Advanced Search
Puxi LI, Tianjun ZHOU, Liwei ZOU, Xiaolong CHEN, Wenxia ZHANG, Zhun GUO. 2017: Simulation of Climatology and Interannual Variability of Spring Persistent Rains by MRI Model: Comparison of Different Horizontal Resolutions. Chinese Journal of Atmospheric Sciences, 41(3): 515-532. DOI: 10.3878/j.issn.1006-9895.1606.16151
Citation: Puxi LI, Tianjun ZHOU, Liwei ZOU, Xiaolong CHEN, Wenxia ZHANG, Zhun GUO. 2017: Simulation of Climatology and Interannual Variability of Spring Persistent Rains by MRI Model: Comparison of Different Horizontal Resolutions. Chinese Journal of Atmospheric Sciences, 41(3): 515-532. DOI: 10.3878/j.issn.1006-9895.1606.16151

Simulation of Climatology and Interannual Variability of Spring Persistent Rains by MRI Model: Comparison of Different Horizontal Resolutions

Funds: 

National Natural Science Foundation of China (NSFC) 41420104006

National Natural Science Foundation of China (NSFC) 41330423

Special Scientific Research Fund of Meteorological Public Welfare Profession of China GYHY201506012

Jiangsu collaborative Innovation center for climate change 

More Information
  • Received Date: March 29, 2016
  • Available Online: September 22, 2020
  • Published Date: May 14, 2017
  • This study evaluated the performance of Meteorological Research Institute of Japan (MRI) atmospheric general circulation models (AGCMs) that participated in the Couple Model Intercomparison Project 5 (CMIP5), focusing on climatology and interannual variability of the Spring Persistent Rains (SPR) over southeastern China. Simulations of different horizontal resolutions (i.e., 120, 60, and 20 km) were also compared. The model could reasonably reproduce the main rainfall center over southeastern China in boreal spring under the three different resolutions. In comparison with the 120-km simulation, the simulation with 20-km resolution gave better results in simulating rainfall centers located in the Nanling-Wuyi Mountains, but overestimated rainfall intensity. Water vapor budget diagnosis showed that, both the 60 km and 20 km simulations tended to overestimate the water vapor convergence over southeastern China, which led to wet biases. With regard to interannual variability of SPR, the model could reasonably reproduce the anomalous lower-tropospheric anticyclone in the western North Pacific (WNPAC) and positive precipitation anomalies over southeastern China in the El Niño decaying spring. Compared with that of the 120-km simulation, the large positive biases were substantially reduced in the 60-km and 20-km resolution simulations because the horizontal moisture advection in El Niño decaying spring was more realistically simulated. The results highlight the importance of developing high resolution climate model for improving the simulation of climatology and interannual variability of SPR.
  • Adler R F, Huffman G J, Chang A, et al. 2003. The version-2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979-present) [J]. J. Hydrometeorol., 4 (6): 1147-1167, doi:10.1175/1525-7541(2003)004<1147:TVGPCP > 2.0.CO;2.
    Bengtsson L, Hodges K I, Esch M, et al. 2007. How may tropical cyclones change in a warmer climate? [J]. Tellus A, 59 (4): 539-561, doi: 10.1111/j.1600-0870.2007.00251.x.
    Chen J P, Wen Z P, Wu R G, et al. 2014. Interdecadal changes in the relationship between southern China winter-spring precipitation and ENSO [J]. Climate Dyn., 43 (5-6): 1327-1338, doi: 10.1007/s00382-013-1947-x.
    Chou C, Lan C W. 2012. Changes in the annual range of precipitation under global warming [J]. J. Climate, 25 (1): 222-235, doi: 10.1175/JCLI-D-11-00097.1.
    Chou C, Neelin J D, Chen C A, et al. 2009. Evaluating the "rich-get-richer" mechanism in tropical precipitation change under global warming [J]. J. Climate, 22 (8): 1982-2005, doi: 10.1175/2008JCLI2471.1.
    Chou C, Chiang J C H, Lan C W, et al. 2013. Increase in the range between wet and dry season precipitation [J]. Nat. Geosci., 6 (4): 263-267, doi: 10.1038/ngeo1744.
    Dee D P, Uppala S M, Simmons A J, et al. 2011. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system [J]. Quart. J. Roy. Meteor. Soc., 137 (656): 553-597, doi: 10.1002/qj.828.
    Feng J, Li J P. 2011. Influence of El Niño Modoki on spring rainfall over South China [J]. J. Geophys. Res., 116 (D13), doi: 10.1029/2010JD015160.
    冯蕾, 周天军. 2015.高分辨率MRI模式对青藏高原夏季降水及水汽输送通量的模拟[J].大气科学, 39 (2): 386-398. doi: 10.3878/j.issn.1006-9895.1406.14125

