Characteristics and Causes of Precipitation for a Rare Rainstorm Process in Henan Province in 2021
-
摘要: 基于河南省119个国家自动站逐小时降水观测资料、欧洲中期天气预报中心逐小时大气再分析资料(ERA-5)、美国国家环境预报中心(NCEP)再分析资料及美国国家海洋和大气管理局(NOAA)的海温资料对2021年7月17~22日河南省发生的一次历史罕见的极端强降水事件(简称“21·7”暴雨)的降水特征、大气环流和物理量场进行了较为详细的分析,并对比了河南历史上三次暴雨过程。结果表明:(1)“21·7”暴雨过程在1 h最大降水量、3 h最大降水量、6 h最大降水量、1 d最大降水量、3 d最大降水量和过程累计降水量方面均表现出显著极端性。(2)高层南亚高压与东海附近低涡稳定共存,中层副高稳定偏北偏强,与大陆高压形成对峙,使得天气形势稳定,为河南地区极端强降水的发生提供了背景条件。低层西太平洋副热带高压南侧东风气流与台风“烟花”北侧的东风气流相叠加,使得西太平洋到河南地区形成深厚的水汽通道,继而为河南地区极端强降水提供了充沛的水汽。(3)在“21·7”暴雨期间,河南地区水汽通量散度值为负且大部分地区的整层可降水量可达100 mm,整层水汽十分充沛。涡度和垂直速度场的大值区主要出现在太行山东麓临近地区,与降水大值区相对应。(4)与河南历史上两次暴雨过程“75·8”(1975年8月上旬发生在河南的一次极端强降水事件)和“12·8”(2012年8月发生在河南的一次极端强降水事件)相比,其相似之处在于台风在北移过程中受到副热带高压的阻挡而停滞少动,从而将源源不断的水汽输送至河南,造成极端降水事件的发生。(5)“21·7”暴雨期间西北太平洋副热带高压能够稳定维持在台风北侧是多种因素综合影响的结果,包括中高纬度环流配置、西太暖池异常偏暖造成Hadley下沉支加强,以及增强的越赤道气流。这是造成“21·7”暴雨过程累计降水量量级大于“12·8”暴雨且最终降水量超过500 mm的可能原因之一。Abstract: A detailed analysis of the precipitation characteristics, atmospheric circulation, and environmental physical quantities was conducted based on hourly precipitation data of 119 national automatic stations in Henan Province, ERA-5 reanalysis data, NCEP reanalysis data, and sea surface temperature provided by NOAA. The authors also compared three extreme precipitation processes in Henan Province. The findings reveal that: (1) The “21·7” rainstorm (an extreme heavy precipitation event occurred in Henan Province in July 2021) is extreme in terms of maximum precipitation in one hour, three hours, six hours, one day, three days, and cumulative precipitation. (2) The South Asian high and low vortex near the East China Sea coexist steadily at 200 hPa. Furthermore, at 500 hPa, the subtropical high is stable and northward and confronts the continental high. This stabilizes the atmospheric circulation and provides a background for the occurrence of extreme rainfall in Henan. The superimposition of easterly airflow on the south side of the Pacific subtropical high and the north side of the typhoon at 850 hPa created a deep water vapor channel from the western Pacific to Henan, providing abundant water vapor. (3) In addition, the water vapor flux divergence was negative during the “21·7” rainstorm period, and the precipitable water in most regions of Henan can reach 100 mm, indicating that water vapor was abundant. The large value areas of vorticity and vertical velocity appear near the eastern foot of the Taihang Mountains, corresponding to large precipitation value areas. (4) Moreover, when compared to two heavy rainfall processes [“75·8” (an extreme heavy precipitation event occurred in August 1975) and “12·8” (an extreme heavy precipitation event occurred in August 2012)] in Henan, the typhoon was blocked by the subtropical high as it moved northward and stopped. One possible explanation for the “21·7” rainstorm is that the subtropical high is stronger and can stably exist on the north side of the typhoon. (5) The stable maintenance of the subtropical high in the northwestern Pacific on the north side of the typhoon during the “21·7” rainstorm is the result of the combined effects of various factors, including the distribution of the mid-to-high latitude circulation, the strengthening of the sinking branch of the Hadley circulation induced by the abnormal warmer West Pacific warm pool, and the strengthening of the cross-equatorial flow. This is one of the possible reasons why the cumulative precipitation of the “21·7” rainstorm is greater than the “12·8” heavy rainfall and finally exceeds 500 mm.
