Comparison of the Dynamic Transport Characteristics of Low Ozone Regions over the Arctic and the Tibetan Plateau from 1979 to 2020
-
摘要: 基于ERA5月平均再分析资料,利用Lorenz环流分解方法从定常和瞬变以及基流和涡旋的角度对比了北极与青藏高原臭氧低值区的动力输送特征。结果表明:动力总输送在两地上平流层作用最强,均使其臭氧浓度降低,且定常输送均强于瞬变输送,纬向与经向输送的作用均大致相反。然而,动力输送在北极地区的作用强度远大于青藏高原地区。北极地区纬向输送使得平流层中上层臭氧浓度降低,平流层下层臭氧浓度升高,经向输送的作用与之相反且强度明显偏弱,二者均主要作用于上平流层。青藏高原地区纬向和经向输送除在上平流层均使得臭氧浓度降低外,二者作用大致相反且强度相当,输送大值区在垂直方向上存在双中心结构,分别位于上平流层与上对流层—下平流层(Upper Troposphere–Lower Stratosphere,简称UTLS)区。两地区纬向和经向输送的差异均主要由定常涡旋输送所造成。青藏高原地区定常与瞬变输送的强度差异没有北极地区大。此外,两地定常和瞬变输送中涡旋对臭氧纬向平均的输送均起到主要作用,体现出涡旋输送在两地臭氧浓度变化的动力输送过程中发挥着至关重要的作用。Abstract: Based on the monthly ERA5 reanalysis datasets, this study considers the mean flows and eddies in stationary or transient transport using the Lorenz circulation decomposition method. The purpose is to compare the dynamic transport characteristics of ozone over the Arctic and the Tibetan Plateau in detail. Results show that the effect of dynamic transport is strongest in the upper stratosphere of these two regions, which leads to the reduction of ozone. Further analyses indicate that the effect of stationary transport is stronger than that of transient transport and zonal and meridional transports nearly have the opposite effect. However, the intensity of dynamic transport over the Arctic is greater than that over the Tibetan Plateau. Zonal transport over the Arctic results in the reduction of ozone in the upper and middle stratosphere and the increase of ozone in the lower stratosphere, whereas the effect of meridional transport is the opposite and weaker. Both mainly function in the upper stratosphere. Over the Tibetan Plateau, the intensity of zonal transport is the same as that of meridional transport. They nearly have the opposite effect, except for the top of the stratosphere, where both lead to the reduction of ozone. Two centers with the strongest transport are located over the Tibetan Plateau, that is, in the upper stratosphere and the upper troposphere–lower stratosphere. The differences in zonal and meridional transports over these two regions are mainly caused by stationary transport by eddies. The differences in stationary and transient transports over the Tibetan Plateau are smaller than those over the Arctic. Furthermore, the transport of zonal mean ozone by eddies plays a dominant role in stationary and transient transports. Consequently, eddy transport exerts an indispensable influence on the dynamic transport of ozone over the Arctic and the Tibetan Plateau.