    Feng Lei, Zhou Tianjun. 2015. Simulation of summer precipitation and associated water vapor transport over the Tibetan Plateau by meteorological research institute model [J]. Chinese J. Atmos. Sci, (in Chinese), 39 (2): 385-396, doi: 10.3878/j.issn.1006-9895.1406.14125.
    Gao X J, Xu Y, Zhao Z C, et al. 2006. On the role of resolution and topography in the simulation of East Asia precipitation [J]. Theor. Appl. Climatol., 86 (1-4): 173-185, doi: 10.1007/s00704-005-0214-4.
    Guo D L, Wang H J. 2016. Comparison of a very-fine-resolution GCM with RCM dynamical downscaling in simulating climate in China [J]. Adv. Atmos. Sci., 33 (5): 559-570, doi: 10.1007/s00376-015-5147-y.
    Held I M, Soden B J. 2006. Robust responses of the hydrological cycle to global warming [J]. J. Climate, 19 (21): 5686-5699, doi: 10.1175/JCLI3990.1.
    Huang D Q, Zhu J, Zhang Y C, et al. 2015. The impact of the East Asian subtropical jet and polar front jet on the frequency of spring persistent rainfall over southern China in 1997-2011 [J]. J. Climate, 28 (15): 6054-6066, doi: 10.1175/JCLI-D-14-00641.1.
    Huang P, Xie S P, Hu K M, et al. 2013. Patterns of the seasonal response of tropical rainfall to global warming [J]. Nat. Geosci., 6 (5): 357-361, doi: 10.1038/ngeo1792.
    Huffman G J, Bolvin D T, Nelkin E J, et al. 2007. The TRMM multisatellite precipitation analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales [J]. J. Hydrometeorol., 8 (1): 38-55, doi: 10.1175/JHM560.1.
    Hurrell J W, Hack J J, Shea D, et al. 2008. A new sea surface temperature and sea ice boundary dataset for the Community Atmosphere Model [J]. J. Climate, 21 (19): 5145-5153, doi: 10.1175/2008JCLI2292.1.
    Kanamitsu M, Tada K, Kudo T, et al. 1983. Description of the JMA operational spectral model [J]. J. Meteor. Soc. Japan, 61(6): 812-828. doi: 10.2151/jmsj1965.61.6_812
    Kitoh A, Kusunoki S. 2008. East Asian summer monsoon simulation by a 20-km mesh AGCM [J]. Climate Dyn., 31 (4): 389-401, doi: 10.1007/s00382-007-0285-2.
    Kobayashi S, Ota Y, Harada Y, et al. 2015. The JRA-55 reanalysis: General specifications and basic characteristics [J]. J. Meteor. Soc. Japan, 93 (1): 5-48, doi: 10.2151/jmsj.2015-001.
    Kusunoki S, Mizuta R, Matsueda M. 2011. Future changes in the East Asian rain band projected by global atmospheric models with 20-km and 60-km grid size [J]. Climate Dyn., 37 (11-12): 2481-2493, doi: 10.1007/s00382-011-1000-x.
    李宏毅, 林朝晖, 宋燕, 等. 2013.我国华南3月份降水异常的可能影响因子分析[J].大气科学, 37 (3): 719-730. doi: 10.3878/j.issn.1006-9895.2012.11252

    Li Hongyi, Lin Zhaohui, Song Yan, et al. 2013. Analysis of the possible factors that influence March precipitation anomalies over South China [J]. Chinese J. Atmos. Sci. (in Chinese), 37 (3): 719-730, doi: 10.3878/j.issn.1006-9895.2012.11252.
    Li J, Yu R C, Yuan W H, et al. 2015. Precipitation over East Asia simulated by NCAR CAM5 at different horizontal resolutions [J]. J. Adv. Model. Earth Syst., 7 (2): 774-790, doi: 10.1002/2014MS000414.
    Lin R P, Zhou T J, Qian Y. 2014. Evaluation of global monsoon precipitation changes based on five reanalysis datasets [J]. J. Climate, 27 (3): 1271-1289, doi: 10.1175/JCLI-D-13-00215.1.
    陆日宇, 林中达, 张耀存. 2013.夏季东亚高空急流的变化及其对东亚季风的影响[J].大气科学, 37 (2): 331-340. doi: 10.3878/j.issn.1006-9895.2012.12310

