497:TFFOSC>2.0.CO;2
    [3] Gao S T, Wang X R, Zhou Y S. 2004. Generation of generalized moist potential vorticity in a frictionless and moist adiabatic flow [J]. Geophys. Res. Lett., 31(12): L12113. doi: 10.1029/2003gl019152
    [4] Holton J R. 1979. An Introduction to Dynamical Meteorology [M]. New York: Academic Press, 1979: 319pp.
    [5] Hong S Y, Lim J O J. 2006. The WRF single-moment 6-class microphysics scheme (WSM6) [J]. J. Korean Meteor. Soc., 42(2): 129−151.
    [6] Hong S Y, Noh Y, Dudhia J. 2006. A new vertical diffusion package with an explicit treatment of entrainment processes [J]. Mon. Wea. Rev., 134(9): 2318−2341. doi: 10.1175/MWR3199.1
    [7] Hoskins B J, Draghici I, Davies H C. 1978. A new look at the ω-equation [J]. Quart. J. Roy. Meteor. Soc., 104(439): 31−38. doi: 10.1002/qj.49710443903
    [8] 黄建平, 冉津江, 季明霞. 2014. 中国干旱半干旱区洪涝灾害的初步分析 [J]. 气象学报, 72(6): 1096−1107. doi: 10.11676/qxxb2014.089

    Huang Jianping, Ran Jinjiang, Ji Mingxia. 2014. Preliminary analysis of the flood disaster over the arid and semi-arid regions in China [J]. Acta Meteor. Sinica (in Chinese), 72(6): 1096−1107. doi: 10.11676/qxxb2014.089
    [9] 黄昕, 周玉淑, 冉令坤, 等. 2021. 一次新疆伊犁河谷特大暴雨过程的环境场及不稳定条件分析 [J]. 大气科学, 45(1): 148–164. Huang Xin, Zhou Yushu, Ran Lingkun, et al. 2021. Analysis of the environmental field and unstable conditions on a rainstorm event in the Ili Valley of Xinjiang [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 45(1): 148−164. doi: 10.3878/j.issn.1006-9895.1912.19219
    [10] 黄玉霞, 王宝鉴, 黄武斌, 等. 2019. 我国西北暴雨的研究进展 [J]. 暴雨灾害, 38(5): 515−525. doi: 10.3969/j.issn.1004-9045.2019.05.013

    Huang Yuxia, Wang Baojian, Huang Wubin, et al. 2019. A review on rainstorm research in Northwest China [J]. Torrential Rain and Disasters (in Chinese), 38(5): 515−525. doi: 10.3969/j.issn.1004-9045.2019.05.013
    [11] Iacono M J, Delamere J S, Mlawer E J, et al. 2008. Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models [J]. J. Geophys. Res. Atmos., 113(D13): D13103. doi: 10.1029/2008JD009944
    [12] Jusem J C, Atlas R. 1998. Diagnostic evaluation of vertical motion forcing mechanisms by using Q-vector partitioning [J]. Mon. Wea. Rev., 126(8): 2166−2184. doi:10.1175/1520-0493(1998)126<2166:DEOVMF>2.0.CO;2
    [13] Keyser D, Schmidt B D, Duffy D G. 1992. Quasigeostrophic vertical motions diagnosed from along- and cross-isentrope components of the Q vector [J]. Mon. Wea. Rev., 120(5): 731−741. doi:10.1175/1520-0493(1992)120<0731:QVMDFA>2.0.CO;2
    [14] 李柏, 李国杰. 1997. 半地转 Q 矢量及其在梅雨锋暴雨研究中的应用 [J]. 大气科学研究与应用, 12(1): 31−38.

