Potential Vorticity Analysis and Fine Forecast of Extreme Rainstorm Event in Henan Province in July 2021
-
摘要: 2021年7月17~22日,河南省发生一次大范围极端暴雨事件。本文利用ERA5再分析资料,基于湿位涡和倾斜涡度发展理论对此次暴雨过程进行诊断分析,并考察高分辨率全球模式天机系统及欧洲中期天气预报中心业务预报系统对此次降水过程的预报能力。结果表明此次事件是中高—低纬系统相互作用、协同影响的结果。18~19日,来自中高纬度的高湿位涡沿倾斜的湿等熵面自对流层中高层向下入侵,降温和相对湿度增加,导致河南省西北部高涡度带的形成及对流层低层倾斜湿等熵面在河南省北部建立。20日受低纬台风的影响南风增强,沿倾斜湿等熵面的上滑运动增强,导致相对涡度迅猛发展,强降水发生。天机系统对此次强降水过程的预报能力较欧洲中期天气预报中心的业务预报系统好,能为业务部门提前发布预警信号提供科学支撑。湿位涡和倾斜涡度发展理论是暴雨的诊断及预报的有力理论基础,在再分析资料及模式预报数据中与降水强度、降水落区及雨带的移动均有很好的对应。Abstract: During 17–22 July 2021, a large-scale extreme rainstorm occurred in Henan Province. In this study, ERA5 reanalysis data were used to examine the heavy rainfall process based on the theory of moist potential vorticity and slantwise vorticity development. The forecast capabilities of the high-resolution global model Tianji system and the Integrated Forecast System (IFS) of ECMWF (European Centre for Medium-Range Weather Forecasts) were also investigated. The results show that this event results from the interaction and synergistic influence between the middle-high and low-latitude systems. From 18 to 19 July, the high moist potential vorticity in the middle and high latitudes intruded downward from the middle and upper troposphere along the slantwise moist isentropic surfaces. Together with the cooling and increased relative humidity, this led to the formation of the high vorticity zone in northwestern Henan Province and the establishment of the slantwise moist isentropic surfaces in the lower troposphere in northern Henan Province. On 20 July, a low-latitude typhoon strengthened the southerly wind and enhanced the up-sliding movement along the slantwise moist isentropic surface, resulting in the rapid development of relative vorticity and heavy rainfall. The Tianji system can forecast this heavy rain process better than IFS and can provide scientific support for the meteorological departments to issue early warnings. Moist potential vorticity and slantwise vorticity development theory are powerful theoretical bases for heavy rain analysis and forecast, which are well related to precipitation intensity, position, and movement in reanalysis and model forecast data.
-
图 1 2021年7月17~22日站点逐日累计降水量(彩色填色,单位:mm)及地形(灰色填色,单位:m)。方框区域表示19~21日降水量最大区域(33°~36°N,112°~115°E),下同
Figure 1. Daily accumulative precipitation (color shadings, units: mm) from meteorological observation station and terrain (gray shadings, units: m) during 17–22 July 2021. The box area represents the maximum precipitation region (33°–36°N, 112°–115°E) during 19–21 July, the same for the below figures