-
图 1 2005~2020年OMI观测资料(填色)和ERA5再分析资料(等值线)中北半球多年平均臭氧总量(TCO,单位:DU,1 DU=2.1415×10−5 kg m−2)水平分布
Figure 1. Horizontal distributions of TCO (Total Column Ozone; units: DU, 1 DU=2.1415×10−5 kg m−2) averaged during 2005–2020 in the Northern Hemisphere. Shadings: OMI datasets; contours: ERA5 reanalysis datasets
图 2 1979~2020年(a–l)1~12月北极(60°~90°N)TCO(等值线)和臭氧总量纬向偏差TCO*(阴影)逐月水平分布,单位:DU。北极TCO年平均值为352 DU,实线表示年平均值以上,虚线表示年平均值及以下
Figure 2. Monthly horizontal distribution of TCO (contours) and its zonal deviation (TCO*, shadings) over the Arctic (60°–90° N) averaged (a–l) from January to December during 1979–2020, units: DU. The annual average TCO is 352 DU over the Arctic. The solid line denotes above the annual average, and the dotted line denotes the annual average or below
图 4 1979~2020年(a)北极臭氧低值区(11月至次年1月)和(b)青藏高原臭氧低值区(5~9月)动力输送引起的臭氧浓度局地变化垂直廓线(−D,单位:10−13 kg kg−1 s−1)。红线和蓝线分别表示定常和瞬变总输送,绿线和橙线分别表示纬向和经向总输送,黑线表示动力总输送,虚线为0值参考线
Figure 4. Vertical profiles of ozone change caused by dynamic transport (−D, units: 10−13 kg·kg−1·s−1) over the Arctic and the Tibetan Plateau during 1979–2020: (a) Low ozone region of the Arctic (in November, December, and January); (b) low ozone region of the Tibetan Plateau (from May to September). The red and blue lines denote stationary and transient transports, the green and orange lines denote zonal and meridional transports, the black lines denote the total dynamic transport, the dashed lines denote a value of 0
图 5 1979~2020年(a、c)11月至次年1月北极和(b、d)5~9月青藏高原臭氧低值区纬向输送引起的臭氧浓度局地变化垂直廓线(−Dx,单位:10−13 kg kg−1 s−1):(a、b)纬向定常输送−Dx(SF);(c、d)纬向瞬变输送−Dx(TF)。红线、绿线和蓝线分别表示第SFu2(TFu2)项、第SFu3(TFu3)项和第SFu4(TFu4)项,黑实线表示纬向定常(瞬变)总输送,虚线为0值参考线
Figure 5. Vertical profiles of ozone change caused by zonal transport (−Dx, units: 10−13 kg kg−1 s−1) over the low ozone region of the Arctic in November, December, and January and the low ozone region of the Tibetan Plateau from May to September during 1979–2020: (a, b) Stationary −Dx(SF); (c, d) transient −Dx(TF). The red, green, and blue lines denote SFu2 (TFu2), SFu3 (TFu3), and SFu4 (TFu4), respectively. The black lines denote the total zonal stationary (transient) transport. The dashed lines denote a value of 0
图 6 同图5,但为经向输送(−Dy,单位:10−13 kg kg−1 s−1)。黄线、红线、绿线和蓝线分别表示第SFv1(TFv1)项、第SFv2(TFv2)项、第SFv3(TFv3)项和第SFv4(TFv4)项
Figure 6. Same as Fig. 5, but for meridional transport (−Dy, units: 10−13 kg kg−1 s−1). The orange, red, green, and blue lines denote SFv1 (TFv1), SFv2 (TFv2), SFv3 (TFv3), and SFv4 (TFv4), respectively
表 1 2005~2020年ERA5再分析资料与OMI观测资料TCO(25°~43°N)的逐月相对误差(RE)和相对均方根误差(RRMSE)
Table 1. Monthly relative error (RE) and relative root mean square error (RRMSE) of the TCO between ERA5 reanalysis datasets and OMI datasets averaged over 25°–43°N during 2005–2020
逐月相对误差和相对均方根误差 1月 2月 3月 4月 5月 6月 7月 8月 9月 10月 11月 12月 RE 2.08% 1.96% 1.83% 1.66% 1.62% 1.76% 1.63% 1.51% 1.56% 1.13% 1.26% 1.72% RRMSE 2.32% 2.20% 2.00% 1.79% 1.79% 2.00% 1.80% 1.62% 1.68% 2.37% 2.99% 2.80% -
