Advanced Search
ZHANG Jing, ZHOU Yushu, SHEN Xinyong, and LI Xiaofan. 2019: Evolution of Dynamic and Thermal Structure and Instability Condition Analysis of the Extreme Precipitation System in Beijing-Tianjin-Hebei on July 19 2016. Chinese Journal of Atmospheric Sciences, 43(4): 930-942. DOI: 10.3878/j.issn.1006-9895.1812.18231
Citation: ZHANG Jing, ZHOU Yushu, SHEN Xinyong, and LI Xiaofan. 2019: Evolution of Dynamic and Thermal Structure and Instability Condition Analysis of the Extreme Precipitation System in Beijing-Tianjin-Hebei on July 19 2016. Chinese Journal of Atmospheric Sciences, 43(4): 930-942. DOI: 10.3878/j.issn.1006-9895.1812.18231

Evolution of Dynamic and Thermal Structure and Instability Condition Analysis of the Extreme Precipitation System in Beijing-Tianjin-Hebei on July 19 2016

Funds: Found by Found by National Natural Science Foundation of China NSFC 41661144024 41530427;Science and Technology Project of Hebei Province Grant 17275409D;National Basic Research Program of China Grant 2015CB453201Found by Found by National Natural Science Foundation of China (NSFC) (Grants 41475054, 41661144024, 41530427), Science and Technology Project of Hebei Province(Grant 17275409D), National Basic Research Program of China (Grant 2015CB453201)
More Information
  • Received Date: September 13, 2018
  • The evolution of dynamic and thermal structure and instability condition of an extreme precipitation system in Beijing-Tianjin-Hebei are analyzed using the NCEP/NCAR Global Forecast System (GFS) data combined with national automatic stations observations of precipitation provided by the Meteorological Information Center of China Meteorological Administration, the CMORPH satellite precipitation data and the fusion of precipitation data from the FY2 precipitation and radar quantitative estimation of precipitation. This study reveals the configuration of weather systems in different air pressure zones over the Beijing-Tianjin-Hebei region. Vertical motion, water vapor condition and unstable stratification evolution during the precipitation process are explored. The results are as follows. (1) The circulation at 500 hPa presented an east-high-west-low pattern, which was coordinated with a low-level vortex at 700 hPa and jet streams in low and high levels. The subtropical high blocked the eastward movement of the low-level vortex in North China, making it stagnant in the Beijing-Tianjin-Hebei region. (2) The development and eastward-moving of the low level vortex was important for the occurrence of the rainstorm. (3) The potential divergence analysis was applied to explore changes in convective instability. Results indicate that in the rear of the precipitation area, lower-level potential instability was mainly determined by vertical wind shear, which reflected the joint effects of vertical wind shear and moist baroclinicity. Lower-level potential divergence was negative in weak precipitation area