图 4 2021年7月18~22日ERA5资料600 hPa区域(33°~36°N, 112°~115°E)平均(a)逐小时降水量(黑色线,单位:mm)、相对湿度(绿色线)、24小时变温(红色线,单位:°C),(b)比湿(紫色线)、饱和比湿(蓝色线)、相对湿度(棕色线)的24 h变化百分比,(c)纬向风u、经向风v、垂直速度(
$ \omega $ )Figure 4. Regional (33°–36°N, 112°–115°E) mean of (a) hourly precipitation (black line, units: mm), relative humidity (green line), and 24-h temperature change (red line, units: °C), (b) percentage change in specific humidity (purple line), saturated specific humidity (blue line), and relative humidity (brown line) over 24 hours, and (c) zonal wind u, meridional wind v, vertical velocity (
$ \omega $ ) at 600 hPa from ERA5 data during 18–22 July 2021图 5 2021年7月17~22日ERA5资料沿112°~115°E平均的日平均相对湿度(填色)、相当位温(等值线,单位:K)以及经向风v和垂直风
$ \omega $ 的合成风矢量(箭头,v单位:m s−1,$ \omega $ 单位:−0.02 Pa s−1)的高度—纬度剖面。绿色虚线表示目标区域所在的南北纬度,下同Figure 5. Height–latitude cross sections of the daily mean relative humidity (shadings), equivalent potential temperature (isolines, units: K), and composite wind (arrows) of meridional wind v (units: m s−1) and vertical wind
$ \omega $ (units: −0.02 Pa s−1) averaged along 112°–115°E from ERA5 data during 17–22 July 2021. The dashed green lines indicate the latitude of the target area, the same for the below figures图 6 2021年7月18~21日ERA5资料沿112°~115°E平均的日平均(a1–a4)Pm1(填色,单位:PVU,1 PVU=10−6 K m2 s−1 kg−1)、相当位温(等值线,单位:K)以及经向风v和垂直风
$ \omega $ 的合成风矢量(箭头,v单位:m s−1,$ \omega $ 单位:−0.02 Pa s−1),(b1–b4)Pm2(填色,单位:PVU)及纬向风(等值线,单位:m s−1),(c1–c4)相对涡度(填色,单位:10−5 s−1)的高度—纬度剖面Figure 6. Height–latitude cross sections of the daily mean (a1–a4) Pm1 (vertical term of moist potential vorticity, shadings, units: PVU, 1 PVU=10−6 K m2 s−1 kg−1), equivalent potential temperature (isolines, units: K), composite wind (arrows) of meridional wind v (units: m s−1) and vertical wind
$ \omega $ (units: −0.02 Pa s−1), (b1–b4) Pm2 (horizontal term of moist potential vorticity, shadings, units: PVU) and zonal wind (isolines, units: m s−1), (c1–c4) relative vorticity (shadings, units: 10−5 s−1) averaged along 112°–115°E from ERA5 data during 18–22 July 2021图 8 2021年7月19~22日(a–d)T2资料、(e–h)IFS资料预报逐日累计降水量(单位:mm)。黑框区域表示T2资料、IFS资料预报19~21日最大降水量区域(33.5°~36°N,112°~114.5°E),红框区域表示IFS资料降水过报区域(33.5°~36°N,110°~112.5°E)
Figure 8. Daily accumulative precipitation (units: mm) predicted by (a–d) T2 data and (e–h) IFS data during 19–22 July 2021. The black box area represents the maximum precipitation region (33.5°–36°N, 112°–114.5°E) from T2 data and IFS data during 19–21 July, and the red box area represents the overestimated region (33.5°–36°N, 110°–112.5°E) from IFS data
图 9 2021年7月19~22日区域R1(33.5°~36°N,112°~114.5°E)平均的(a)T2资料、(b)IFS资料的日平均垂直速度(填色),(c)IFS资料区域R2(33.5°~36°N,110°~112.5°E)平均的日平均垂直速度(填色),等值线为区域(33°~36°N,112°~115°E)平均的ERA5资料日平均垂直速度(单位:Pa s−1)。(d–e)同(a–c),但为相对湿度