[1] 卞建春, 严仁嫦, 陈洪滨. 2011. 亚洲夏季风是低层污染物进入平流层的重要途径 [J]. 大气科学, 35(5): 897−902. doi: 10.3878/j.issn.1006-9895.2011.05.09Bian Jianchun, Yan Renchang, Chen Hongbin. 2011. Tropospheric pollutant transport to the stratosphere by Asian summer monsoon [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 35(5): 897−902. doi: 10.3878/j.issn.1006-9895.2011.05.09 [2] Bian J C, Yan R C, Chen H B, et al. 2011. Formation of the summertime ozone valley over the Tibetan Plateau: The Asian summer monsoon and air column variations [J]. Adv. Atmos. Sci., 28(6): 1318−1325. doi: 10.1007/s00376-011-0174-9 [3] 卞建春, 范秋君, 严仁嫦. 2013. 夏季青藏高原对流层-平流层交换过程及其气候效应的若干问题 [J]. 气象科技进展, 3(2): 22−28.Bian Jianchun, Fan Qiujun, Yan Renchang. 2013. Summertime stratosphere-troposphere exchange over the Tibetan Plateau and its climatic impact [J]. Adv. Meteor. Sci. Technol. (in Chinese), 3(2): 22−28. [4] Chang S J, Sheng Z, Zhu Y W, et al. 2020. Response of ozone to a gravity wave process in the UTLS region over the Tibetan Plateau [J]. Front. Earth Sci., 8: 289. doi: 10.3389/feart.2020.00289 [5] Chang S J, Shi C H, Guo D, et al. 2021. Attribution of the principal components of the summertime ozone valley in the upper troposphere and lower stratosphere [J]. Front. Earth Sci., 8: 605703. doi: 10.3389/feart.2020.605703 [6] 陈闯, 田文寿, 田红瑛, 等. 2012. 青藏高原东北侧臭氧垂直分布与平流层—对流层物质交换 [J]. 高原气象, 31(2): 295−303.Chen Chuang, Tian Wenshou, Tian Hongying, et al. 2012. Vertical distribution of ozone and stratosphere–troposphere exchanges on the northeastern side of Tibetan Plateau [J]. Plateau Meteorology (in Chinese), 31(2): 295−303. [7] 陈月娟, 张弘, 毕训强. 1998. 南极臭氧洞对全球气候影响的数值试验 [J]. 中国科学技术大学学报, 28(6): 664−668.Chen Yuejuan, Zhang Hong, Bi Xunqiang. 1998. A numerical experiment on the impact of Antarctic ozone hole on the global climate [J]. Journal of University of Science and Technology of China (in Chinese), 28(6): 664−668. [8] Damiani A, Cordero R R, Llanillo P J, et al. 2020. Connection between Antarctic ozone and climate: Interannual precipitation changes in the Southern Hemisphere [J]. Atmosphere, 11(6): 579. doi: 10.3390/atmos11060579 [9] Das S S, Suneeth K V, Ratnam M V, et al. 2019. Upper tropospheric ozone transport from the sub-tropics to tropics over the Indian region during Asian summer monsoon [J]. Climate Dyn., 52(7): 4567−4581. doi: 10.1007/s00382-018-4418-6 [10] Douglass A, Fioletov V, Godin-Beekmann S, et al. 2011. Scientific Assessment of Ozone Depletion: 2010, Chapter: 2—Stratospheric Ozone and Surface Ultraviolet Radiation [M]. Geneva: World Meteorological Organization, 516pp. [11] Dragani R. 2016. A comparative analysis of UV nadir-backscatter and infrared limb-emission ozone data assimilation [J]. Atmospheric Chemistry and Physics, 16(13): 8539−8557. doi: 10.5194/acp-16-8539-2016 [12] Egger J, Hoinka K P. 2011. Global angular momentum fluxes in height coordinates [J]. Mon. Wea. Rev., 139(8): 2552−2560. doi: 10.1175/2010MWR3514.1 [13] Farman J C, Gardiner B G, Shanklin J D. 1985. Large losses of total ozone in Antarctica reveal seasonal ClOx/NOx interaction [J]. Nature, 315(6016): 207−210. doi: 10.1038/315207a0 [14] 郭栋, 周秀骥, 刘煜, 等. 2012. 