and behind the precipitation area, which was conducive to regional potential instability. Potential divergence was positive in strong precipitation area and in front of precipitation area, inhibiting the development of potential instability. The change in potential divergence affected precipitation region through affecting the atmospheric stability. The high value region of potential divergence corresponded to high value region of precipitation, especially the 700 hPa potential divergence was a good indicator for precipitation region, which could be estimated by the change of potential divergence at 700 hPa.
  • 陈明轩, 王迎春, 肖现, 等. 2013. 北京“7.21”暴雨雨团的发生和传播机理 [J]. 气象学报, 71(4): 569-592.
    丁德平, 李英. 2009. 北京地区的台风降水特征研究 [J]. 气象学报, 67(5): 864-874.
    符娇兰, 马学款, 陈涛, 等. 2017. “16·7”华北极端强降水特征及天气学成因分析 [J]. 气象, 43(5): 528-539.
    雷蕾, 孙继松, 何娜, 等. 2017. “7.20”华北特大暴雨过程中低涡发展演变机制研究 [J]. 气象学报, 75(5): 685-699.
    李娜, 冉令坤, 周玉淑, 等. 2013. 北京“7.21”暴雨过程中变形场引起的锋生与倾斜涡度发展诊断分析 [J]. 气象学报, 71(4): 593-605.
    廖晓农, 倪允琪, 何娜, 等. 2013. 导致“7.21”特大暴雨过程中水汽异常充沛的天气尺度动力过程分析研究 [J]. 气象学报, 71(6): 997-1011.
    刘还珠, 王维国, 邵明轩, 等. 2007. 西太平洋副热带高压影响下北京区域性暴雨的个例分析 [J]. 大气科学, 31(4): 727-734.
    刘璐, 冉令坤, 周玉淑, 等. 2015. 北京“7.21”暴雨的不稳定性及其触发机制分析 [J]. 大气科学, 39(3): 583-595.
    全美兰, 刘海文, 朱玉祥, 等. 2013. 高空急流在北京“7.21”暴雨中的动力作用 [J].气象学报, 71(6): 1012-1019.
    冉令坤, 齐彦斌, 郝寿昌. 2014. “7.21”暴雨过程动力因子分析和预报研究 [J]. 大气科学, 38(1): 83-100.
    沈艳, 潘旸, 宇婧婧, 等. 2013. 中国区域小时降水量融合产品的质量评估 [J]. 大气科学学报, 36(1): 37-46.
    盛春岩, 高守亭, 史玉光. 2012. 地形对门头沟一次大暴雨动力作用的数值研究 [J]. 气象学报, 70(1): 65-77.
    孙建华, 张小玲, 卫捷, 等. 2005. 20世纪90年代华北大暴雨过程特征的分析研究 [J]. 气候与环境研究, 10(3): 492-506.
    孙建华, 赵思雄, 傅慎明, 等. 2013. 2012年7月21日北京特大暴雨的多尺度特征 [J]. 大气科学, 37(3): 705-718.
    孙继松. 2005a. 气流的垂直分布对地形雨落区的影响 [J]. 高原气象, 24(1): 62-69.
    孙继松. 2005b. 北京地区夏季边界层急流的基本特征及形成机理研究 [J]. 大气科学, 29(3): 445-452.
    孙继松, 杨波. 2008. 地形与城市环流共同作用下的β中尺度暴雨[J]. 大气科学, 32(6): 1352-1364.
    孙继松, 陶祖钰. 2012. 强对流天气分析与预报中的若干基本问题 [J]. 气象, 38(2): 164-173.
    孙继松, 王华, 王令, 等. 2006. 城市边界层过程在北京2004年7月10日局地暴雨过程中的作用 [J]. 大气科学, 30(2): 221-234.
    孙继松, 何娜, 郭锐, 等. 2013. 多单体雷暴的形变与列车效应传播机制 [J]. 大气科学, 37(1): 137-148.
    孙继松, 雷蕾, 于波, 等. 2015. 近10年北京地区极端暴雨事件的基本特征 [J]. 气象学报, 73(4): 609-623.
    Sun T K, Tan Z M. 2001. Numerical simulation study for the structure and evolution of tropical squall line [J]. Adv. Atmos. Sci., 18(1): 117-138. doi: 10.1007/s00376-001-0008-2
    陶诗言. 1980. 中国之暴雨 [M]. 北京: 科学出版社, 1-71.
    王两铭, 罗会邦. 1980. 饱和湿空气动力学的基本方程和主要特征 [J]. 气象学报, 38(1): 44-50.
    文宝安. 1980. 物理量计算及其在暴雨分析预报中的应用——水汽通量与水汽通量散度 [J]. 气象, 31 (6): 34-36.
    徐洪雄, 徐祥德, 张胜军, 等. 2014. 台风韦森特对季风水汽流的“转运”效应及其对北京“7·21”暴雨的影响 [J]. 大气科学, 38(3): 537-550.
    张文龙, 崔晓鹏. 2012. 近50a华北暴雨研究主要进展 [J]. 暴雨灾害, 31(4): 384-391.
    赵思雄, 孙建华, 鲁蓉, 等. 2018. “7·20”华北和北京大暴雨过程的分析 [J]. 气象, 44(3): 351-360.
    周围, 包云轩, 冉令坤, 等. 2018. 一次飑线过程对流稳定度演变的诊断分析 [J]. 大气科学, 42(2): 339-356.

Catalog

    Article views (1326) PDF downloads (1011) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return