-
图 3 2021年7月18~22日河南省(a)累计降水量(单位:mm)、(b)单日最大降水量(单位:mm)的空间分布,(c)9个特定气象站累计降水量(蓝色柱)和气候态(1980~2020年,下同)7月平均累计降水(红色柱);(d)7月19日00时(北京时,下同)至22日23时河南省9个特定气象站降水量的逐小时变化
Figure 3. Distributions of (a) the accumulated precipitation (units: mm), (b) the maximum one-day precipitation (units: mm) in Henan Province during 18–22 July 2021; (c) accumulated precipitation (blue bars) during 18–22 July 2021 and climatic (1980–2020, the same below) precipitation (red bars) in July at nine specific national stations; (d) hourly rainfall in nine specific national stations from 0000 BJT (Beijing time) on July 19 to 2300 BJT on 22 July 2021
图 4 2021年7月(a)19日20时、(b)20日08时、(c)20日20时、(d)21日08时200 hPa位势高度(等值线,单位:dagpm)和急流区(灰色阴影,急流区为200 hPa纬向风速≥30 m s−1的区域)
Figure 4. Distributions of the geopotential height (contours, units: dagpm) and westerly jet (gray shadings where the zonal wind speed≥30 m s−1) at 200 hPa at (a) 2000 BJT 19 July, (b) 0800 BJT 20 July, (c) 2000 BJT 20 July, and (d) 0800 BJT 21 July 2021
图 5 2021年7月(a)19日20时、(b)20日08时、(c)20日20时、(d)21日08时500 hPa的位势高度(黑色等值线,单位:dagpm)。红色等值线代表西太副高位置,蓝色的等值线代表气候态7月的西太副高位置
Figure 5. Distributions of 500-hPa geopotential height (black contours, units: dagpm) at (a) 2000 BJT 19 July, (b) 0800 BJT 20 July, (c) 2000 BJT 20 July, and (d) 0800 BJT 21 July 2021. The red contour depicts the position of the western Pacific subtropical high, the blue contour represents the position of the climatic western Pacific subtropical high in July
图 7 2021年7月20日20时(a)850 hPa水汽通量散度(阴影,单位:g cm−1 hPa−1 s−1)、风场(箭头,单位:m s−1),(b)整层大气可降水量(单位:mm),700 hPa(c)涡度(单位:10−5 s−1)、(d)垂直速度(单位:10−1 Pa s−1)
Figure 7. (a) Water vapor flux divergence (shadings, units: g cm−1 hPa−1 s−1) and wind field (arrows, units: m s−1) at 850 hPa, (b) atmospheric precipitable water (units: mm), (c) 700-hPa vorticity (units: 10−5 s−1), and (d) 700-hPa vertical velocity (units: 10−1 Pa s−1) at 2000 BJT on 20 July 2021
图 8 1975年8月(a)7日08时、(b)7日20时、(c)8日08时、(d)8日20时500 hPa位势高度(等值线,单位:dagpm)、风场(矢量,单位:m s−1)。蓝色圆点代表台风中心的位置
Figure 8. Distributions of geopotential height (contours, units: dagpm) and wind field (vectors, units: m s−1) at 500 hPa at (a) 0800 BJT 7 August, (b) 2000 BJT 7 August, (c) 0800 BJT 8 August, (d) 2000 BJT 8 August 1975. The blue dot represents the center of the typhoon
图 9 2012年8月(a)4日08时、(b)4日20时、(c)5日08时、(d)5日20时200 hPa西风急流(灰色阴影,高空急流区为200 hPa纬向风速≥30 m s−1的区域)和850 hPa风场(风矢量,单位:m s−1)。红色等值线代表西太副高位置,蓝色等值线代表气候态8月西太副高位置
Figure 9. Distributions of the 200-hPa westerly jet (gray shadings, the zonal wind speed≥30 m s−1) and the 850-hPa wind field (vectors, units: m s−1) at (a) 0800 BJT 4 August, (b) 2000 BJT 4 August; (c) 0800 BJT 5 August, and (d) 2000 BJT 5 August 2012. The red contour represents the position of the western Pacific subtropical high, the blue contour denotes the position of the climatic western Pacific subtropical high in August