南亚高压对青藏高原臭氧谷的动力作用 [J]. 气象学报, 70(6): 1302−1311. doi: 10.11676/qxxb2012.109Guo Dong, Zhou Xiuji, Liu Yu, et al. 2012. The dynamic effects of the South Asian high on the ozone valley over the Tibetan Plateau [J]. Acta Meteor. Sinica (in Chinese), 70(6): 1302−1311. doi: 10.11676/qxxb2012.109 [15] Guo D, Su Y C, Shi C H, et al. 2015. Double core of ozone valley over the Tibetan Plateau and its possible mechanisms [J]. Journal of Atmospheric and Solar-Terrestrial Physics, 130–131: 127–131. doi:10.1016/j.jastp.2015.05.018 [16] Guo D, Su Y C, Zhou X J, et al. 2017. Evaluation of the trend uncertainty in summer ozone valley over the Tibetan Plateau in three reanalysis datasets [J]. J. Meteor. Res., 31(2): 431−437. doi: 10.1007/s13351-017-6058-x [17] 郭栋, 徐建军, 苏昱丞, 等. 2017. 青藏高原和北美夏季臭氧谷垂直结构和形成机制的比较 [J]. 大气科学学报, 40(3): 412−417. doi: 10.13878/j.cnki.dqkxxb.20160315001Guo Dong, Xu Jianjun, Su Yucheng, et al. 2017. Comparison of vertical structure and formation mechanism of summer ozone valley over the Tibetan Plateau and North America [J]. Trans. Atmos. Sci. (in Chinese), 40(3): 412−417. doi: 10.13878/j.cnki.dqkxxb.20160315001 [18] Haase S, Matthes K. 2019. The importance of interactive chemistry for stratosphere–troposphere coupling [J]. Atmos. Chem. Phys., 19(5): 3417−3432. doi: 10.5194/acp-19-3417-2019 [19] Hingane L S. 1990. Ozone valley in the subtropics [J]. J. Atmos. Sci., 47(14): 1814−1816. doi: 10.1175/1520-0469(1990)047<1814:OVITS>2.0.CO;2 [20] 胡永云. 2006. 平流层极地臭氧损耗影响对流层气候的研究进展 [J]. 北京大学学报(自然科学版), 42(5): 561−568. doi: 10.13209/j.0479-8023.2006.102Hu Yongyun. 2006. Possible impact of stratospheric polar ozone depletion on tropospheric climate [J]. Acta Scientiarum Naturalium Universitatis Pekinensis (in Chinese), 42(5): 561−568. doi: 10.13209/j.0479-8023.2006.102 [21] 胡永云, 夏炎, 高梅, 等. 2008. 21世纪平流层温度变化和臭氧恢复 [J]. 气象学报, 66(6): 880−891. doi: 10.3321/j.issn:0577-6619.2008.06.004Hu Yongyun, Xia Yan, Gao Mei, et al. 2008. Stratospheric temperature changes and ozone recovery in the 21st century [J]. Acta Meteor. Sinica (in Chinese), 66(6): 880−891. doi: 10.3321/j.issn:0577-6619.2008.06.004 [22] Ivanciu I, Matthes K, Wahl S, et al. 2021. Effects of prescribed CMIP6 ozone on simulating the southern Hemisphere atmospheric circulation response to ozone depletion [J]. Atmos. Chem. Phys., 21(8): 5777−5806. doi: 10.5194/acp-21-5777-2021 [23] 敬文琪, 王业桂, 崔园园, 等. 2019. 基于WACCM+DART的临近空间SABER和MLS臭氧观测同化试验研究 [J]. 