    Lu Riyu, Lin Zhongda, Zhang Yaocun. 2013. Variability of the East Asian upper-tropospheric jet in summer and its impacts on the East Asian monsoon [J]. Chinese J. Atmos. Sci. (in Chinese), 37 (2): 331-340, doi:10.3878/j.issn.1006-9895. 2012.12310.
    Ma S M, Zhou T J. 2015. Precipitation changes in wet and dry seasons over the 20th century simulated by two versions of the FGOALS model [J]. Adv. Atmos. Sci., 32 (6): 839-854, doi: 10.1007/s00376-014-4136-x.
    Mellor G L, Yamada T. 1974. A hierarchy of turbulence closure models for planetary boundary layers [J]. J. Atmos. Sci., 31 (7): 1791-1806, doi: 10.1175/1520-0442(2002)015 < 3252:PEATPI > 2.0.CO;2.
    苗春生, 吴志伟, 何金海, 等. 2006.近50年东北冷涡异常特征及其与前汛期华南降水的关系分析[J].大气科学, 30 (6): 1249-1256. doi: 10.3878/j.issn.1006-9895.2006.06.19

    Miao Chunsheng, Wu Zhiwei, He Jinhai, et al. 2006. The anomalous features of the Northeast cold vortex during the first flood period in the last 50 years and its correlation with rainfall in South China [J]. Chinese J. Atmos. Sci. (in Chinese), 30 (6): 1249-1256, doi: 10.3878/j.issn.1006-9895.2006.06.19.
    Mizuta R, Oouchi K, Yoshimura H, et al. 2006. 20-km-mesh global climate simulations using JMA-GSM model—Mean climate states [J]. J. Meteor. Soc. Japan, 84 (1): 165-185, doi: 10.2151/jmsj.84.165.
    Mizuta R, Yoshimura H, Murakami H, et al. 2012. Climate simulations using MRI-AGCM3.2 with 20-km grid [J]. J. Meteor. Soc. Japan, 90A: 233-258, doi: 10.2151/jmsj.2012-A12.
    Murakami H, Wang Y Q, Yoshimura H, et al. 2012. Future changes in tropical cyclone activity projected by the new high-resolution MRI-AGCM [J]. J. Climate, 25 (9): 3237-3260, doi: 10.1175/JCLI-D-11-00415.1.
    Murakami H, Wang B, Li T, et al. 2013. Projected increase in tropical cyclones near Hawaii [J]. Nat. Climate Change, 3 (8): 749-754, doi: 10.1038/nclimate1890.
    Oouchi K, Yoshimura J, Yoshimura H, et al. 2006. Tropical cyclone climatology in a global-warming climate as simulated in a 20 km-mesh global atmospheric model: Frequency and wind intensity analyses [J]. J. Meteor. Soc. Japan, 84 (2): 259-276, doi: 10.2151/jmsj.84.259.
    潘蔚娟, 蒋承霖. 2014.华南地区春雨进程的气候特点及其气候季节内振荡[J].热带气象学报, 30 (1): 83-91. doi: 10.3969/j.issn.1004-4965.2014.01.009