Figure 9. Daily mean vertical velocity (shadings) obtained from (a) T2 data, (b) IFS data averaged over region R1 (33.5°–36°N, 112°–114.5°E), (c) IFS data averaged over region R2 (33.5°–36°N, 110°–112.5°E) during 19–22 July 2021, the isoline represents daily mean vertical velocity (units: Pa s−1) obtained from ERA5 data averaged over (33°–36°N, 112°–115°E). (d–e) As in (a–c), but for relative humidity
图 11 2021年7月19~21日T2资料沿112°~114.5°E平均的日平均(a1–a3)Pm1(填色,单位:PVU)、相当位温(等值线,单位:K)以及经向风v和垂直风
$ \omega $ 的合成风矢量(箭头,v的单位:m s−1,单位:−0.02 Pa s−1),(b1–b3)Pm2(填色,单位:PVU)及纬向风(等值线,单位:m s−1),(c1–c3)相对涡度(填色,单位:10−5 s−1)的高度—纬度剖面Figure 11. Height–latitude cross sections of the daily mean (a1–a3) Pm1 (shadings, units: PVU), equivalent potential temperature (isolines, units: K), composite wind (arrows) of meridional wind v (units: m s−1) and vertical wind
$ \omega $ (units: −0.02 Pa s−1), (b1–b3) Pm2 (shadings, units: PVU) and zonal wind (isolines, units: m s−1), (c1–c3) relative vorticity (shadings, units: 10−5 s−1) obtained from T2 data averaged along 112°–114.5°E during 19–21 July 2021 -
[1] 曹楚, 王忠东, 刘峰, 等. 2016. 2013年“菲特”台风暴雨成因及湿位涡诊断分析 [J]. 气象与环境科学, 39(4): 86−92. doi: 10.16765/j.cnki.1673-7148.2016.04.014Cao Chu, Wang Zhongdong, Liu Feng, et al. 2016. Diagnostic analysis of moist potential vorticity for heavy rain caused by “Fitow” (2013) typhoon [J]. Meteorological and Environmental Sciences (in Chinese), 39(4): 86−92. doi: 10.16765/j.cnki.1673-7148.2016.04.014 [2] 陈联寿. 2007. 登陆热带气旋暴雨的研究和预报[C]//第十四届全国热带气旋科学讨论会论文集. 北京: 中国气象学会, 3–7Chen Lianshou. 2007. The studies and predictions of heavy rainfall related to the landing tropical cyclones [C]//The Abstracts of Papers on the Fourteenth Symposium on the Tropical Cyclones (in Chinese). Beijing: Chinese Meteorological Society, 3–7. [3] Cui X P, Gao S T, Wu G X. 2003. Up-sliding slantwise vorticity development and the complete vorticity equation with mass forcing [J]. Adv. Atmos. Sci., 20(5): 825−836. doi: 10.1007/BF02915408 [4] 丁一汇, 蔡则怡, 李吉顺. 1978. 1975年8月上旬河南特大暴雨的研究 [J]. 大气科学, 2(4): 276−289. doi: 10.3878/j.issn.1006-9895.1978.04.02Ding Yihui, Cai Zeyi, Li Jishun. 1978. A case study on the excessively severe rainstrom in Henan Province, early in August, 1975 [J]. Chinese Journal of Atmospheric Sciences (Scientia Atmospherica Sinica) (in Chinese), 2(4): 276−289. doi: 10.3878/j.issn.1006-9895.1978.04.02 [5] 高万泉, 周伟灿, 李玉娥. 2011. 华北一次强对流暴雨的湿位涡诊断分析 [J]. 气象与环境学报, 27(1): 1−6. doi: 10.3969/j.issn.1673-503X.2011.01.001Gao Wanquan, Zhou Weican, Li Yu’ e. 2011. Diagnostic analysis of moist potential vorticity for a rainstorm in North China [J]. Journal of Meteorology and Environment (in Chinese), 27(1): 1−6. doi: 10.3969/j.issn.1673-503X.2011.01.001 [6] 何编, 孙照渤, 李忠贤. 2012. 