高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

青藏高原六套陆面蒸散发产品的评估

袁令 马耀明 陈学龙 王玉阳

袁令, 马耀明, 陈学龙, 等. 2023. 青藏高原六套陆面蒸散发产品的评估[J]. 大气科学, 47(3): 893−906 doi: 10.3878/j.issn.1006-9895.2204.21208
引用本文: 袁令, 马耀明, 陈学龙, 等. 2023. 青藏高原六套陆面蒸散发产品的评估[J]. 大气科学, 47(3): 893−906 doi: 10.3878/j.issn.1006-9895.2204.21208
YUAN Ling, MA Yaoming, CHEN Xuelong, et al. 2023. Evaluation of Six Land Surface Evapotranspiration Products over the Tibetan Plateau [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 47(3): 893−906 doi: 10.3878/j.issn.1006-9895.2204.21208
Citation: YUAN Ling, MA Yaoming, CHEN Xuelong, et al. 2023. Evaluation of Six Land Surface Evapotranspiration Products over the Tibetan Plateau [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 47(3): 893−906 doi: 10.3878/j.issn.1006-9895.2204.21208

青藏高原六套陆面蒸散发产品的评估

doi: 10.3878/j.issn.1006-9895.2204.21208
基金项目: 国家自然科学基金项目42230610、41975009,科技部第二次青藏高原科学考察项目 2019QZKK0103
详细信息
    作者简介:

    袁令,1994年出生,男,博士研究生,主要从事大气边界层观测与卫星遥感应用研究。E-mail: yuanling@itpcas.ac.cn

    通讯作者:

    马耀明,E-mail: ymma@itpcas.ac.cn

  • 中图分类号: P426

Evaluation of Six Land Surface Evapotranspiration Products over the Tibetan Plateau

Funds: National Natural Science Foundation of China (Grants 42230610, 41975009), Second Tibetan Plateau Scientific Expedition and Research (STEP) Program (Grant 2019QZKK0103)
  • 摘要: 鉴于基于卫星遥感和地面观测开发出的不同时空分辨率蒸散发(ET)产品在青藏高原(TP)仍存在不确定性,从而限制了这些产品在水文气象和气候评估方面的应用。本文基于涡动观测的ET对六种ET产品(PML、EB-ET_V2、GLEAM、GLDAS、ERA5_Land和MOD16)进行评估并比较各产品之间的差异,对TP区域ET产品不确定性做了分析。结果表明:(1)观测值与对应像元ET值之间的年平均态和季节循环存在较好的相关性、一致性。GLEAM产品与观测值吻合度较高并拥有适用性;MOD16产品在大部分站点性能较差。(2)在季节性变化方面,春季ERA5_Land产品与观测的变化较为一致;夏季和冬季GLEAM产品与观测的变化更为接近,而EB-ET_V2产品在秋季表现更有优势。(3)在空间上,GLEAM、EB-ET_V2产品和GLDAS产品存在更高的相关性(相关系数R>0.88)和一致性(一致性指数IOA>0.89);各产品季节时空分布有较大的差异,尤其是春季;相对其他产品,MOD16产品在大部分区域夏季低估且冬季高估。(4)除MOD16外的各产品年平均ET大小相差较大,多年平均的高原ET大小排序为ERA5_Land(401.46 mm a−1)>PML(334.37 mm a−1)>GLEAM(298.46 mm a−1)>EB-ET_V2(271.39 mm a−1)>GLDAS(249.67 mm a−1),六套产品估算的青藏高原的总体年蒸发量为330.59 mm a−1。青藏高原不同蒸发产品的比较有助于对高原蒸发的动态变化有更深入的了解,可以为青藏高原水资源评估和区域水管理提供参考。
  • 图  1  海拔高于2500 m、范围为(24°N~42°N,73°E~106°E)的青藏高原区域土地覆盖类型(a)空间分布、(b)占比

    Figure  1.  (a) Spatial map and (b) ratio histograms of land cover types in the Tibetan Plateau (TP) region with an elevation above 2500 m and a range (24°N–42°N, 73°E–106°E)

    图  2  6种ET产品ET值与草地站(Arou、Maqu、BJ、NAMOR和SETORS)和裸土站(QOMS、MAWORS和NADORS)通量塔观测ET值的时间序列和散点图

