Citation: | Pengfei WANG, Pingxiang CHU, Lizhi WANG, Renjun ZHOU, Gang HUANG. 2019: A Study on the Precision of Runge-Kutta Method with Various Orders of Li Difference Scheme. Chinese Journal of Atmospheric Sciences, 43(1): 99-106. DOI: 10.3878/j.issn.1006-9895.1805.17238 |
Butcher J C. 2008. Numerical Methods for Ordinary Differential Equations[M]. 2nd ed. England:John Wiley & Sons, 463pp.
|
陈显尧, 宋振亚, 赵伟, 等. 2008.气候模式系统模拟结果的不确定性分析[J].海洋科学进展, 26 (2):119-125. doi: 10.3969/j.issn.1671-6647.2008.02.001
Chen Xianyao, Song Zhenya, Zhao Wei, et al. 2008. Uncertainity analysis of results simulated by climate model system[J]. Advances in Marine Science (in Chinese), 26 (2):119-125, doi: 10.3969/j.issn.1671-6647.2008.02.001.
|
冯涛, 李建平. 2007.高精度迎风偏斜格式的比较与分析[J].大气科学, 31 (2):245-253. doi: 10.3878/j.issn.1006-9895.2007.02.06
Feng Tao, Li Jianping. 2007. A comparison and analysis of high order upwind-biased schemes[J]. Chinese Journal of Atmospheric Sciences (in Chinese), 31 (2):245-253, doi:10.3878/j.issn.1006-9895. 2007.02.06.
|
Hairer E, Nørsett S P, Wanner G. 2000. Solving Ordinary Differential Equations I:Nonstiff Problems[M]. Berlin Heidelberg:Springer, 528pp.
|
Hopf E. 1950. The partial differential equation ut + uux=μxx[J]. Commun. Pure Appl. Math., 3 (3):201-230, doi: 10.1002/cpa.3160030302.
|
季仲贞, 王斌. 1994.一类高时间差分精度的平方守恒格式的构造及其应用检验[J].自然科学进展, 4 (2):149-157. doi: 10.3321/j.issn:1002-008X.1994.02.004
Ji Zhongzhen, Wang Bin. 1994. Construction and application test of a kind of high precision scheme with square-conservation[J]. Progress in Natural Science (in Chinese), 4 (2):149-157. doi: 10.3321/j.issn:1002-008X.1994.02.004
|
季仲贞, 李京, 王斌. 1999.紧致平方守恒格式的构造和检验[J].大气科学, 23 (3):323-332. doi: 10.3878/j.issn.1006-9895.1999.03.08
Ji Zhongzhen, Li Jing, Wang Bin. 1999. Construction and test of compact scheme with square-conservation[J]. Chinese Journal of Atmospheric Sciences (in Chinese), 23 (3):323-332, doi: 10.3878/j.issn.1006-9895.1999.03.08.
|
Lele S K. 1992. Compact finite difference schemes with spectral-like resolution[J]. J. Comput. Phys., 103 (1):16-42, doi:10.1016/0021-9991 (92)90324-R.
|
Li J P. 2005. General explicit difference formulas for numerical differentiation[J]. J. Comput. Appl. Math., 183 (1):29-52, doi: 10.1016/j.cam.2004.12.026.
|
Li J P, Zeng Q C, Chou J F. 2000. Computational uncertainty principle in nonlinear ordinary differential equations (I)——Numerical results[J]. Science in China (Series E), 43 (5):449-460.
|
Liao S J. 2009. On the reliability of computed chaotic solutions of non-linear differential equations[J]. Tellus A, 61 (4):550-564, doi: 10.1111/j.1600-0870.2009.00402.x.
|
Ma Y W, Fu D X. 1996. Super compact finite difference method (SCFDM) with arbitrary high accuracy[J]. Comput. Fluid Dyn. J., 5 (2):, 259-276.
|
Mastrandrea M D, Field C B, Stocker T F, et al. 2010. Guidance Note for Lead Authors of the IPCC Fifth Assessment Report on Consistent Treatment of Uncertainties[C]. Jasper Ridge, CA, USA: Intergovernmental Panel on Climate Change.
|
Takacs L L. 1985. A two-step scheme for the advection equation with minimized dissipation and dispersion errors[J]. Mon. Wea. Rev., 113 (6):1050-1065, doi:10.1175/1520-0493(1985)113<1050:ATSSFT<2.0.CO;2.
|
Tal-Ezer H. 1986. Spectral methods in time for hyperbolic equations[J]. SIAM J. Numer. Anal., 23 (1):11-26, doi: 10.1137/0723002.
|
Tal-Ezer H. 1989. Spectral methods in time for parabolic problems[J]. SIAM J. Numer. Anal., 26 (1):1-11, doi: 10.1137/0726001.
|
Teixeira J, Reynolds C A, Judd K. 2007. Time step sensitivity of nonlinear atmospheric models:Numerical convergence, truncation error growth, and ensemble design[J]. J. Atmos. Sci., 64 (1):175-189, doi: 10.1175/JAS3824.1.
|
Von Neumann J, Goldstine H H. 1947. Numerical inverting of matrices of high order[J]. Bull. Amer. Math. Soc., 53 (11):1021-1099, doi: 10.1090/S0002-9904-1947-08909-6.
|
Wang P F. 2017. A high-order spatiotemporal precision-matching Taylor-Li scheme for time-dependent problems[J]. Adv. Atmos. Sci., 34 (12):1461-1471, doi: 10.1007/s00376-017-7018-1.
|
王鹏飞, 王在志, 黄刚. 2007.舍入误差对大气环流模式模拟结果的影响[J].大气科学, 31 (5):815-825. doi: 10.3878/j.issn.1006-9895.2007.05.06
Wang Pengfei, Wang Zaizhi, Huang Gang. 2007. The influence of round-off error on the atmospheric general circulation model[J]. Chinese Journal of Atmospheric Sciences (in Chinese), 31 (5):815-825, doi: 10.3878/j.issn.1006-9895.2007.05.06.
|
Wang P F, Li J P, Li Q. 2012. Computational uncertainty and the application of a high-performance multiple precision scheme to obtaining the correct reference solution of Lorenz equations[J]. Numerical Algorithms, 59 (1):147-159, doi: 10.1007/s11075-011-9481-6.
|
Wang P F, Liu Y, Li J P. 2014. Clean numerical simulation for some chaotic systems using the parallel multiple-precision Taylor scheme[J]. Chinese Sci. Bull., 59 (33):4465-4472, doi: 10.1007/s11434-014-0412-5.
|
吴声昌, 刘小清. 1996. KdV方程的时间谱离散方法[J].应用数学和力学, 17 (4):357-362. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199600630414
Wu Shengchang, Liu Xiaoqing. 1996. Spectral method in time for KdV equations[J]. Applied Mathematics and Mechanics (in Chinese), 17 (4):357-362. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199600630414
|