一次华南持续性暴雨的动力诊断分析和数值模拟 [J]. 大气科学学报, 35(4): 466−476. doi: 10.13878/j.cnki.dqkxxb.2012.04.014He Bian, Sun Zhaobo, Li Zhongxian. 2012. Dynamic diagnosis and numerical simulation of a persistent torrential rain case in South China [J]. Trans. Atmos. Sci. (in Chinese), 35(4): 466−476. doi: 10.13878/j.cnki.dqkxxb.2012.04.014 [7] Held I M, Soden B J. 2006. Robust responses of the hydrological cycle to global warming [J]. J. Climate, 19(21): 5686−5699. doi: 10.1175/JCLI3990.1 [8] Hersbach H, Bell B, Berrisford P, et al. 2020. The ERA5 global reanalysis [J]. Quart. J. Roy. Meteor. Soc., 146(730): 1999−2049. doi: 10.1002/qj.3803 [9] Hoskins B J, McIntyre M E, Robertson A W. 1985. On the use and significance of isentropic potential vorticity maps [J]. Quart. J. Roy. Meteor. Soc., 111(470): 877−946. doi: 10.1002/qj.49711147002 [10] 贾瑞怡. 2016. 苏北“7.22”强降水超级单体风暴的数值模拟及发生发展机理研究 [D]. 南京信息工程大学硕士学位论文.Jia Ruiyi. 2016. A numerical simulation research on the generation and development mechanism of a heavy precipitation supercell in northern Jiangsu on 22 July 2008 [D]. M. S. thesis (in Chinese), Nanjing University of Information Science & Technology. [11] 李静楠, 潘晓滨, 臧增亮, 等. 2016. 一次华北暴雨过程的湿位涡诊断分析 [J]. 暴雨灾害, 35(2): 158−165. doi: 10.3969/j.issn.1004-9045.2016.02.008Li Jingnan, Pan Xiaobin, Zang Zengliang, et al. 2016. Diagnostic analysis of moist potential vorticity for a rainstorm in North China [J]. Torrential Rain and Disasters (in Chinese), 35(2): 158−165. doi: 10.3969/j.issn.1004-9045.2016.02.008 [12] Liu Y M, Wu G X, Liu H, et al. 2001. Condensation heating of the Asian summer monsoon and the subtropical anticyclone in the Eastern Hemisphere [J]. Climate Dyn., 17(4): 327−338. doi: 10.1007/s003820000117 [13] 蒙伟光, 王安宇, 李江南, 等. 2004. 华南暴雨中尺度对流系统的形成及湿位涡分析 [J]. 大气科学, 28(3): 330−341. doi: 10.3878/j.issn.1006-9895.2004.03.02Meng Weiguang, Wang Anyu, Li Jiangnan, et al. 2004. Moist potential vorticity analysis of the heavy rainfall and mesoscale convective systems in South China [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 28(3): 330−341. doi: 10.3878/j.issn.1006-9895.2004.03.02 [14] 齐道日娜, 何立富, 王秀明, 等. 2022. “7·20”河南极端暴雨精细观测及热动力成因 [J]. 应用气象学报, 33(1): 1−15. doi: 10.11898/1001-7313.20220101Dorina C, He Lifu, Wang Xiuming, et al. 2022. Fine observation characteristics and thermodynamic mechanisms of extreme heavy rainfall in Henan on 20 July 2021 [J]. Journal of Applied Meteorological Science (in Chinese), 33(1): 1−15. doi: 10.11898/1001-7313.20220101 [15] 冉令坤, 李舒文, 周玉淑, 等. 2021. 2021年河南“7.20”极端暴雨动、热力和水汽特征观测分析 [J]. 