高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

再论地转流的正压不稳定

林一骅

林一骅. 2022. 再论地转流的正压不稳定[J]. 大气科学, 47(X): 1−8 doi: 10.3878/j.issn.1006-9895.2203.22004
引用本文: 林一骅. 2022. 再论地转流的正压不稳定[J]. 大气科学, 47(X): 1−8 doi: 10.3878/j.issn.1006-9895.2203.22004
LIN Yihua. 2022. Barotropic Instability of Geostrophic Flow: The Problem Revisited [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 47(X): 1−8 doi: 10.3878/j.issn.1006-9895.2203.22004
Citation: LIN Yihua. 2022. Barotropic Instability of Geostrophic Flow: The Problem Revisited [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 47(X): 1−8 doi: 10.3878/j.issn.1006-9895.2203.22004

再论地转流的正压不稳定

doi: 10.3878/j.issn.1006-9895.2203.22004
基金项目: 国家自然科学基金项目42275057、42230403,国家自然科学基金—中国民用航空局联合研究基金重点项目
详细信息
    作者简介:

    林一骅,男,1966 年出生,研究员,主要从事地球流体力学与海洋环流数值模拟研究。E-mail:linyh@lasg.iap.ac.cn

Barotropic Instability of Geostrophic Flow: The Problem Revisited

Funds: National Natural Science Foundation of China (Grants 42275057 and 42230403),State Key Program of the Joint Fund of the National Natural Science Foundation of China and the Civil Aviation Administration of China (Grant U2033207)
  • 摘要: 本文研究了考虑地转约束的情况下,正压不稳定的必要条件,并基于能量学和位涡动力学理论,对正压不稳定的必要条件的物理含义进行了诠释。对于满足地转平衡的基本流,瑞利—郭晓岚定理[(Rayleigh,1880)、Kuo(19491973)]修正为:若地转流可能出现不稳定,其位涡梯度需在某个纬度取极值。Fjørtoft定理(Fjørtoft, 1950)相应地成为:若地转流可能出现不稳定,需满足Qy(位涡的经向梯度)与UUs(地转流速度与Qy为零处的地转流速度之差)同号。即由原结论中的绝对涡度修正为位涡,这是地转约束也是位涡约束的结果。研究指出满足能量关系是正压不稳定可能出现的能量学要求,瑞利—郭晓岚定理是正压不稳定可能出现的位涡动力学条件,而Fjørtoft定理则是能量学与位涡动力学两种要求的协调,能量关系、瑞利—郭晓岚定理和Fjørtoft定理三者均须满足,正压不稳定才有可能发生。
  • [1] Batchelor G K. 1967. An Introduction to Fluid Mechanics [M]. Cambridge: Cambridge University Press.
    [2] Drazin P G, Reid W H. 2004. Hydrodynamic Stability [M]. Cambridge: Cambridge University Press.
    [3] Fjørtoft, R. 1950. Application of integral theorems in deriving criteria of stability for laminar flows and for the baroclinic circular vortex [J]. Geofis. Publ., 17: 1−52.
    [4] Gill A E. 1982. Atmosphere–Ocean Dynamics [M]. New York: Academic Press.
    [5] Kuo H L. 1949. Dynamic instability of two-dimensional non-divergent flow in a barotropic atmosphere [J]. Journal of Meteorology, 6: 105−122. doi: 10.1175/1520-0469(1949)006<0105:DIOTDN>2.0.CO;2
    [6] Kuo H L. 1973. Dynamics of quasigeostrophic flows and instability theory [J]. Advances in Applied Mechanics, 13: 247−330. doi: 10.1016/S0065-2156(08)70145-5
    [7] Lin C C. 1945. On the stability of two-dimensional parallel flows. II. Stability in an inviscid fluid [J]. Quarterly of Applied Mathematics, 4(3): 218−234.
    [8] Pedlosky J. 1987. Geophysical Fluid Dynamics [M]. New York: Springer-Verlag.
    [9] 钱永甫, 陈月娟, 王谦谦, 等. 2006. 郭晓岚教授对大气科学的杰出贡献 [J]. 气象学报, 64(4): 408−411.

    Qian Y F, Chen Y J, Wang Q Q, et al. 2006. Creative and great contributions of professor Guo Xiaolan (Hsiao Lan Kuo) to the atmospheric sciences—A Memorial of Professor Guo Xiaolan [J]. Acta Meteorologica Sinica, 64(4): 408−411.
    [10] Rayleigh L. 1880. On the stability, or instability, of certain fluid motions [J]. Proceedings London Mathematical Society, s1-11: 57−72. doi: 10.1112/plms/s1-11.1.57
    [11] Vallis G K. 2017. Atmospheric and Oceanic Fluid Dynamics [M]. Cambridge: Cambridge University Press.
    [12] 曾庆存. 1979. 数值天气预报的数学物理基础[M]. 北京: 科学出版社.

    Zeng Q C. 1979: The Physcial and Mathematical Basis of Numerical Weather prediction (in Chinese) [M]. Beijing: Science Press.
    [13] Zeng Q C. 1982. On the evolution and interaction of disturbances and zonal flow in rotating barotropic atmosphere [J]. Journal of the Meteorological Society of Japan, 60(1): 24−31.
    [14] Zeng Q C. 1983. The evolution of a Rossby-wave packet in a three-dimensional baroclinic atmosphere [J]. Journal of Atmospheric Sciences, 40(1): 73−84. doi: 10.1175/1520-0469(1983)040<0073:TEOARW>2.0.CO;2
  • 加载中
计量
  • 文章访问数:  266
  • HTML全文浏览量:  28
  • PDF下载量:  34
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-05
  • 录用日期:  2022-06-01
  • 网络出版日期:  2022-06-14

目录

    /

    返回文章
    返回