Research Directions and Keywords under the Secondary Application Codes of the Atmospheric Sciences Discipline of the National Natural Science Foundation of China: D0510 Atmospheric Data and Information Technology
-
摘要: 2021年,国家自然科学基金委员会进行了大气科学学科资助布局改革,形成了分属于“分支学科”“支撑技术”和“发展领域”三大板块的共15个二级申请代码的全新资助体系。作为“支撑技术”板块中的重要成员,“D0510大气数据与信息技术”申请代码旨在鼓励先进技术与方法的创新以及大气学科基础理论与技术的交叉融合。本文从改革背景、逻辑框架、内涵构成等方面对新编“D0510大气数据与信息技术”申请代码的四大类研究方向及关键词进行了专门解读,阐明了D0510主要侧重于提高包容性与覆盖面的设计思路,强调了D0510对“卡脖子”关键技术和潜在“颠覆性”技术的引领作用。本文对往年D0510各方向关键词的基金申请和文献使用情况进行了统计分析,以帮助相关科研人员及时把握D0510申请代码的发展趋势,充分理解研究方向与关键词的内涵和逻辑关系,避免研究方向和关键词的选取过于集中或者与其它板块申请代码间产生混淆等问题,从而为更准确地选择相应的研究方向与关键词提供参考。Abstract: The National Natural Science Foundation of China restructured the financing structure for atmospheric disciplines in 2021, which includes a total of 15 sub-codes that are divided into three categories: (i) Subdisciplines; (ii) supporting technologies; and (iii) development fields. The D0510 “Atmospheric Data and Information Technology” section mainly focuses on advancements in new technologies and methodologies, as well as integrations between atmospheric theories and technologies. In this case study, we interpret the background, logical structure, and setting of the four major research directions and keywords in the new D0510 “Atmospheric Data and Information Technology” section. This paper highlights D0510’s primary objectives for enhancing inclusiveness and coverage in atmospheric disciplines, as well as D0510’s leading roles in promoting inclusive and potentially disruptive technologies. We also provide statistical analyses of the fund applications and bibliometrics in terms of keywords in each direction of D0510 over the past years. Overall, our goal is to assist relevant researchers in better understanding the future development of the D0510 section, as well as the connotation and logical relationships among keywords, research directions, and sub-categories from various categories, which will ultimately help researchers in their research direction and keyword selection.
-
图 3 2001~2021年D0510申请项目中十个高频关键词相关论文Web of Science收录情况的逐3年变化:(a)收录数量(单位:a−1;2010年后与关键词降水相关的论文数量超过6000篇/年);(b)中国学者论文所占比例
Figure 3. Three-year variations of the collection situation of papers related to ten popular keywords under D0510 application code in “Web of Science” database from 2001 to 2021: (a) Number of collections (units: a−1; number of papers related to the keyword “precipitation” exceeds 6000 a−1); (b) proportion of Chinese scholars’ papers
表 1 大气数据与信息技术(申请代码D0510)研究方向及关键词
Table 1. Research directions and keywords for D0510 atmospheric data and information technology
研究方向 分类类别 关键词 侧重点 1多源数据融合与再分析 大气多源数据 基准气象数据、遥感数据产品、再分析资料 支撑国产数据 多源数据融合
与反演资料融合、数据反演、多维时空数据建模、降尺度、遥感反演 数据同化 数据同化、最优插值、变分同化、卡尔曼滤波、集合同化 数据误差分析 质量控制、误差溯源、偏差订正、均一化、不确定性、评估 2大气数据分析 研究对象 气象灾害、气候变化、空气污染、强对流 包容传统方向 关键科学问题 多圈层相互作用、机理认知、可预报性、不确定性、时空异质性、能量收支 研究手段和方法 统计建模、时间序列分析、相关性分析、贝叶斯网络、归因分析、参数优化 3人工智能与大气科学大数据 研究对象 灾害天气、极端气候、台风、降水、空气质量、短临预报、延伸期预报、智能识别、智能同化、智能模式、智能预测、智慧气象 覆盖新兴技术 研究手段和方法 深度学习、机器学习、数据挖掘、人工智能、大数据、数据重建、质量控制 关键科学问题 适用性、可解释性、因果推断 4新型信息技术发展与应用 计算方法 云计算、边缘计算、边云协同、深度学习、并行计算、压缩感知 发展前瞻技术 数据管理 数据管理、无人机遥感、区块链、物联网、5G传输、可视化、可视化建模 颠覆性技术 量子计算、量子模拟 -
[1] Apte J S, Messier K P, Gani S, et al. 2017. High-resolution air pollution mapping with Google street view cars: Exploiting big data [J]. Environ. Sci. Technol., 51(12): 6999−7008. doi: 10.1021/acs.est.7b00891 [2] Baumann P, Mazzetti P, Ungar J, et al. 2016. Big data analytics for earth sciences: The EarthServer approach [J]. Int. J. Dig. Earth, 9(1): 3−29. doi: 10.1080/17538947.2014.1003106 [3] Bracco A, Falasca F, Nenes A, et al. 2018. Advancing climate science with knowledge-discovery through data mining [J]. npj Climate Atmos. Sci., 1(1): 20174. doi: 10.1038/s41612-017-0006-4 [4] Faghmous J H, Kumar V. 2014. A big data guide to understanding climate change: The case for theory-guided data science [J]. Big Data, 2(3): 155−163. doi: 10.1089/big.2014.0026 [5] Ford J D, Tilleard S E, Berrang-Ford L, et al. 2016. Big data has big potential for applications to climate change adaptation [J]. Proc. Natl. Acad. Sci. USA, 113(39): 10729−10732. doi: 10.1073/pnas.161402311 [6] Gourianov N, Lubasch M, Dolgov S, et al. 2022. A quantum-inspired approach to exploit turbulence structures [J]. Nat. Computat. Sci., 2(1): 30−37. doi: 10.1038/s43588-021-00181-1 [7] 郭华东, 王力哲, 陈方, 等. 2014. 