    Pan Weijuan, Jiang Chenglin. 2014. Evolvement of climatic spring precipitation over southern China and its climatological intraseasonal oscillation [J]. J. Trop. Meteor. (in Chinese), 30 (1): 83-91, doi: 10.3969/j.issn.1004-4965.2014.01.009.
    Schneider U, Becker A, Finger P, et al. 2015. GPCC full data reanalysis version 7.0 at 0.5°: Monthly land-surface precipitation from rain-gauges built on gts-based and historic data. doi:10.5676/DWD_GPCC/FD_M_V7_050.
    Seager R, Naik N, Vecchi G A. 2010. Thermodynamic and dynamic mechanisms for large-scale changes in the hydrological cycle in response to global warming [J]. J. Climate, 23 (17): 4651-4668, doi: 10.1175/2010JCLI3655.1.
    Taylor K E, Stouffer R J, Meehl G A. 2012. An overview of CMIP5 and the experiment design [J]. Bull. Amer. Meteor. Soc., 93 (4): 485-498, doi: 10.1175/BAMS-D-11-00094.1.
    Tian S F, Yasunari T. 1998. Climatological aspects and mechanism of spring persistent rains over central China [J]. J. Meteor. Soc. Japan, 76 (1): 57-71. doi: 10.2151/jmsj1965.76.1_57
    Tiedtke M. 1989. A comprehensive mass flux scheme for cumulus parameterization in large-scale models [J]. Mon. Wea. Rev., 117 (8): 1779-1800, doi:10.1175/1520-0493(1989)117 < 1779:ACMFSF > 2.0. CO;2.
    Torma C, Giorgi F, Coppola E. 2015. Added value of regional climate modeling over areas characterized by complex terrain-Precipitation over the Alps [J]. J. Geophys. Res., 120 (9): 3957-3972, doi: 10.1002/2014JD022781.
    万日金, 吴国雄. 2006.江南春雨的气候成因机制研究[J].中国科学D辑:地球科学, 36 (10): 936-950. http://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGQX200610004097.htm
    Wan Rijin, Wu Guoxiong. 2007. Mechanism of the spring persistent rains over southeastern China [J]. Sci. China Ser. D: Earth Sci., 50 (1): 130-144, doi: 10.1007/s11430-007-2069-2.
    万日金, 吴国雄. 2008.江南春雨的时空分布[J].气象学报, 66 (3): 310-319. doi: 10.11676/qxxb2008.029

    Wan Rijin, Wu Guoxiong. 2008. Temporal and spatial distribution of the spring persistent rains over Southeast China [J]. Acta Meteor. Sinica (in Chinese), 66 (3): 310-319, doi:10.11676/qxxb2008. 029.
    万日金, 赵兵科, 侯依玲. 2008a.江南春雨的年际变率及其影响因子分析[J].高原气象, 27 (S): 118-123. http://www.cnki.com.cn/Article/CJFDTOTAL-GYQX2008S1015.htm

    Wan Rijin, Zhao Bingke, Hou Yiling. 2008a. Interannual variability of spring persistent rain over southeastern China and its effect factor [J]. Plateau Meteor. (in Chinese), 27 (S): 118-123. http://www.cnki.com.cn/Article/CJFDTOTAL-GYQX2008S1015.htm
    万日金, 王同美, 吴国雄. 2008b.江南春雨和南海副热带高压的时间演变及其与东亚夏季风环流和降水的关系[J].气象学报, 66 (5): 800-807. doi: 10.11676/qxxb2008.073

    Wan Rijin, Wang Tongmei, Wu Guoxiong. 2008b. Temporal variations of the spring presistent rains and SCS subtropical high and their correlations to the circulation and precipitation of the East Asia summer monsoon [J]. Acta Meteor. Sinica (in Chinese), 66 (5): 800-807, doi: 10.11676/qxxb2008.073.
    Wan R J, Zhao B K, Wu G X. 2009. New evidences on the climatic causes of the formation of the spring persistent rains over southeastern China [J]. Adv. Atmos. Sci., 26 (6): 1081-1087, doi: 10.1007/s00376-009-7202-z.
    Wang B, Wu RG, Fu X H. 2000. Pacific-East Asian teleconnection: How does ENSO affect East Asian climate? [J]. J. Climate, 13 (9): 1517-1536, doi:10.1175/1520-0442(2000)013 < 1517:PEATHD > 2.0.CO;2.
    Wang B, Zhang Q. 2002. Pacific-East Asian teleconnection. Part Ⅱ: How the Philippine Sea anomalous anticyclone is established during El Niño development [J]. J. Climate, 15 (22): 3252-3265, doi:10.1175/1520-0442 (2002)015 < 3252:PEATPI > 2.0.CO;2.
    Wang H J, Xue F, Zhou G Q. 2002. The spring monsoon in south china and its relationship to large-scale circulation features [J]. Adv. Atmos. Sci., 19 (4): 651-664, doi:10.1007/s00376-002-0005 < /st1:chsdate > -0.
    温之平, 吴乃庚, 冯业荣, 等. 2007.定量诊断华南春旱的形成机理[J].大气科学, 31 (6): 1223-1236. doi: 10.3878/j.issn.1006-9895.2007.06.17