    Figure  2.  Time series and scatter plots for ET values obtained from six ET products (M) and flux tower data (G) over grassland sites (Arou, Maqu, BJ, NAMOR, and SETORS) and bare soil sites (QOMS, MAWORS, and NADORS)

    图  3  6种ET产品数据集、通量塔观测ET值在通量站的平均季节变化距平时间序列

    Figure  3.  Average intraseasonal variation anomaly time series of six ET products datasets and ET observations obtained from flux tower

    图  4  7种ET产品数据集在青藏高原地区多年(2000~2014)平均的ET值(单位:mm a−1)空间分布

    Figure  4.  Spatial distribution of multiyear (2000–2014) average ET (units: mm a−1) from seven ET products datasets over the TP region

    图  5  7种ET产品数据集ET值与实测数据在青藏高原地区空间分布的(a)相关性系数和(b)一致性指数

    Figure  5.  (a) Correlation coefficients (R) and (b) index of agreement (IOA) of the spatial distribution for ET obtained from seven ET products datasets with measurements over the TP region

    图  6  青藏高原季节平均的ET值(单位:mm season−1)空间分布

    Figure  6.  Spatial distributions of average seasonal ET (units: mm season−1) in the TP region

    表  1  8个通量站点的地理特征和观测数据的年份范围

    Table  1.   Geographic feature and year range of observation data of eight flux sites

    站点类型站点名称站点位置植被类型海拔/m测量高度/m数据年份
    草地阿柔(Arou)38.05°N, 100.46°E草地29952.962015~2017
    玛曲(Maqu)33.92°N, 102.16°E草地35003.502012~2014
    那曲(BJ)31.37°N, 91.90°E高寒草甸45093.102016~2018
    纳木错(NAMOR)30.77°N, 90.99°E高寒草甸47303.062008~2010
    林芝站(SETORS)29.76°N, 94.73°E草地33263.042015~2017
    裸土珠峰(QOMS)28.21°N, 86.56°E砾石或稀疏短草42983.252008~2010
    慕士塔格(MAWORS)38.41°N, 75.05°E荒或稀疏短草36682.302015~2017
    阿里(NADORS)33.39°N, 79.70°E荒或稀疏短草42702.752013~2015
    下载: 导出CSV

    表  2  6个ET产品数据集的时空分辨率、研究年份

    Table  2.   Spatial–temporal resolution and research year of six ET (evapotranspiration) products datasets

    ET产品时间分辨率空间分辨率研究年份
    PML8 d0.05°×0.05°2002~2019
    EB-ET_v2逐日0.05°×0.05°2000~2017
    GLEAM逐日0.25°×0.25°1980~2018
    GLDAS3 h0.25°×0.25°2000~2020
    ERA5_Land1 h0.1°×0.1°1981~2020
    MOD168 d0.05°×0.05°2000~2018
    下载: 导出CSV

    表  3  6种ET产品数据集的主要强迫数据来源

    Table  3.   Major forcing data of the six ET products datasets

    ET产品数据来源
    降水辐射气象数据(风、温度、湿度和气压)植被指数模型年份
    PMLGLDAS_Noah_2.1GLDAS_Noah_2.1GLDAS_Noah_2.1MODISPML遥感模型2002~2019
    EB-ET_V2/ERA-InterimERA-InterimMODIS地表能量平衡法2000~2017
    GLEAMMSWEP v1.0ERA-InterimERA-InterimMODISGash分析模型、Priestley-Taylor方程等模型,融合了卫星和环境观测数据1980~2018
    GLDASUMFDUMFDUMFD/陆面模型和数据同化2000~2020
    ERA5_Land/ERA5近地表气象数据集和通量场ERA5近地表气象数据集和通量场/ECMWF集成预报系统CY41R2中的4D-Var数据同化1981~2020
    MOD16/MERRAGMAOMODISPM遥感模型2000~2018
    注:“/”表示没有相应的驱动数据集。
    下载: 导出CSV

    表  4  两种不同生态系统的通量塔观测ET值与六种ET产品数据集ET值之间的统计指标值

    Table  4.   Statistical indicator values between ET observations obtained from flux tower in two different ecosystems and six ET products datasets

