Advanced Search
Pengfei WANG, Pingxiang CHU, Lizhi WANG, Renjun ZHOU, Gang HUANG. 2019: A Study on the Precision of Runge-Kutta Method with Various Orders of Li Difference Scheme. Chinese Journal of Atmospheric Sciences, 43(1): 99-106. DOI: 10.3878/j.issn.1006-9895.1805.17238
Citation: Pengfei WANG, Pingxiang CHU, Lizhi WANG, Renjun ZHOU, Gang HUANG. 2019: A Study on the Precision of Runge-Kutta Method with Various Orders of Li Difference Scheme. Chinese Journal of Atmospheric Sciences, 43(1): 99-106. DOI: 10.3878/j.issn.1006-9895.1805.17238

A Study on the Precision of Runge-Kutta Method with Various Orders of Li Difference Scheme

Funds: 

National Natural Science Foundation of China 41530426

National Natural Science Foundation of China 41375112

the Key Technology Talent Program of Chinese Academy of Sciences 

More Information
  • Received Date: September 15, 2017
  • Available Online: October 09, 2020
  • Published Date: January 14, 2019
  • We implement the hybrid Runge-Kutta-Li (RKL) scheme for the purpose to take full advantage of Li's high order spatial differential method (Li, 2005). A set of numerical experiments has been conducted to analyze how the computation error is affected by the order of integration scheme. The results of the linear advection equation indicate that with the square-wave type initial values, the scheme can only obtain a third-order accuracy. However, for the Gaussian function type of initial values, the scheme can obtain a better result. The fifth (sixth) order Runge-Kutta (RK) integration scheme corresponds to 9th (10th) order Li's difference scheme in spatial direction and the total error can be controlled within 10-7 (10-8). The order of Li's scheme tends to increase while the RK order increases, and the total error gradually decreases. When we compute the nonlinear Burgers' equation, whether the RKL scheme can obtain good results is not only dependent on the form of the initial field, but also related to the target computation time. When the derivative is continuous (and infinite value does not appear) at the target observation time, 4th-6th order RKL scheme is effective. On the contrary, if the derivative is discontinuous, or the derivative tends to infinity, the RKL scheme cannot obtain high-precision numerical solution. In this case (Burgers' with smooth initial), the order of Li's scheme still increases while the RK order increases, but the relation between them shows a nonlinear tendency (which can be specified through some fitting methods). The results indicate that when the order of time integral is more than three, the corresponding optimal spatial difference order can be higher than six. This result confirms the finding of previous studies that the order of spatial difference above six makes no improvement to the results due to the lack of high-precision time integral scheme. Compared with Taylor-Li (Wang, 2017) scheme, the 5th-6th order RKL scheme is easier to program and can yield more precise results than the third-order scheme. To conclude, the high order RKL scheme can be applied to some complicated types of partial differential equations and is valuable for many other similar computation cases.
  • Butcher J C. 2008. Numerical Methods for Ordinary Differential Equations[M]. 2nd ed. England:John Wiley & Sons, 463pp.
    陈显尧, 宋振亚, 赵伟, 等. 2008.气候模式系统模拟结果的不确定性分析[J].海洋科学进展, 26 (2):119-125. doi: 10.3969/j.issn.1671-6647.2008.02.001

    Chen Xianyao, Song Zhenya, Zhao Wei, et al. 2008. Uncertainity analysis of results simulated by climate model system[J]. Advances in Marine Science (in Chinese), 26 (2):119-125, doi: 10.3969/j.issn.1671-6647.2008.02.001.
    冯涛, 李建平. 2007.高精度迎风偏斜格式的比较与分析[J].大气科学, 31 (2):245-253. doi: 10.3878/j.issn.1006-9895.2007.02.06

    Feng Tao, Li Jianping. 2007. A comparison and analysis of high order upwind-biased schemes[J]. Chinese Journal of Atmospheric Sciences (in Chinese), 31 (2):245-253, doi:10.3878/j.issn.1006-9895. 2007.02.06.
    Hairer E, Nørsett S P, Wanner G. 2000. Solving Ordinary Differential Equations I:Nonstiff Problems[M]. Berlin Heidelberg:Springer, 528pp.
    Hopf E. 1950. The partial differential equation ut + uux=μxx[J]. Commun. Pure Appl. Math., 3 (3):201-230, doi: 10.1002/cpa.3160030302.
    季仲贞, 王斌. 1994.一类高时间差分精度的平方守恒格式的构造及其应用检验[J].自然科学进展, 4 (2):149-157. doi: 10.3321/j.issn:1002-008X.1994.02.004