    Wen Zhiping, Wu Naigeng, Feng Yerong, et al. 2007. A quantitative diagnosis for the mechanisms of spring droughts in South China [J]. Chinese J. Atmos. Sci. (in Chinese), 31 (6): 1223-1236, doi: 10.3878/j.issn.1006-9895.2007.06.17.
    吴佳, 高学杰. 2013.一套格点化的中国区域逐日观测资料及与其它资料的对比[J].地球物理学报, 56 (4): 1102-1111. doi: 10.6038/cjg20130406

    Wu Jia, Gao Xuejie. 2013. A gridded daily observation dataset over China region and comparison with the other datasets [J]. Chinese J. Geophys. (in Chinese), 56 (4): 1102-1111, doi: 10.6038/cjg20130406.
    Wu B, Zhou T J. 2016. Relationships between ENSO and the East Asian-western North Pacific monsoon: Observations versus 18 CMIP5 models [J]. Climate Dyn., 46 (3-4): 729-743, doi: 10.1007/s00382-015-2609-y.
    伍红雨, 杨崧, 蒋兴文. 2015.华南前汛期开始日期异常与大气环流和海温变化的关系[J].气象学报, 73 (2): 319-330. doi: 10.11676/qxxb2015.046

    Wu Hongyu, Yang Song, Jiang Xingwen. 2015. Anomalous onset date of the first rainy season in South China and its relationship with the variation of the atmospheric circulation and SST [J]. Acta Meteor. Sinica (in Chinese), 73 (2): 319-330, doi: 10.11676/qxxb2015.046.
    Wu X F, Mao J Y. 2016. Interdecadal modulation of ENSO-related spring rainfall over South China by the Pacific Decadal Oscillation [J]. Climate Dyn., 47 (9-10): 3203-3220, doi: 10.1007/s00382-016-3021-y.
    辛晓歌, 周天军, 李肇新. 2011.一个变网格大气环流模式对中国东部春季的区域气候模拟[J].气象学报, 69 (4): 682-692. doi: 10.11676/qxxb2011.060

    Xin Xiaoge, Zhou Tianjun, Li Zhaoxin. 2011. Regional climate simulation over eastern China in spring by a variable resolution AGCM [J]. Acta Meteor. Sinica (in Chinese), 69 (4): 682-692, doi: 10.11676/qxxb2011.060.
    Yang F L, Lau K M. 2004. Trend and variability of China precipitation in spring and summer: Linkage to sea-surface temperatures [J]. Int. J. Climatol., 24 (13): 1625-1644, doi: 10.1002/joc.1094.
    Yoshimura H, Matsumura T. 2005. A two-time-level vertically-conservative semi-Lagrangian semi-implicit double Fourier series AGCM [J]. CAS/JSC WGNE Res. Activities Atmos. Ocean Model., 35 (1): 27-28. https://www.researchgate.net/publication/266170087_A_two-time-level_vertically-conservative_semi-Lagrangian_semi-implicit_double_Fourier_series_AGCM_CASJSC_WGNE
    Yukimoto S, Adachi Y, Hosaka M, et al. 2012. A new global climate model of the Meteorological Research Institute: MRI-CGCM3-model description and basic performance [J]. J. Meteor. Soc. Japan, 90A: 23-64, doi: 10.2151/jmsj.2012-A02.
    张洁, 周天军, 宇如聪, 等. 2009.中国春季典型降水异常及相联系的大气水汽输送[J].大气科学, 33 (1): 121-134. doi: 10.3878/j.issn.1006-9895.2009.01.11

    Zhang Jie, Zhou Tianjun, Yu Rucong, et al. 2009. Atmospheric water vapor transport and corresponding typical anomalous spring rainfall patterns in China [J]. Chinese J. Atmos. Sci. (in Chinese), 33 (1): 121-134, doi:10.3878/j.issn. 1006-9895.2009.01.11.
    Zhang J, Li L, Zhou T J, et al. 2013. Evaluation of spring persistent rainfall over East Asia in CMIP3/CMIP5 AGCM simulations [J]. Adv. Atmos. Sci., 30(6): 1587-1600, doi: 10.1007/s00376-013-2139-7.

Catalog

    Article views (2723) PDF downloads (1820) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return