科学大数据与数字地球 [J]. 科学通报, 59(12): 1047–1054. Guo H D, Wang L Z, Chen F, et al. 2014. Scientific big data and digital Earth [J]. Chinese Sci. Bull. , 59(35): 5066–5073. doi: 10.1360/972013-1054 [8] Guo H D, Wang L Z, Liang D. 2016. Big Earth Data from space: A new engine for Earth science [J]. Sci. Bull., 61(7): 505−513. doi: 10.1007/s11434-016-1041-y [9] 国家自然科学基金委员会. 2019a. 关于印发《国家自然科学基金委员会关于更好发挥科学基金在我国科技创新体系中作用的行动方案》的通知(国科金发计2019 [56 号]) [EB/OL].National Natural Science Foundation of China. 2019a. Notice of the issuance of action plan of China’ s national natural science foundation on improving science foundation role in china’ s science and technology innovation system. National natural science foundation of China, 2019, No. 56. [10] 国家自然科学基金委员会. 2019b. 2019年度自然科学基金项目指南[M]. 北京: 科学出版社, 316ppNational Natural Science Foundation of China. 2019b. National Natural Science Fund Guide to Programs 2019 (in Chinese) [M]. Beijing: Science Press, 316pp. [11] 国务院. 2022. 国务院关于印发气象高质量发展纲要(2022—2035年)的通知 [J]. 中华人民共和国国务院公报(16): 11−16.State Council. 2022. Circular of the State Council on Printing and Issuing the Outline of High-quality Meteorological Development (2022–2035) [J]. Gazette of the StateCouncil of the People's Republic of China(16): 11−16. [12] Ham Y G, Kim J H, Luo J J. 2019. Deep learning for multi-year ENSO forecasts [J]. Nature, 573(7775): 568−572. doi: 10.1038/s41586-019-1559-7 [13] 何建军, 李香钰, 刘哲, 等. 2021. 2021年度大气科学领域项目评审与资助成果简析 [J]. 地球科学进展, 36(11): 1204−1214. doi: 10.11867/j.issn.1001-8166.2021.104He J J, Li X Y, Liu Z, et al. 2021. General analysis of project review and funding results in Atmospheric Science in 2021 [J]. Adv. Earth Sci. (in Chinese), 36(11): 1204−1214. doi: 10.11867/j.issn.1001-8166.2021.104 [14] Hsu A, Malik O, Johnson L, et al. 2014. Development: Mobilize citizens to track sustainability [J]. Nature, 508(7494): 33−35. doi: 10.1038/508033a [15] Jiang G Q, Xu J, Wei J. 2018. A deep learning algorithm of neural network for the parameterization of typhoon‐ocean feedback in typhoon forecast models [J]. Geophys. Res. Lett., 45(8): 3706−3716. doi: 10.1002/2018GL077004 [16] 刘哲, 丁爱军, 张人禾. 2020. 调整国家自然科学基金申请代码, 优化大气学科资助布局 [J]. 科学通报, 65(12): 1068−1075. doi: 10.1360/TB-2020-0146Liu Z, Ding A J, Zhang R H. 2020. Adjusting application codes and optimizing funding layout for the discipline of atmospheric sciences in the National Natural Science Foundation of China [J]. Chinese Sci. Bull. (in Chinese), 65(12): 1068−1075. doi: 10.1360/TB-2020-0146 [17] 刘哲, 何建军, 郭郁葱. 2021. 基于大气科学学科发展特点, 解读项目分类评审改革新举措 [J]. 科学通报, 66(2): 187−192. doi: 10.1360/TB-2020-1444Liu Z, He J J, Guo Y C. 2021. Category-specific evaluation reform by the National Natural Science Foundation of China benefits the basic research of atmospheric sciences: A policy interpretation [J]. Chinese Sci. Bull. (in Chinese), 66(2): 187−192. doi: 10.1360/TB-2020-1444 [18] Reichstein M, Camps-Valls G, Stevens B, et al. 2019. Deep learning and process understanding for data-driven Earth system science [J]. Nature, 566(7743): 195−204. doi: 10.1038/s41586-019-0912-1 [19] 新华社. (2021-03-13)[2022-02-15]. (两会受权发布)中华人民共和国国民经济和社会发展第十四个五年规划和2035年远景目标纲要 [EB/OL]. http://www.xinhuanet.com/2021-03/13/c_1127205564.htm.Xinhua Net. (2021-03-13)[2022-02-15]. Outline of the 14th Five-Year Plan for national economic and social development of the People’ s Republic of China and the vision for 2035 (in Chinese) [EB/OL]. http://www.xinhuanet.com/2021-03/13/c_1127205564.htm. [20] 郑钧正. 2013. 准确确定申请学科代码是国家自然科学基金申请的关键要素之一 [J]. 中国科学基金, 27(1): 36–38.Zheng J Z. 2013. To accurately determine the application subject code is one of the key factors of the fund application [J]. Bull. Natl. Nat. Sci. Found. China (in Chinese), 27(1): 36−38. doi:10.16262/j.cnki.1000-8217.2013.01.005 -