    Li Bai, Li Guojie. 1997. Application of the semi-geographic Q vector in study of the Meiyu front [J]. Atmos. Sci. Res. Appl. (in Chinese), 12(1): 31−38.
    [15] 马淑红, 席元伟. 1997. 新疆暴雨的若干规律性 [J]. 气象学报, 55(2): 239−248. doi: 10.11676/qxxb1997.025

    Ma Shuhong, Xi Yuanwei. 1997. Some regularities of storm rainfall in Xinjiang, China [J]. Acta Meteor. Sinica (in Chinese), 55(2): 239−248. doi: 10.11676/qxxb1997.025
    [16] Pauley P M, Nieman S J. 1992. A comparison of quasigeostrophic and nonquasigeostrophic vertical motions for a model-simulated rapidly intensifying marine extratropical cyclone [J]. Mon. Wea. Rev., 120(7): 1108−1134. doi:10.1175/1520-0493(1992)120<1108:acoqan>2.0.co;2
    [17] Räisänen J. 1995. Factors affecting synoptic-scale vertical motions: A statistical study using a generalized omega equation [J]. Mon. Wea. Rev., 123(8): 2447−2460. doi:10.1175/1520-0493(1995)123<2447:fassvm>2.0.co;2
    [18] Rantanen M, Räisänen J, Lento J, et al. 2017. OZO v. 1.0: Software for solving a generalised omega equation and the Zwack–Okossi height tendency equation using WRF model output [J]. Geosci. Model Dev., 10(2): 827−841. doi: 10.5194/gmd-10-827-2017
    [19] Skamarock W C, Klemp J B, Dudhia J, et al. 2021. A description of the advanced research WRF model version 4.3 [R]. NCAR/TN-556+STR. doi: 10.5065/1dfh-6p97
    [20] Strahl J L S, Smith P J. 2001. A diagnostic study of an explosively developing extratropical cyclone and an associated 500-hPa trough merger [J]. Mon. Wea. Rev., 129(9): 2310−2328. doi:10.1175/1520-0493(2001)129<2310:ADSOAE>2.0.CO;2
    [21] Tewari M, Chen F, Wang W, et al. 2004. Implementation and verification of the unified NOAH land-surface model in the WRF model [C]//20th Conference on Weather Analysis and Forecasting/16th Conference on Numerical Weather Prediction. Seattle: American Meteorological Society, 11–15.
    [22] Wang H J, Chen Y N, Chen Z S. 2013. Spatial distribution and temporal trends of mean precipitation and extremes in the arid region, northwest of China, during 1960–2010 [J]. Hydrol. Process., 27(12): 1807−1818. doi: 10.1002/hyp.9339
    [23] 王江, 李如琦, 黄艳, 等. 2015. 2013年南疆西部一次罕见暴雨的成因 [J]. 干旱气象, 33(6): 910−917. doi: 10.11755/j.issn.1006-7639(2015)-06-0910

    Wang Jiang, Li Ruqi, Huang Yan, et al. 2015. Cause of a rare rainstorm in the west of southern Xinjiang in 2013 [J]. Journal of Arid Meteorology (in Chinese), 33(6): 910−917. doi: 10.11755/j.issn.1006-7639(2015)-06-0910
    [24] Wang Y J, Zhou B T, Qin D H, et al. 2017. Changes in mean and extreme temperature and precipitation over the arid region of northwestern China: Observation and projection [J]. Adv. Atmos. Sci., 34(3): 289−305. doi: 10.1007/s00376-016-6160-5
    [25] 谢泽明, 周玉淑, 杨莲梅. 2018. 新疆降水研究进展综述[J]. 暴雨灾害, 37(3): 204−212

    Xie Zeming, Zhou Yushu, Yang Lianmei. 2018. Review of study on precipitation in Xinjiang [J]. Torrential Rain and Disasters (in Chinese), 37(3): 204−212. doi: 10.3969/j.issn.1004-9045.2018.03.002
    [26] 杨莲梅, 杨涛. 2005. 阿克苏地区暴雨和冰雹螺旋度诊断分析 [J]. 中国沙漠, 25(S1): 127−132.