    站点类型ET数据集ET/mm (8 d)−1MB/mm (8 d)−1RMSE/mm (8 d)−1IOAR
    通量站平均产品平均
    草地站PML13.348.44−2.175.440.910.88**
    EB-ET_V211.15−4.658.620.740.72**
    GLEAM12.50−0.925.370.900.88**
    GLDAS10.85−2.457.260.850.86**
    ERA5_Land8.01−5.347.810.790.85**
    MOD1612.31−1.207.560.730.72**
    裸土站PML8.663.810.717.340.700.58*
    EB-ET_V29.24−4.619.210.560.54*
    GLEAM4.28−4.417.470.710.74**
    GLDAS6.63−2.127.580.700.57*
    ERA5_Land3.30−5.438.770.660.72**
    MOD16/////
    注:**、*分别表示各ET产品与通量塔观测的相关性通过显著性水平为0.01、0.05的显著性t检验;黑体数字表示不同下垫面下各ET产品的验证统计指标最优值;“/”表示没有相应统计结果。
    下载: 导出CSV

    表  5  6种ET产品数据集ET值与通量塔观测ET值在TP地区春、夏、秋、冬季的相关系数$R $和一致性指数IOA

    Table  5.   Correlation coefficients ($R $) and index of agreement (IOA) between ET observations obtained from flux tower and six ET products datasets in TP region in spring, summer, autumn, and winter

    ET数据集春季夏季秋季冬季
    RIOARIOARIOARIOA
    PML0.38*0.65−0.220.27−0.190.230.210.49
    EB-ET_V20.230.520.240.520.360.620.150.46
    GLEAM−0.270.180.330.620.140.440.43*0.54
    GLDAS0.47**0.720.320.580.150.490.030.41
    ERA5_Land0.180.520.090.310.280.54−0.020.37
    MOD16−0.040.390.320.610.41*0.680.140.51
    注:**、*、黑体数字分别表示各ET产品与通量塔观测的相关性通过显著性水平为0.01、0.05、0.1的显著性t检验。
    下载: 导出CSV

    表  6  青藏高原各ET产品不同季节ET值和占比

    Table  6.   Statistics of the mean ET of seven datasets in the TP region in different seasons

    ET数据集春季夏季秋季冬季
    ET量/mm season−1占比ET量/mm season−1占比ET量/mm season−1占比ET量/mm season−1占比
    PML85.7825.65%167.1249.98%59.5317.8%22.946.86%
    EB-ET_V292.9634.24%114.2842.11%46.2917.05%17.906.59%
    GLEAM58.4619.58%167.4359.09%53.4717.92%19.106.38%
    GLDAS36.1014.48%140.7256.45%55.8322.39%16.626.46%
    ERA5_Land75.5218.78%219.8654.69%83.7520.84%22.835.68%
    Han_ET122.4625.34%243.6450.42%82.3717.05%34.737.18%
    平均80.2523.27%168.1248.76%66.7819.26%29.628.59%
    下载: 导出CSV

    表  7  青藏高原7种ET产品陆面蒸散发总量(单位:mm a−1

    Table  7.   The total ET (units: mm a−1) of seven datasets in the TP region

    年份陆面蒸散发总量/mm a−1
    PMLEB-ET_V2GLEAMGLDASERA5_LandMOD16Han_ET
    2001/307.08267.98213.61404.77386.48490.51
    2002/299.68280.42216.85407.18375.88467.39
    2003319.16272.67289.65231.60393.17381.92494.98
    2004306.77256.38282.15220.16391.47370.69467.51
    2005313.76278.01294.07238.85387.65392.48510.35
    2006312.82266.67299.28253.69409.96351.14503.53
    2007312.51259.89296.96256.58414.62337.98498.11
    2008312.25279.16302.23258.25410.43363.16501.36
    2009290.68261.98283.71243.21384.64353.22476.88
    2010332.02267.65309.74270.83403.15374.28500.82
    2011337.21260.14298.79271.71404.77377.98493.35
    2012321.60280.32295.89261.49407.18393.76519.22
    2013338.11259.24307.58271.16393.17371.12450.46
    2014310.83261.71294.36246.15391.48372.39440.94
    2015341.84261.60303.38260.97387.65366.77450.64
    2016410.99270.14321.84265.77409.96397.76491.84
    2017407.31/323.61256.42414.62425.31485.74
    2018382.06/320.72256.69410.43393.02456.83
    多年平均334.37271.39298.46249.67401.46376.96483.36
    标准偏差34.4814.1514.518.119.8419.4522.15
    总体平均330.59
    下载: 导出CSV
  • [1] Baik J, Liaqat U W, Choi M. 2018. Assessment of satellite- and reanalysis-based evapotranspiration products with two blending approaches over the complex landscapes and climates of Australia [J]. Agric. For. Meteorol., 263: 388−398. doi: 10.1016/j.agrformet.2018.09.007
    [2] 陈德亮, 徐柏青, 姚檀栋, 等. 2015. 青藏高原环境变化科学评估: 过去、现在与未来 [J]. 科学通报, 60(32): 3025−3035. doi: 10.1360/N972014-01370