大气科学, 45(6): 1366−1383. doi: 10.3878/j.issn.1006-9895.2109.21160Ran Lingkun, Li Shuwen, Zhou Yushu, et al. 2021. Observational analysis of the dynamic, thermal, and water vapor characteristics of the “7.20” extreme rainstorm event in Henan Province, 2021 [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 45(6): 1366−1383. doi: 10.3878/j.issn.1006-9895.2109.21160 [16] 任素玲, 刘屹岷, 吴国雄. 2007. 西太平洋副热带高压和台风相互作用的数值试验研究 [J]. 气象学报, 65(3): 329−340. doi: 10.3321/j.issn:0577-6619.2007.03.003Ren Suling, Liu Yimin, Wu Guoxiong. 2007. Interactions between typhoon and subtropical anticyclone over western Pacific revealed by numerical experiments [J]. Acta Meteor. Sinica (in Chinese), 65(3): 329−340. doi: 10.3321/j.issn:0577-6619.2007.03.003 [17] 史文茹, 李昕, 曾明剑, 等. 2021. “7·20”郑州特大暴雨的多模式对比及高分辨率区域模式预报分析 [J]. 大气科学学报, 44(5): 688−702. doi: 10.13878/j.cnki.dqkxxb.20210823001Shi Wenru, Li Xin, Zeng Mingjian, et al. 2021. Multi-model comparison and high-resolution regional model forecast analysis for the “7·20” Zhengzhou severe heavy rain [J]. Transactions of Atmospheric Sciences (in Chinese), 44(5): 688−702. doi: 10.13878/j.cnki.dqkxxb.20210823001 [18] 苏爱芳, 吕晓娜, 崔丽曼, 等. 2021. 郑州“7.20”极端暴雨天气的基本观测分析 [J]. 暴雨灾害, 40(5): 445−454. doi: 10.3969/j.issn.1004-9045.2021.05.001Su Aifang, Lv Xiaona, Cui Liman, et al. 2021. The basic observational analysis of “7.20” extreme rainstorm in Zhengzhou [J]. Torrential Rain and Disasters (in Chinese), 40(5): 445−454. doi: 10.3969/j.issn.1004-9045.2021.05.001 [19] 孙建华, 张小玲, 卫捷, 等. 2005. 20世纪90年代华北大暴雨过程特征的分析研究 [J]. 气候与环境研究, 10(3): 492−506. doi: 10.3969/j.issn.1006-9585.2005.03.020Sun Jianhua, Zhang Xiaoling, Wei Jie, et al. 2005. A study on severe heavy rainfall in North China during the 1990s [J]. Climatic and Environmental Research (in Chinese), 10(3): 492−506. doi: 10.3969/j.issn.1006-9585.2005.03.020 [20] 孙建华, 赵思雄, 傅慎明, 等. 2013. 2012年7月21日北京特大暴雨的多尺度特征 [J]. 大气科学, 37(3): 705−718. doi: 10.3878/j.issn.1006-9895.2013.12202Sun Jianhua, Zhao Sixiong, Fu Shenming, et al. 2013. Multi-scale characteristics of record heavy rainfall over Beijing area on July 21, 2012 [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 37(3): 705−718. doi: 10.3878/j.issn.1006-9895.2013.12202 [21] 陶诗言. 1980. 中国之暴雨[M]. 北京: 科学出版社, 225pp.Tao Shiyan. 1980. Heavy Rainfalls in China (in Chinese) [M]. Beijing: Science Press, 225pp. [22] 陶诗言, 丁一汇, 周晓平. 1979. 暴雨和强对流天气的研究 [J]. 大气科学, 3(3): 227−238. doi: 10.3878/j.issn.1006-9895.1979.03.05Tao Shiyan, Ding Yihui, Zhou Xiaoping. 1979. The present status of the research on rainstorm and severe convective weathers in China [J]. Chinese Journal of Atmospheric Sciences (Scientia Atmospherica Sinica) (in Chinese), 3(3): 227−238. doi: 10.3878/j.issn.1006-9895.1979.03.05 [23] 王子谦, 朱伟军, 段安民. 2010. 孟湾风暴影响高原暴雪的个例分析: 基于倾斜涡度发展的研究 [J]. 高原气象, 29(3): 703−711.Wang Ziqian, Zhu Weijun, Duan Anmin. 