    Ji Zhongzhen, Wang Bin. 1994. Construction and application test of a kind of high precision scheme with square-conservation[J]. Progress in Natural Science (in Chinese), 4 (2):149-157. doi: 10.3321/j.issn:1002-008X.1994.02.004
    季仲贞, 李京, 王斌. 1999.紧致平方守恒格式的构造和检验[J].大气科学, 23 (3):323-332. doi: 10.3878/j.issn.1006-9895.1999.03.08

    Ji Zhongzhen, Li Jing, Wang Bin. 1999. Construction and test of compact scheme with square-conservation[J]. Chinese Journal of Atmospheric Sciences (in Chinese), 23 (3):323-332, doi: 10.3878/j.issn.1006-9895.1999.03.08.
    Lele S K. 1992. Compact finite difference schemes with spectral-like resolution[J]. J. Comput. Phys., 103 (1):16-42, doi:10.1016/0021-9991 (92)90324-R.
    Li J P. 2005. General explicit difference formulas for numerical differentiation[J]. J. Comput. Appl. Math., 183 (1):29-52, doi: 10.1016/j.cam.2004.12.026.
    Li J P, Zeng Q C, Chou J F. 2000. Computational uncertainty principle in nonlinear ordinary differential equations (I)——Numerical results[J]. Science in China (Series E), 43 (5):449-460.
    Liao S J. 2009. On the reliability of computed chaotic solutions of non-linear differential equations[J]. Tellus A, 61 (4):550-564, doi: 10.1111/j.1600-0870.2009.00402.x.
    Ma Y W, Fu D X. 1996. Super compact finite difference method (SCFDM) with arbitrary high accuracy[J]. Comput. Fluid Dyn. J., 5 (2):, 259-276.
    Mastrandrea M D, Field C B, Stocker T F, et al. 2010. Guidance Note for Lead Authors of the IPCC Fifth Assessment Report on Consistent Treatment of Uncertainties[C]. Jasper Ridge, CA, USA: Intergovernmental Panel on Climate Change.
    Takacs L L. 1985. A two-step scheme for the advection equation with minimized dissipation and dispersion errors[J]. Mon. Wea. Rev., 113 (6):1050-1065, doi:10.1175/1520-0493(1985)113<1050:ATSSFT<2.0.CO;2.
    Tal-Ezer H. 1986. Spectral methods in time for hyperbolic equations[J]. SIAM J. Numer. Anal., 23 (1):11-26, doi: 10.1137/0723002.
    Tal-Ezer H. 1989. Spectral methods in time for parabolic problems[J]. SIAM J. Numer. Anal., 26 (1):1-11, doi: 10.1137/0726001.
    Teixeira J, Reynolds C A, Judd K. 2007. Time step sensitivity of nonlinear atmospheric models:Numerical convergence, truncation error growth, and ensemble design[J]. J. Atmos. Sci., 64 (1):175-189, doi: 10.1175/JAS3824.1.
    Von Neumann J, Goldstine H H. 1947. Numerical inverting of matrices of high order[J]. Bull. Amer. Math. Soc., 53 (11):1021-1099, doi: 10.1090/S0002-9904-1947-08909-6.
    Wang P F. 2017. A high-order spatiotemporal precision-matching Taylor-Li scheme for time-dependent problems[J]. Adv. Atmos. Sci., 34 (12):1461-1471, doi: 10.1007/s00376-017-7018-1.
    王鹏飞, 王在志, 黄刚. 2007.舍入误差对大气环流模式模拟结果的影响[J].大气科学, 31 (5):815-825. doi: 10.3878/j.issn.1006-9895.2007.05.06

    Wang Pengfei, Wang Zaizhi, Huang Gang. 2007. The influence of round-off error on the atmospheric general circulation model[J]. Chinese Journal of Atmospheric Sciences (in Chinese), 31 (5):815-825, doi: 10.3878/j.issn.1006-9895.2007.05.06.
    Wang P F, Li J P, Li Q. 2012. Computational uncertainty and the application of a high-performance multiple precision scheme to obtaining the correct reference solution of Lorenz equations[J]. Numerical Algorithms, 59 (1):147-159, doi: 10.1007/s11075-011-9481-6.
    Wang P F, Liu Y, Li J P. 2014. Clean numerical simulation for some chaotic systems using the parallel multiple-precision Taylor scheme[J]. Chinese Sci. Bull., 59 (33):4465-4472, doi: 10.1007/s11434-014-0412-5.
    吴声昌, 刘小清. 1996. KdV方程的时间谱离散方法[J].应用数学和力学, 17 (4):357-362. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199600630414

    Wu Shengchang, Liu Xiaoqing. 1996. Spectral method in time for KdV equations[J]. Applied Mathematics and Mechanics (in Chinese), 17 (4):357-362. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199600630414

Catalog

    Article views (3730) PDF downloads (902) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return