大气科学, 43(2): 233−250. doi: 10.3878/j.issn.1006-9895.1803.17184Jing Wenqi, Wang Yegui, Cui Yuanyuan, et al. 2019. Assimilation of near space ozone data from SABER and MLS observations into the whole atmosphere community climate model and data assimilation research test-bed [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 43(2): 233−250. doi: 10.3878/j.issn.1006-9895.1803.17184 [24] Kraucunas I, Hartmann D L. 2005. Equatorial superrotation and the factors controlling the zonal-mean zonal winds in the tropical upper troposphere [J]. J. Atmos. Sci., 62(2): 371−389. doi: 10.1175/JAS-3365.1 [25] Kumar K R, Singh B B, Kumar K N. 2021. Intriguing aspects of Asian summer monsoon anticyclone ozone variability from microwave limb sounder measurements [J]. Atmospheric Research, 253: 105479. doi: 10.1016/j.atmosres.2021.105479 [26] 黎成超, 郭世昌, 易琦, 等. 2016. 北半球中高纬地区冬季大气臭氧与极涡强度关系 [J]. 高原气象, 35(5): 1290−1297. doi: 10.7522/j.issn.1000-0534.2015.00026Li Chengchao, Guo Shichang, Yi Qi, et al. 2016. Relationship between atmospheric ozone and polar vortex intensity in the mid-high latitude over the Northern Hemisphere in winter [J]. Plateau Meteorology (in Chinese), 35(5): 1290−1297. doi: 10.7522/j.issn.1000-0534.2015.00026 [27] Li D, Vogel B, Müller R, et al. 2020. Dehydration and low ozone in the tropopause layer over the Asian monsoon caused by tropical cyclones: Lagrangian transport calculations using ERA-Interim and ERA5 reanalysis data [J]. Atmos. Chem. Phys., 20(7): 4133−4152. doi: 10.5194/acp-20-4133-2020 [28] Lin P, Ming Y. 2021. Enhanced climate response to ozone depletion from ozone-circulation coupling [J]. J. Geophys. Res. Atmos., 126(7): e2020JD034286. doi: 10.1029/2020jd034286 [29] Liu M C, Hu D Z. 2021. Different relationships between Arctic oscillation and ozone in the stratosphere over the Arctic in January and February [J]. Atmosphere, 12(2): 129. doi: 10.3390/atmos12020129 [30] 刘姝媛, 朱彬, 苏继峰, 等. 2011. 近30a北极平流层臭氧的季节和年际变化特征 [J]. 大气科学学报, 34(5): 538−546. doi: 10.3969/j.issn.1674-7097.2011.05.003Liu Shuyuan, Zhu Bin, Su Jifeng, et al. 2011. Seasonal and interannual characteristics of ozone over Arctic stratosphere in recent 30 years [J]. Trans Atmos Sci (in Chinese), 34(5): 538−546. doi: 10.3969/j.issn.1674-7097.2011.05.003 [31] Liu Y, Li W L, Zhou X J, et al. 2003. Mechanism of Formation of the ozone valley over the Tibetan Plateau in summer-transport and chemical process of ozone [J]. Adv. Atmos. Sci., 20(1): 103−109. doi: 10.1007/bf03342054 [32] Lorenz E N. 1967. The Nature and Theory of the General Circulation of the Atmosphere [M]. Geneva: World Meteorological Organization, 161pp. [33] 陆晏, 郭栋, 陶丽, 等. 2017. 太阳准周期变化对北半球夏季平流层加热率的影响 [J]. 