    Yang Lianmei, Yang Tao. 2005. Diagnostic analysis of the helicity for severe convective rainstorm and hail in north oasis of Akesu [J]. Journal of Desert Research (in Chinese), 25(S1): 127−132.
    [27] Yang S, Gao S T, Wang D H. 2007. Diagnostic analyses of the ageostrophic Q vector in the non-uniformly saturated, frictionless, and moist adiabatic flow [J]. J. Geophys. Res. Atmos., 112(D9): D09114. doi: 10.1029/2006jd008142
    [28] 杨莲梅, 李霞, 张广兴. 2011. 新疆夏季强降水研究若干进展及问题 [J]. 气候与环境研究, 16(2): 188−198. doi: 10.3878/j.issn.1006-9585.2011.02.08

    Yang Lianmei, Li Xia, Zhang Guangxing. 2011. Some advances and problems in the study of heavy rain in Xinjiang [J]. Climatic and Environmental Research (in Chinese), 16(2): 188−198. doi: 10.3878/j.issn.1006-9585.2011.02.08
    [29] 姚秀萍, 于玉斌. 2000. 非地转湿Q矢量及其在华北特大台风暴雨中的应用 [J]. 气象学报, 58(4): 436−446. doi: 10.11676/qxxb2000.046

    Yao Xiuping, Yu Yubin. 2000. Non-geostrophic wet Q-vector analysis and its application to typhoon torrential rain [J]. Acta Meteor. Sinica (in Chinese), 58(4): 436−446. doi: 10.11676/qxxb2000.046
    [30] 姚秀萍, 于玉斌. 2001. 完全Q矢量的引入及其诊断分析 [J]. 高原气象, 20(2): 208−213. doi: 10.3321/j.issn:1000-0534.2001.02.016

    Yao Xiuping, Yu Yubin. 2001. Perfect Q-vector and its diagnoses [J]. Plateau Meteorology (in Chinese), 20(2): 208−213. doi: 10.3321/j.issn:1000-0534.2001.02.016
    [31] 曾勇, 周玉淑, 杨莲梅. 2019. 新疆西部一次大暴雨形成机理的数值模拟初步分析 [J]. 大气科学, 43(2): 372−388. doi: 10.3878/j.issn.1006-9895.1804.18106

    Zeng Yong, Zhou Yushu, Yang Lianmei. 2019. A preliminary analysis of the formation mechanism for a heavy rainstorm in western Xinjiang by numerical simulation [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 43(2): 372−388. doi: 10.3878/j.issn.1006-9895.1804.18106
    [32] 张兴旺. 1998. 湿Q矢量表达式及其应用 [J]. 气象, 24(8): 3−7. doi: 10.7519/j.issn.1000-0526.1998.8.001

    Zhang Xingwang. 1998. An expression of the wet Q vector and application [J]. Meteorological Monthly (in Chinese), 24(8): 3−7. doi: 10.7519/j.issn.1000-0526.1998.8.001
    [33] 张兴旺. 1999. 修改的Q矢量表达式及其应用 [J]. 热带气象学报, 15(2): 162−167.

    Zhang Xingwang. 1999. The expression of the modified Q vector and its application [J]. Journal of Tropical Meteorology (in Chinese), 15(2): 162−167.
    [34] 周小刚, 柳士俊, 王秀明, 等. 2011. 基于准地转垂直运动方程对Q矢量的进一步探讨 [J]. 地球物理学报, 54(10): 2495−2502. doi: 10.3969/j.issn.0001-5733.2011.10.007

    Zhou Xiaogang, Liu Shijun, Wang Xiuming, et al. 2011. Further study on the Q-vector based on the quasi-geostrophic omega equation [J]. Chinese Journal of Geophysics (in Chinese), 54(10): 2495−2502. doi: 10.3969/j.issn.0001-5733.2011.10.007
    [35] 庄薇, 刘黎平, 王楠. 2006. 新疆地区一次对流性降水的三维中尺度风场研究 [J]. 应用气象学报, 17(4): 444−451. doi: 10.3969/j.issn.1001-7313.2006.04.008

    Zhuang Wei, Liu Liping, Wang Nan. 2006. Study on three-dimensional wind fields of mesoscale convective systems in Xinjiang [J]. Journal of Applied Meteorological Science (in Chinese), 17(4): 444−451. doi: 10.3969/j.issn.1001-7313.2006.04.008
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  70
  • HTML全文浏览量:  18
  • PDF下载量:  39
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-15
  • 录用日期:  2022-01-25
  • 网络出版日期:  2022-03-02

目录

    /

    返回文章
    返回