图 10 2021年7月(a–f)第1~6候200 hPa逐候平均的纬向风场(等值线,单位:m s−1)及其距平(填色,单位:m s−1)。红色线表示风速为30 m s−1,蓝色线表示气候平均风速为30 m s−1
Figure 10. Mean (contours, units: m s−1) and anomalous (shadings, units: m s−1) fields of the zonal wind at 200 hPa (a–f) in the first–sixth pentad of July 2021. The red contour represents wind speed 30 m s−1, and the blue contour represents the climatic wind speed 30 m s−1
图 14 2021年7月(a–d)第3~6候500 hPa位势高度场(等值线,单位:gpm)及其距平(填色,单位:gpm)以及(e)第3、(f)第4候200 hPa平均经向风距平(单位:m s−1)
Figure 14. Mean (contours, units: gpm) and anomalous (shadings, units: gpm) 500-hPa geopotential height (a–d) in the third–sixth pentad of July 2021 and (e, f) 200-hPa meridional wind anomalies (units: m s−1) (e) in the third pentad, (f) in the forth pentad of July 2021
表 1 2021年“21·7”暴雨过程与河南省历史上几次强降水过程对比
Table 1. Comparison between rainstorm in July 2021 (“21·7” rainstorm) and historical extreme precipitation events in Henan Province
降水时段 最大降水量/mm 过程累计降水量/mm 1 h 3 h 6 h 1 d 3 d 1975年8月4~8日 82.5 191.3 232.1 343.6 486.3 532.4 2010年9月5~7日 65.9 146.6 147.1 163.4 218.4 219.7 2012年8月4~5日 76.5 112.3 130.7 197.1 197.2 197.2 2013年5月25~26日 34.5 59.1 98.2 142.7 192.9 192.9 2016年7月18~20日 70.2 142.5 186.3 210.8 292.6 292.6 2021年7月17~22日 201.9 310.8 389.7 627.4 775.4 789.3 -
[1] 程锦霞. 2013. 河南2010年9月5~7日连续性暴雨过程分析 [J]. 安徽农业科学, 41(35): 13617−13622. doi: 10.13989/j.cnki.0517-6611.2013.35.009Cheng Jinxia. 2013. Continuous heavy rain analysis in Henan Province between September 5–7, 2010 [J]. J. Anhui Agric. Sci. (in Chinese), 41(35): 13617−13622. doi: 10.13989/j.cnki.0517-6611.2013.35.009 [2] 丁一汇, 蔡则怡, 李吉顺. 1978. 1975年8月上旬河南特大暴雨的研究 [J]. 大气科学, 2(4): 276−289. doi: 10.3878/j.issn.1006-9895.1978.04.02Ding Yihui, Cai Zeyi, Li Jishun. 1978. A case study on the excessively severe rainstorm in Henan Province, early in August, 1975 [J]. Chinese Journal of Atmospheric Sciences (Scientia Atmospherica Sinica) (in Chinese), 2(4): 276−289. doi: 10.3878/j.issn.1006-9895.1978.04.02 [3] He C, Zhou T J, Wu B. 2015. The key oceanic regions responsible for the interannual variability of the western North Pacific subtropical high and associated mechanisms [J]. J. Meteorol. Res., 29(4): 562−575. doi: 10.1007/s13351-015-5037-3 [4] Hersbach H, Bell B, Berrisford P, et al. 2020. The ERA5 global reanalysis [J]. Quart. J. Roy. Meteor. Soc., 146(730): 1999−2049. doi: 10.1002/qj.3803 [5] 胡俊锋, 杨月巧, 杨佩国. 2014. 基于减灾能力评价的洪涝灾害综合风险研究 [J]. 资源科学, 36(1): 94−102.Hu Junfeng, Yang Yueqiao, Yang Peiguo. 2014. Research of comprehensive risk of flood disaster based on disaster reduction ability [J]. Resour. Sci. (in Chinese), 36(1): 94−102. [6] 冀翠华, 李姝霞. 2021. 开封“7·19”大暴雨天气过程的极端性分析 [J]. 气象与环境科学, 44(4): 53−62. doi: 10.16765/j.cnki.1673-7148.2021.04.007Ji Cuihua, Li Shuxia. 2021. Analysis on extremity of the “7·19” severe rainstorm process in Kaifeng [J]. Meteor. Environ. Sci. (in Chinese), 44(4): 53−62. doi: 10.16765/j.cnki.1673-7148.2021.04.007 [7] 况雪源, 张耀存. 2006. 