大气科学学报, 40(6): 729−736. doi: 10.13878/j.cnki.dqkxxb.20160124001Lu Yan, Guo Dong, Tao Li, et al. 2017. Influence of solar quasi-periodic variation on stratospheric heating rate in the Northern Hemisphere in summer [J]. Trans Atmos Sci (in Chinese), 40(6): 729−736. doi: 10.13878/j.cnki.dqkxxb.20160124001 [34] Lucas R M, Norval M, Neale R E, et al. 2014. The consequences for human health of stratospheric ozone depletion in association with other environmental factors [J]. Photochem. Photobiol. Sci., 14(1): 53−87. doi: 10.1039/c4pp90033b [35] Manney G L, Livesey N J, Santee M L, et al. 2020. Record-low Arctic stratospheric ozone in 2020: MLS observations of chemical processes and comparisons with previous extreme winters [J]. Geophys. Res. Lett., 47(16): e2020GL089063. doi: 10.1029/2020gl089063 [36] Park S, Son S W, Jung M I, et al. 2020. Evaluation of tropospheric ozone reanalyses with independent ozonesonde observations in East Asia [J]. Geosci. Lett., 7(1): 12. doi: 10.1186/s40562-020-00161-9 [37] Pierce R B, Al-Saadi J A, Fairlie T D, et al. 1999. Large-scale stratospheric ozone photochemistry and transport during the POLARIS Campaign [J]. J. Geophys. Res., 104(D21): 26525−26545. doi: 10.1029/1999jd900395 [38] Previdi M, Polvani L M. 2014. Climate system response to stratospheric ozone depletion and recovery [J]. Quart. J. Roy. Meteor. Soc., 140(685): 2401−2419. doi: 10.1002/qj.2330 [39] 覃皓, 郭栋, 施春华, 等. 2018. 南亚高压与邻近地区臭氧变化的相互作用 [J]. 大气科学, 42(2): 421−434. doi: 10.3878/j.issn.1006-9895.1710.17159Qin Hao, Guo Dong, Shi Chunhua, et al. 2018. The interaction between variations of South Asia high and ozone in the adjacent regions [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 42(2): 421−434. doi: 10.3878/j.issn.1006-9895.1710.17159 [40] Reiter E R, Gao D Y. 1982. Heating of the Tibet Plateau and movements of the South Asian high during spring [J]. Mon. Wea. Rev., 110(11): 1694−1711. doi: 10.1175/1520-0493(1982)110<1694:HOTTPA>2.0.CO;2 [41] Rowland F S, Molina M J. 1975. Chlorofluoromethanes in the environment [J]. Rev. Geophys., 13(1): 1−35. doi: 10.1029/RG013i001p00001 [42] 施春华, 陈月娟, 郑彬, 等. 2010. 平流层臭氧季节变化的动力和光化学作用之比较 [J]. 大气科学, 34(2): 399−406. doi: 10.3878/j.issn.1006-9895.2010.02.13Shi Chunhua, Chen Yuejuan, Zheng Bin, et al. 2010. A comparison of the contributions of dynamical transportation and photochemical process to Ozone's seasonal variation in the stratosphere [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 34(2): 399−406. doi: 10.3878/j.issn.1006-9895.2010.02.13 [43] Smith K L, Polvani L M. 2014. The surface impacts of Arctic stratospheric ozone anomalies [J]. Environ. Res. Lett., 9(7): 074015. doi: 10.1088/1748-9326/9/7/074015 [44] Solomon S. 1999. Stratospheric ozone depletion: A review of concepts and history [J]. Rev. Geophys., 37(3): 275−316. doi: 10.1029/1999RG900008 [45] Son S W, Han B R, Garfinkel C I, et al. 2018. Tropospheric jet response to Antarctic ozone depletion: An update with chemistry-climate model initiative (CCMI) models [J]. Environ. Res. Lett., 13(5): 054024. doi: 10.1088/1748-9326/aabf21 [46] Stolarski R S, Bloomfield P, McPeters R D, et al. 1991. Total ozone trends deduced from Nimbus 7 Toms data [J]. Geophys. Res. Lett., 18(6): 1015−1018. doi: 10.1029/91gl01302 [47] 苏昱丞, 郭栋, 郭胜利, 等. 2016. 未来百年夏季青藏高原臭氧变化趋势及可能机制 [J]. 