2010. A case study of snowstorm in Tibetan Plateau induced by bay of Bengal storm: Based on the theory of slantwise vorticity development [J]. Plateau Meteorology (in Chinese), 29(3): 703−711. [24] 吴国雄, 蔡雅萍. 1997. 风垂直切变和下滑倾斜涡度发展 [J]. 大气科学, 21(3): 273−282. doi: 10.3878/j.issn.1006-9895.1997.03.03Wu Guoxiong, Cai Yaping. 1997. Vertical wind shear and down-sliding slantwise vorticity development [J]. Chinese Journal of Atmospheric Sciences (Scientia Atmospherica Sinica) (in Chinese), 21(3): 273−282. doi: 10.3878/j.issn.1006-9895.1997.03.03 [25] Wu G X, Liu H Z. 1998. Vertical vorticity development owing to down-sliding at slantwise isentropic surface [J]. Dyn. Atmos. Oceans, 27(1–4): 715–743. doi:10.1016/S0377-0265(97)00040-7 [26] 吴国雄, 刘还珠. 1999. 全型垂直涡度倾向方程和倾斜涡度发展 [J]. 气象学报, 57(1): 1−15. doi: 10.11676/qxxb1999.001Wu Guoxiong, Liu Huanzhu. 1999. Complete form of vertical vorticity tendency equation and slantwise vorticity development [J]. Acta Meteor. Sinica (in Chinese), 57(1): 1−15. doi: 10.11676/qxxb1999.001 [27] 吴国雄, 蔡雅萍, 唐晓菁. 1995. 湿位涡和倾斜涡度发展 [J]. 气象学报, 53(4): 387−405. doi: 10.11676/qxxb1995.045Wu Guoxiong, Cai Yaping, Tang Xiaojing. 1995. Moist potential vorticity and slantwise vorticity development [J]. Acta Meteor. Sinica (in Chinese), 53(4): 387−405. doi: 10.11676/qxxb1995.045 [28] Wu G X, Liu Y, Zhu X, et al. 2009. Multi-scale forcing and the formation of subtropical desert and monsoon [J]. Ann. Geophys., 27(9): 3631−3644. doi: 10.5194/angeo-27-3631-2009 [29] 张发波, 王斌, 李立娟. 2018. 静力与非静力平衡模式动力框架对比 [J]. 气象科技, 46(2): 267−274. doi: 10.19517/j.1671-6345.20170051Zhang Fabo, Wang Bin, Li Lijuan. 2018. Comparison between hydrostatic and non-hydrostatic dynamics solvers for atmospheric models [J]. Meteorological Science and Technology (in Chinese), 46(2): 267−274. doi: 10.19517/j.1671-6345.20170051 [30] 赵威, 孙军. 2021. 2021年7月大气环流和天气分析 [J]. 气象, 47(10): 1289−1296. doi: 10.7519/j.issn.1000-0526.2021.10.011Zhao Wei, Sun Jun. 2021. Analysis of the July 2021 atmospheric circulation and weather [J]. Meteor. Mon. (in Chinese), 47(10): 1289−1296. doi: 10.7519/j.issn.1000-0526.2021.10.011 [31] 周慧, 夏文梅, 朱国强, 等. 2009. 造成湖南暴雨的三个登陆热带气旋数值试验 [J]. 气象科学, 29(5): 651−656. doi: 10.3969/j.issn.1009-0827.2009.05.013Zhou Hui, Xia Wenmei, Zhu Guoqiang, et al. 2009. Numerical experiments of three landfall tropical cyclones causing rainstorms in Hunan [J]. Scientia Meteorologica Sinica (in Chinese), 29(5): 651−656. doi: 10.3969/j.issn.1009-0827.2009.05.013 [32] Zhou Z G, Jiang Y Q, Zhang G Y, et al. 2014. Numerical simulation and moist potential vorticity analysis of torrential rain in Jiangxi Province during June 2010 [J]. Asian Agricultural Research, 6(6): 79−82. doi: 10.22004/ag.econ.180438 -