东亚副热带西风急流季节变化特征及其热力影响机制探讨 [J]. 气象学报, 64(5): 564−575. doi: 10.11676/qxxb2006.055Kuang Xueyuan, Zhang Yaocun. 2006. The seasonal variation of the East Asian subtropical westerly jet and its thermal mechanism [J]. Acta Meteor. Sinica (in Chinese), 64(5): 564−575. doi: 10.11676/qxxb2006.055 [8] 栗晗, 王新敏, 张霞, 等. 2018. 河南“7·19”豫北罕见特大暴雨降水特征及极端性分析 [J]. 气象, 44(9): 1136−1147. doi: 10.7519/j.issn.1000-0526.2018.09.002Li Han, Wang Xinmin, Zhang Xia, et al. 2018. Analysis on extremity and characteristics of the 19 July 2016 severe torrential rain in the north of Henan Province [J]. Meteor. Mon. (in Chinese), 44(9): 1136−1147. doi: 10.7519/j.issn.1000-0526.2018.09.002 [9] 马月枝, 张霞, 胡燕平. 2017. 2016年7月9日新乡暖区特大暴雨成因分析 [J]. 暴雨灾害, 36(6): 557−565. doi: 10.3969/j.issn.1004-9045.2017.06.009Ma Yuezhi, Zhang Xia, Hu Yanping. 2017. Cause analysis of a warm-sector excessive heavy rainfall event in Xinxiang on 9 July 2016 [J]. Torrent. Rain Disast. (in Chinese), 36(6): 557−565. doi: 10.3969/j.issn.1004-9045.2017.06.009 [10] 钱代丽, 管兆勇. 2018. 超强与普通厄尔尼诺海—气特征差异及对西太平洋副热带高压的不同影响 [J]. 气象学报, 76(3): 394−407. doi: 10.11676/qxxb2018.011Qian Daili, Guan Zhaoyong. 2018. Different features of super and regular El Niño events and their impacts on the variation of the West Pacific subtropical high [J]. Acta Meteorol. Sinica (in Chinese), 76(3): 394−407. doi: 10.11676/qxxb2018.011 [11] 冉令坤, 李舒文, 周玉淑, 等. 2021. 2021 年河南“7.20”极端暴雨动、热力和水汽特征观测分析 [J]. 大气科学, 45(6): 1366−1383. doi: 10.3878/j.issn.1006-9895.2109.21160Ran Lingkun, LI Shuwen, Zhou Yushu, et al. 2021. Observational analysis of the dynamic, thermal, and water vapor characteristics of the “7.20” extreme rainstorm event in Henan Province, 2021 [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 45(6): 1366−1383. doi: 10.3878/j.issn.1006-9895.2109.21160 [12] 苏爱芳, 吕晓娜, 崔丽曼, 等. 2021. 郑州“7.20”极端暴雨天气的基本观测分析 [J]. 暴雨灾害, 40(5): 445−454. doi: 10.3969/j.issn.1004-9045.2021.05.001Su Aifang, Lü Xiaona, Cui Liman, et al. 2021. The basic observational analysis of “7.20” extreme rainstorm in Zhengzhou [J]. Torrent. Rain Disast. (in Chinese), 40(5): 445−454. doi: 10.3969/j.issn.1004-9045.2021.05.001 [13] 唐颢苏, 胡开明, 黄刚. 2019. El Niño衰退年夏季西北太平洋异常反气旋季节内演变特征及其机制 [J]. 气候与环境研究, 24(4): 525−536. doi: 10.3878/j.issn.1006-9585.2019.18156Tang Haosu, Hu Kaiming, Huang Gang. 2019. Characteristics and mechanisms of sub-seasonal evolution of Northwest Pacific anomalous anticyclone during the El Niño decaying summer [J]. Climatic Environ. Res. (in Chinese), 24(4): 525−536. doi: 10.3878/j.issn.1006-9585.2019.18156 [14] 田国珍, 刘新立, 王平, 等. 2006. 中国洪水灾害风险区划及其成因分析 [J]. 灾害学, 21(2): 1−6. doi: 10.3969/j.issn.1000-811X.2006.02.001Tian Guozhen, Liu Xinli, Wang Ping, et al. 2006. Flood risk zoning and causal analysis in China [J]. J. Catastrophol. (in Chinese), 21(2): 1−6. doi: 10.3969/j.issn.1000-811X.2006.02.001 [15] 王君. 2019. 豫北两次特大暴雨事件的物理量极端性和中尺度特征 [J]. 