Advanced Search
YOU Ting, ZHANG Hua, WANG Haibo, et al. 2020. Distribution of Different Cloud Types and Their Effects on Near-Surface Air Temperature during Summer Daytime in Central Eastern China [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 44(4): 835−850. DOI: 10.3878/j.issn.1006-9895.1909.19160
Citation: YOU Ting, ZHANG Hua, WANG Haibo, et al. 2020. Distribution of Different Cloud Types and Their Effects on Near-Surface Air Temperature during Summer Daytime in Central Eastern China [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 44(4): 835−850. DOI: 10.3878/j.issn.1006-9895.1909.19160

Distribution of Different Cloud Types and Their Effects on Near-Surface Air Temperature during Summer Daytime in Central Eastern China

Funds: National Key R&D Program of China (Grant 2017YFA0603502), National Natural Science Foundation of China (Grants 91644211, 41575002), Public Meteorology Special Foundation of MOST (Grant GYHY201406023)
More Information
  • Received Date: May 06, 2019
  • Available Online: September 08, 2020
  • Published Date: September 15, 2020
  • The spatial–temporal variation characteristics of the daytime cloud fraction and cloud optical thickness of various cloud types over central eastern China in summer are explored using ERA5 reanalysis data and CERES satellite data during the period of 2001–2017. The effects of various cloud types on the near-surface air temperature are quantitatively analyzed using a radiative–convective model. The observations show that the annual mean daytime total cloud fraction and its optical thickness decrease gradually from south to north, while the upper-middle cloud fraction dominates the total cloud fraction. For annual mean changing rates, the total cloud fraction shows a significant decrease of 0.3% a−1 with the largest contribution from low clouds (−0.27% a−1). The increasing trend of total cloud optical thickness ranges from 0 to 0.1 a−1, where low and lower-middle cloud optical thickness show an increase of 0.06 a−1 and 0.03 a−1, respectively, while the upper-middle and high cloud optical thickness show a decreasing trend of 0.08 a−1 and 0.03 a−1, respectively. The model results show that the annual mean CET (Cloud Effect Temperature) of the four different cloud types are negative, with values of 2.9°C, 2.7°C, 2.2°C, and 1.7°C for low, lower-middle, upper-middle, and high clouds, respectively, indicating the cooling effects of various cloud types. The low cloud CET in the North China Plain is up to −5°C, while the lower-middle and upper-middle clouds are up to −7.8°C in the Sichuan Basin and Yunnan–Guizhou Plateau. The interannual variations of CETof different cloud types and near-surface air temperature have good consistency. The near-surface air temperature decreases (increases) before (after) 2004, while the CET of different cloud types decrease (increase) during this period, which indicates good correspondence between the strengthening (weakening) of the cloud cooling effect and the decrease (increase) of the near-surface temperature. Specifically, a positive correlation of the four cloud types and near-surface air temperature over central eastern China occurs during the daytime in the summer. The annual mean daytime upper-middle cloud fraction plays an important role in all types of clouds over central eastern China in the summer, and the correlation coefficient between the CET and near-surface air temperature is as high as 0.63. In summary, the effects of different cloud types on the near-surface air temperature are different, but all show positive correlations. The quantitative analysis of the influence of different cloud types on the near-surface air temperature can provide a scientific reference for the accurate measurement of global warming, the role of cloud feedback in regional warming, and accurate prediction of regional warming scenarios.
  • Bony S, Stevens B, Frierson D M W, et al. 2015. Clouds, circulation and climate sensitivity [J]. Nature Geoscience, 8(4): 261−268. doi: 10.1038/ngeo2398
    Chen W, Dong B. 2018. Anthropogenic impacts on recent decadal change in temperature extremes over China: Relative roles of greenhouse gases and anthropogenic aerosols [J]. Climate Dynamics, 52: 3643−3660. doi: 10.1007/s00382-018-4342-9
    Curry J A, Webster P J. 2011. Climate science and the uncertainty monster [J]. Bull. Amer. Meteor. Soc., 92(12): 1667−1682. doi: 10.1175/2011bams3139.1
    Dee D P, Uppala S M, Simmons A J, et al. 2011. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system [J]. Quarterly Journal of the Royal Meteorological Society, 137: 553−597. doi: 10.1002/qj.828
    Duan Anmin, Wu Guoxiong. 2006. Change of cloud amount and the climate warming on the Tibetan Plateau [J]. Geophys. Res. Lett., 33(22): L22704. doi: 10.1029/2006gl027946
    段皎, 刘煜. 2011. 中国地区云光学厚度和云滴有效半径变化趋势 [J]. 气象科技, 39(4): 408−416. doi: 10.19517/j.1671-6345.2011.04.004