    Chen D L, Xu B Q, Yao T D, et al. 2015. Assessment of past, present and future environmental changes on the Tibetan Plateau [J]. Chinese Sci. Bull. (in Chinese), 60(32): 3025−3035. doi: 10.1360/N972014-01370
    [3] Chen X L, Massman W J, Su Z B. 2019. A column canopy–air turbulent diffusion method for different canopy structures [J]. J. Geophys. Res.: Atmos., 124(2): 488−506. doi: 10.1029/2018JD028883
    [4] Chen X L, Su Z B, Ma Y M, et al. 2013. An improvement of roughness height parameterization of the Surface Energy Balance System (SEBS) over the Tibetan Plateau [J]. J. Appl. Meteor. Climatol., 52(3): 607−622. doi: 10.1175/JAMC-D-12-056.1
    [5] Chen X L, Su Z B, Ma Y M, et al. 2021. Remote sensing of global daily evapotranspiration based on a surface energy balance method and reanalysis data [J]. J. Geophys. Res.: Atmos., 126(16): e2020JD032873. doi: 10.1029/2020JD032873
    [6] 程国栋, 赵林, 李韧, 等. 2019. 青藏高原多年冻土特征、变化及影响 [J]. 科学通报, 64(27): 2783−2795. doi: 10.1360/TB-2019-0191

    Cheng G D, Zhao L, Li R, et al. 2019. Characteristic, changes and impacts of permafrost on Qinghai–Tibet Plateau [J]. Chinese Sci. Bull. (in Chinese), 64(27): 2783−2795. doi: 10.1360/TB-2019-0191
    [7] Cleugh H A, Leuning R, Mu Q Z, et al. 2007. Regional evaporation estimates from flux tower and MODIS satellite data [J]. Remote Sens. Environ., 106(3): 285−304. doi: 10.1016/j.rse.2006.07.007
    [8] 段安民, 肖志祥, 吴国雄. 2016. 1979~2014年全球变暖背景下青藏高原气候变化特征 [J]. 气候变化研究进展, 12(5): 374−381. doi: 10.12006/j.issn.1673-1719.2016.039