大气科学学报, 39(3): 309−317. doi: 10.13878/j.cnki.dqkxxb.20140925002Su Yucheng, Guo Dong, Guo Shengli, et al. 2016. Ozone trends over the Tibetan Plateau in the next 100 years and their possible mechanism [J]. Trans. Atmos. Sci. (in Chinese), 39(3): 309−317. doi: 10.13878/j.cnki.dqkxxb.20140925002 [48] 索春男, 田红瑛, 闫春旺, 等. 2017. 北极极涡对极地平流层臭氧变化的影响研究 [J]. 干旱气象, 35(2): 190−198. doi: 10.11755/j.issn.1006-7639(2017)-02-0190Suo Chunnan, Tian Hongying, Yan Chunwang, et al. 2017. Influence of the Arctic polar vortex on ozone change in stratosphere of the Arctic [J]. Journal of Arid Meteorology (in Chinese), 35(2): 190−198. doi: 10.11755/j.issn.1006-7639(2017)-02-0190 [49] 谭海燕, 邵珠晓, 梁丙臣, 等. 2021. ERA5风场与NCEP风场在黄海、东海波浪模拟的适用性对比研究 [J]. 海洋通报, 40(5): 524−540. doi: 10.11840/j.issn.1001-6392.2021.05.005Tan Haiyan, Shao Zhuxiao, Liang Bingchen, et al. 2021. A comparative study on the applicability of ERA5 wind and NCEP wind for wave simulation in the Huanghai Sea and East China Sea [J]. Marine Science Bulletin (in Chinese), 40(5): 524−540. doi: 10.11840/j.issn.1001-6392.2021.05.005 [50] Tang Z, Guo D, Su Y C, et al. 2019. Double cores of the ozone low in the vertical direction over the Asian continent in satellite data sets [J]. Earth Planet. Phys., 3(2): 93−101. doi: 10.26464/epp2019011 [51] Tian W S, Chipperfield M, Huang Q. 2008. Effects of the Tibetan Plateau on total column ozone distribution [J]. Tellus B Chem. Phys. Meteor., 60(4): 622−635. doi: 10.1111/j.1600-0889.2008.00338.x [52] 王同美, 吴国雄, 万日金. 2008. 青藏高原的热力和动力作用对亚洲季风区环流的影响 [J]. 高原气象, 27(1): 1−9.Wang Tongmei, Wu Guoxiong, Wan Rijin. 2008. Influence of the mechanical and thermal forcing of Tibetan plateau on the circulation of the Asian summer monsoon area [J]. Plateau Meteorology (in Chinese), 27(1): 1−9. [53] 王卫国, 袁敏, 王颢樾, 等. 2008. 对流层—平流层之间过渡层中臭氧含量及其加热率的变化研究 [J]. 地球物理学报, 51(5): 1309−1320. doi: 10.3321/j.issn:0001-5733.2008.05.005Wang Weiguo, Yuan Min, Wang Haoyue, et al. 2008. A study of ozone amount in the transition layer between troposphere and stratosphere and its heating rate [J]. Chinese J. Geophys. (in Chinese), 51(5): 1309−1320. doi: 10.3321/j.issn:0001-5733.2008.05.005 [54] Wang Y P, Wang H Y, Wang W K. 2020. A stratospheric intrusion-influenced ozone pollution episode associated with an intense horizontal-trough event [J]. Atmosphere, 11(2): 164. doi: 10.3390/atmos11020164 [55] Wilka C, Shah K, Stone K, et al. 2018. On the role of heterogeneous chemistry in ozone depletion and recovery [J]. Geophys. Res. Lett., 45(15): 7835−7842. doi: 10.1029/2018gl078596 [56] WMO. 1994. Scientific assessment of ozone depletion: 1994 [R]. Rep. 37. [57] 吴国雄, 刘屹岷, 刘新, 等. 2005. 青藏高原加热如何影响亚洲夏季的气候格局 [J]. 