干旱气象, 37(3): 419−429. doi: 10.11755/j.issn.1006-7639(2019)-03-0419Wang Jun. 2019. Analysis of extremity and mesoscale characteristic on two torrential rain processes in North He’nan Province [J]. J Arid Meteor. (in Chinese), 37(3): 419−429. doi: 10.11755/j.issn.1006-7639(2019)-03-0419 [16] 王新敏, 赵培娟, 李保生, 等. 2002. 影响河南的登陆台风分析 [J]. 河南气象(2): 14−16. doi: 10.16765/j.cnki.1673-7148.2002.02.007Wang Xinmin, Zhao Peijuan, Li Baosheng, et al. 2002. Analysis on the landing typhoon of effecting Henan [J]. Meteor. Environ. Sci. (in Chinese)(2): 14−16. doi: 10.16765/j.cnki.1673-7148.2002.02.007 [17] 吴国雄, 刘平, 刘屹岷, 等. 2000. 印度洋海温异常对西太平洋副热带高压的影响——大气中的两级热力适应 [J]. 气象学报, 58(5): 513−522. doi: 10.11676/qxxb2000.054Wu Guoxiong, Liu Ping, Liu Yimin, et al. 2000. Impacts of the sea surface temperature anomaly in the Indian ocean on the subtropical anticyclone over the western Pacific—Two-stage thermal adaptation in the atmosphere [J]. Acta Meteor. Sinica (in Chinese), 58(5): 513−522. doi: 10.11676/qxxb2000.054 [18] 喻谦花, 李姝霞, 刘莹莹. 2014. 2013年初夏河南一次区域性暴雨天气过程的分析 [J]. 河南科学, 32(2): 230−234. doi: 10.13537/j.issn.1004-3918.2014.02.021Yu Qianhua, Li Shuxia, Liu Yingying. 2014. A regional rainstorm weather process in the early summer of 2013 in Henan [J]. Henan Sci. (in Chinese), 32(2): 230−234. doi: 10.13537/j.issn.1004-3918.2014.02.021 [19] Zhai P M, Zhang X B, Wan H, et al. 2005. Trends in total precipitation and frequency of daily precipitation extremes over China [J]. J. Climate, 18(7): 1096−1108. doi: 10.1175/JCLI-3318.1 [20] 张辉, 许新宜, 张磊, 等. 2011. 2000~2010年我国洪涝灾害损失综合评估及其成因分析 [J]. 水利经济, 29(5): 5−9. doi: 10.3969/j.issn.1003-9511.2011.05.002Zhang Hui, Xu Xinyi, Zhang Lei, et al. 2011. Comprehensive assessment of loss of flood and waterlogging disasters from 2000 to 2010 and analysis of their causes [J]. J. Econom. Water Resour. (in Chinese), 29(5): 5−9. doi: 10.3969/j.issn.1003-9511.2011.05.002 [21] 张宁, 苏爱芳. 2014. 豫西地形对一次强降水过程的影响分析 [J]. 气象与环境学报, 30(6): 16−24. doi: 10.3969/j.issn.1673-503X.2014.06.003Zhang Ning, Su Aifang. 2014. Influence of topography on a severe rainfall process in western He’nan Province [J]. J. Meteor. Environ. (in Chinese), 30(6): 16−24. doi: 10.3969/j.issn.1673-503X.2014.06.003 [22] 张启绍. 2013. 2012年8月河南一次暴雨、大暴雨天气过程分析 [J]. 河南科学, 31(10): 1714−1719. doi: 10.13537/j.issn.1004-3918.2013.10.057Zhang Qishao. 2013. Analysis of a rainstorm process in Henan Province from 4 to 5 August 2012 [J]. Henan Sci. (in Chinese), 31(10): 1714−1719. doi: 10.13537/j.issn.1004-3918.2013.10.057 [23] 张霞, 杨慧, 王新敏, 等. 2021. “21.7”河南极端强降水特征及环流异常性分析 [J]. 大气科学学报, 44(5): 672−687. doi: 10.13878/j.cnki.dqkxxb.20210907001Zhang Xia, Yang Hui, Wang Xinmin, et al. 2021. Analysis on characteristic and abnormality of atmospheric circulations of the July 2021 extreme precipitation in Henan [J]. Trans. Atmos. Sci. (in Chinese), 44(5): 672−687. doi: 10.13878/j.cnki.dqkxxb.20210907001 -