    Duan A M, Xiao Z X, Wu G X. 2016. Characteristics of climate change over the Tibetan Plateau under the global warming during 1979–2014 [J]. Climate Change Research (in Chinese), 12(5): 374−381. doi: 10.12006/j.issn.1673-1719.2016.039
    [9] Han C B, Ma Y M, Wang B B, et al. 2021. Long-term variations in actual evapotranspiration over the Tibetan Plateau [J]. Earth Syst. Sci. Data, 13(7): 3513−3524. doi: 10.5194/essd-13-3513-2021
    [10] Hu G C, Jia L, Menenti M. 2015. Comparison of MOD16 and LSA-SAF MSG evapotranspiration products over Europe for 2011 [J]. Remote Sens. Environ., 156: 510−526. doi: 10.1016/j.rse.2014.10.017
    [11] Jang K, Kang S, Lim Y J, et al. 2013. Monitoring daily evapotranspiration in Northeast Asia using MODIS and a regional Land Data Assimilation System [J]. J. Geophys. Res.: Atmos., 118(23): 12927−12940. doi: 10.1002/2013JD020639
    [12] Khan M S, Liaqat U W, Baik J, et al. 2018. Stand-alone uncertainty characterization of GLEAM, GLDAS and MOD16 evapotranspiration products using an extended triple collocation approach [J]. Agric. For. Meteorol., 252: 256−268. doi: 10.1016/j.agrformet.2018.01.022
    [13] Kim H W, Hwang K, Mu Q Z, et al. 2012. Validation of MODIS 16 global terrestrial evapotranspiration products in various climates and land cover types in Asia [J]. KSCE J. Civ. Eng., 16(2): 229−238. doi: 10.1007/s12205-012-0006-1
    [14] Li S J, Wang G J, Sun S L, et al. 2018. Assessment of multi-source evapotranspiration products over China using eddy covariance observations [J]. Remote Sens., 10(11): 1692. doi: 10.3390/rs10111692
    [15] Liaqat U W, Choi M. 2017. Accuracy comparison of remotely sensed evapotranspiration products and their associated water stress footprints under different land cover types in Korean peninsula [J]. J. Clean. Prod., 155: 93−104. doi: 10.1016/j.jclepro.2016.09.022
    [16] Liu Y M, Wu G X, Hong J L, et al. 2012. Revisiting Asian monsoon formation and change associated with Tibetan Plateau forcing II: Change [J]. Climate Dyn., 39(5): 1183−1195. doi: 10.1007/s00382-012-1335-y
    [17] Liu Y M, Lu M M, Yang H J, et al. 2020. Land–atmosphere–ocean coupling associated with the Tibetan Plateau and its climate impacts [J]. Natl. Sci. Rev., 7(3): 534−552. doi: 10.1093/nsr/nwaa011
    [18] Long D, Longuevergne L, Scanlon B R. 2014. Uncertainty in evapotranspiration from land surface modeling, remote sensing, and GRACE satellites [J]. Water Resour. Res., 50(2): 1131−1151. doi: 10.1002/2013WR014581
    [19] Ma Y M, Ma W Q, Zhong L, et al. 2017. Monitoring and modeling the Tibetan Plateau’s climate system and its impact on East Asia [J]. Sci. Rep., 7: 44574. doi: 10.1038/srep44574
    [20] Majozi N P, Mannaerts C M, Ramoelo A, et al. 2017. Analysing surface energy balance closure and partitioning over a semi-arid savanna FLUXNET site in Skukuza, Kruger National Park, South Africa [J]. Hydrol. Earth Syst. Sci., 21(7): 3401−3415. doi: 10.5194/hess-21-3401-2017
    [21] Michel D, Jiménez C, Miralles D G, et al. 2016. The WACMOS-ET project. Part 1: Tower-scale evaluation of four remote-sensing-based evapotranspiration algorithms [J]. Hydrol. Earth Syst. Sci., 20(2): 803−822. doi: 10.5194/hess-20-803-2016
    [22] Miralles D G, Holmes T R H, De Jeu R A M, et al. 2011. Global land-surface evaporation estimated from satellite-based observations [J]. Hydrol. Earth Syst. Sci., 15(2): 453−469. doi: 10.5194/hess-15-453-2011
    [23] Mu Q Z, Zhao M S, Running S W. 2011. Improvements to a MODIS global terrestrial evapotranspiration algorithm [J]. Remote Sens. Environ., 115(8): 1781−1800. doi: 10.1016/j.rse.2011.02.019
    [24] Muñoz-Sabater J, Dutra E, Agustí-Panareda A, et al. 2021. ERA5-Land: A state-of-the-art global reanalysis dataset for land applications [J]. Earth Syst. Sci. Data, 13(9): 4349−4383. doi: 10.5194/essd-13-4349-2021
    [25] Qiu J. 2008. China: The third pole [J]. Nature, 454(7203): 393−396. doi: 10.1038/454393a
    [26] Rodell M, Houser P R, Jambor U, et al. 2004. The global land data assimilation system [J]. Bull. Amer. Meteor. Soc., 85(3): 381−394. doi: 10.1175/BAMS-85-3-381
    [27] Wang F X, Wang L, Koike T, et al. 2011. Evaluation and application of a fine-resolution global data set in a semiarid mesoscale river basin with a distributed biosphere hydrological model [J]. J. Geophys. Res.: Atmos., 116(D21): D21108. doi: 10.1029/2011JD015990
    [28] Wu G X, Duan A M, Liu Y M, et al. 2015. Tibetan Plateau climate dynamics: Recent research progress and outlook [J]. Natl. Sci. Rev., 2(1): 100−116. doi: 10.1093/nsr/nwu045
    [29] 吴国雄, 何编, 刘屹岷, 等. 2016. 青藏高原和亚洲夏季风动力学研究的新进展 [J]. 大气科学, 40(1): 22−32. doi: 10.3878/j.issn.1006-9895.1504.15129