大气科学, 29(1): 47−56. doi: 10.3878/j.issn.1006-9895.2005.01.06Wu Guoxiong, Liu Yimin, Liu Xin, et al. 2005. How the heating over the Tibetan Plateau affects the Asian climate in summer [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 29(1): 47−56. doi: 10.3878/j.issn.1006-9895.2005.01.06 [58] Xia Y, Huang Y, Hu Y Y. 2018. On the climate impacts of upper tropospheric and lower stratospheric ozone [J]. J. Geophys. Res. Atmos., 123(2): 730−739. doi: 10.1002/2017jd027398 [59] Xie F, Li J P, Zhang J K, et al. 2017. Variations in North Pacific sea surface temperature caused by Arctic stratospheric ozone anomalies [J]. Environ. Res. Lett., 12(11): 114023. doi: 10.1088/1748-9326/aa9005 [60] Xu W W, Song Q Q, Li Y J, et al. 2021. Effects of stationary and transient transport of ozone on the ozone valley over the Tibetan Plateau in summer [J]. Front. Earth Sci., 9: 608018. doi: 10.3389/feart.2021.608018 [61] 杨玮, 王盘兴, 何金海, 等. 2014. 西风角动量输送的气候特征及其与急流关系研究 [J]. 大气科学, 38(2): 363−372. doi: 10.3878/j.issn.1006-9895.2013.13101Yang Wei, Wang Panxing, He Jinhai, et al. 2014. Climatic characteristics of relative atmospheric angular momentum transport and its relationship with jet streams [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 38(2): 363−372. doi: 10.3878/j.issn.1006-9895.2013.13101 [62] Zhang F, Hou C, Li J N, et al. 2017. A simple parameterization for the height of maximum ozone heating rate [J]. Infrared Phys. Technol., 87: 104−112. doi: 10.1016/j.infrared.2017.09.002 [63] Zhang J K, Tian W S, Xie F, et al. 2014. Climate warming and decreasing total column ozone over the Tibetan Plateau during winter and spring [J]. Tellus B Chem. Phys. Meteor., 66(1): 23415. doi: 10.3402/tellusb.v66.23415 [64] Zhang X X, Zhang Y, Lu X Y, et al. 2021. Estimation of Lower-stratosphere-to-troposphere ozone profile using long short-term memory (LSTM) [J]. Remote Sens., 13(7): 1374. doi: 10.3390/rs13071374 [65] 赵天保, 符淙斌. 2009. 应用探空观测资料评估几类再分析资料在中国区域的适用性 [J]. 大气科学, 33(3): 634−648. doi: 10.3878/j.issn.1006-9895.2009.03.19Zhao Tianbao, Fu Congbin. 2009. Applicability evaluation for several reanalysis datasets using the upper-air observations over China [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 33(3): 634−648. doi: 10.3878/j.issn.1006-9895.2009.03.19 [66] 周秀骥, 罗超, 李维亮, 等. 1995. 中国地区臭氧总量变化与青藏高原低值中心 [J]. 科学通报, 40(15): 1396−1398. doi: 10.3321/j.issn:0023-074X.1995.15.016Zhou Xiuji, Luo Chao, Li Weiliang, et al. 1995. The change of total ozone in China and the low value center of the Tibetan Plateau [J]. Chinese Science Bulletin (in Chinese), 40(15): 1396−1398. doi: 10.3321/j.issn:0023-074X.1995.15.016 [67] Zou H, Zhou L B, Gao Y Q, et al. 2005. Total ozone variation between 50° and 60°N [J]. Geophys. Res. Lett., 32(23): L23812. doi: 10.1029/2005GL024012 [68] 邹捍, 李鹏, 周立波, 等. 2006. 北大西洋臭氧极小值和北太平洋极大值及其相互关系 [J]. 大气科学, 30(5): 905−912. doi: 10.3878/j.issn.1006-9895.2006.05.19Zou Han, Li Peng, Zhou Libo, et al. 2006. On low ozone over the North Atlantic and high ozone over the North Pacific [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 30(5): 905−912. doi: 10.3878/j.issn.1006-9895.2006.05.19 -