    Wu G X, Hu B, Liu Y M, et al. 2016. Recent progresses on dynamics of the Tibetan Plateau and Asian summer monsoon [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 40(1): 22−32. doi: 10.3878/j.issn.1006-9895.1504.15129
    [30] Xu S G, Wu C Y, Wang L, et al. 2015. A new satellite-based monthly precipitation downscaling algorithm with non-stationary relationship between precipitation and land surface characteristics [J]. Remote Sens. Environ., 162: 119−140. doi: 10.1016/j.rse.2015.02.024
    [31] 徐祥德, 马耀明, 孙婵, 等. 2019. 青藏高原能量、水分循环影响效应 [J]. 中国科学院院刊, 34(11): 1293−1305. doi: 10.16418/j.issn.1000-3045.2019.11.012

    Xu X D, Ma Y M, Sun C, et al. 2019. Effect of energy and water circulation over Tibetan Plateau [J]. Bulletin of Chinese Academy of Sciences (in Chinese), 34(11): 1293−1305. doi: 10.16418/j.issn.1000-3045.2019.11.012
    [32] Xu Z W, Ma Y F, Liu S M, et al. 2017. Assessment of the energy balance closure under advective conditions and its impact using remote sensing data [J]. J. Appl. Meteor. Climatol., 56(1): 127−140. doi: 10.1175/JAMC-D-16-0096.1
    [33] Yang K, Koike T, Fujii H, et al. 2002. Improvement of surface flux parametrizations with a turbulence-related length [J]. Quart. J. Roy. Meteor. Soc., 128(584): 2073−2087. doi: 10.1256/003590002320603548
    [34] Yang K, Koike T, Ishikawa H, et al. 2008. Turbulent flux transfer over bare-soil surfaces: Characteristics and parameterization [J]. J. Appl. Meteor. Climatol., 47(1): 276−290. doi: 10.1175/2007JAMC1547.1
    [35] Yang X Q, Yong B, Ren L L, et al. 2017. Multi-scale validation of GLEAM evapotranspiration products over China via China FLUX ET measurements [J]. Int. J. Remote Sens., 38(20): 5688−5709. doi: 10.1080/01431161.2017.1346400
    [36] Yang Y X, Liu Y M, Li M S, et al. 2019. Assessment of reanalysis flux products based on eddy covariance observations over the Tibetan Plateau [J]. Theor. Appl. Climatol., 138(1): 275−292. doi: 10.1007/s00704-019-02811-1
    [37] Yuan L, Ma Y M, Chen X L, et al. 2021. An enhanced MOD16 evapotranspiration model for the Tibetan Plateau during the unfrozen season [J]. J. Geophys. Res.: Atmos., 126(7): e2020JD032787. doi: 10.1029/2020JD032787
    [38] Zhang K, Kimball J S, Running S W. 2016. A review of remote sensing based actual evapotranspiration estimation [J]. WIREs Water, 3(6): 834−853. doi: 10.1002/wat2.1168
    [39] Zhang Y Q, Peña-Arancibia J L, McVicar T R, et al. 2016. Multi-decadal trends in global terrestrial evapotranspiration and its components [J]. Sci. Rep., 6: 19124. doi: 10.1038/srep19124
    [40] Zhang Y Q, Kong D D, Gan R, et al. 2019. Coupled estimation of 500 m and 8-day resolution global evapotranspiration and gross primary production in 2002–2017 [J]. Remote Sens. Environ., 222: 165−182. doi: 10.1016/j.rse.2018.12.031
    [41] 郑度, 姚檀栋. 2004. 青藏高原形成演化及其环境资源效应研究进展 [J]. 中国基础科学, 6(2): 17−23.

    Zheng D, Yao T D. 2004. Progress in research on formation and evolution of Tibetan Plateau with its environment and resource effects [J]. China Basic Science (in Chinese), 6(2): 17−23.
  • 加载中
图(6) / 表(7)
计量
  • 文章访问数:  233
  • HTML全文浏览量:  38
  • PDF下载量:  69
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-08
  • 录用日期:  2022-06-14
  • 网络出版日期:  2022-06-21
  • 刊出日期:  2023-05-15

目录

    /

    返回文章
    返回