    Duan Jiao, Liu Yu. 2011. Trends of cloud optical thickness and cloud effective radius variation in China [J]. Meteorological Science and Technology (in Chinese), 39(4): 408−416. doi: 10.19517/j.1671-6345.2011.04.004
    Groisman P Y, Karl T R, Knight R W. 1994. Observed impact of snow cover on the heat balance and the rise of continental spring temperatures [J]. Science, 263(5144): 198−200. doi: 10.1126/science.263.5144.198
    Groisman P V, Genikhovich E L, Zhai P M. 1996. “Overall” cloud and snow cover effects on internal climate variables: The use of clear sky climatology [J]. Bull. Amer. Meteor. Soc., 77(9): 2055−2065. doi:10.1175/1520-0477(1996)077<2055:casceo>2.0.co;2
    Groisman P Y, Bradley R S, Sun B M. 2000. The relationship of cloud cover to near-surface temperature and humidity: Comparison of GCM simulations with empirical data [J]. J. Climate, 13(11): 1858−1878. doi:10.1175/1520-0442(2000)013<1858:trocct>2.0.co;2
    Guo Z, Zhou T J. 2015. Seasonal variation and physical properties of the cloud system over southeastern China derived from CloudSat products [J]. Advances in Atmospheric Sciences, 32(5): 659−670. doi: 10.1007/s00376-014-4070-y
    Hersbach H, Bell B, Berrisford P, et al. 2020. The ERA5 global reanalysis [J]. Quarterly Journal of the Royal Meteorological Society: 1−51. doi: 10.1002/qj.3803
    IPCC. 2013. Climate Change 2013: The Physical Science Basis [M]. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK and USAk: Cambridge University Press, 571-657.
    Klein S A, Hartmann D L. 1993. The seasonal cycle of low stratiform clouds [J]. J. Climate, 6(8): 1587−1606. doi:10.1175/1520-0442(1993)006<1587:tscols>2.0.co;2
    Lacis A A, Hansen J. 1974. A parameterization for the absorption of solar radiation in the Earth’s atmosphere [J]. J. Atmos. Sci., 31(1): 118−133. doi:10.1175/1520-0469(1974)031<0118:apftao>2.0.co;2
    Li J D, Wang C W, Dong X Q, et al. 2017. Cloud-radiation-precipitation associations over the Asian monsoon region: An observational analysis [J]. Climate Dyn., 49(9): 3237−3255. doi: 10.1007/s00382-016-3509-5
    Li Y Q, Liu X D, Chen B D. 2006. Cloud type climatology over the Tibetan Plateau: A comparison of ISCCP and MODIS/TERRA measurements with surface observations [J]. Geophysical research letters, 33(17): L17716. doi: 10.1029/2006GL026890,2006
    李昀英, 宇如聪, 徐幼平, 等. 2003. 中国南方地区层状云的形成和日变化特征分析 [J]. 气象学报, 61(6): 733−743. doi: 10.3321/j.issn:0577-6619.2003.06.010

    Li Yunying, Yu Rucong, Xu Youping, et al. 2003. The formation and diurnal changes of stratiform clouds in southern China [J]. Acta Meteorologica Sinica (in Chinese), 61(6): 733−743. doi: 10.3321/j.issn:0577-6619.2003.06.010
    Li Y Y, Yu R C, Xu Y P, et al. 2004. Spatial distribution and seasonal variation of cloud over China based on ISCCP data and surface observations [J]. J. Meteor. Soc. Jpn., 82(2): 761−773. doi: 10.2151/jmsj.2004.761
    Liou K N, Ou S C S. 1983. Theory of equilibrium temperatures in radiative-turbulent atmospheres [J]. Journal of the Atmospheric Sciences, 40(1): 214−229. doi:10.1175/1520-0469(1983)040<0214:toetir>2.0.co;2
    刘洪利, 朱文琴, 宜树华, 等. 2003. 中国地区云的气候特征分析 [J]. 气象学报, 61(4): 466−518. doi: 10.3321/j.issn:0577-6619.2003.04.008

    Liu Hongli, Zhu Wenqin, Yi Shuhua, et al. 2003. Climate analysis of the cloud over China [J]. Acta Meteorologica Sinica (in Chinese), 61(4): 466−518. doi: 10.3321/j.issn:0577-6619.2003.04.008
    刘奇, 傅云飞, 冯沙. 2010. 基于ISCCP观测的云量全球分布及其在NCEP再分析场中的指示 [J]. 气象学报, 68(5): 689−704. doi: 10.11676/qxxb2010.067

    Liu Qi, Fu Yunfei, Feng Sha. 2010. Geographical patterns of the cloud amount derived from the ISCCP and their correlation with the NCEP reanalysis datasets [J]. Acta Meteorologica Sinica (in Chinese), 68(5): 689−704. doi: 10.11676/qxxb2010.067
    柳艳菊, 丁一汇. 2007. 亚洲夏季风爆发的基本气候特征分析 [J]. 气象学报, 65(4): 511−526. doi: 10.3321/j.issn:0577-6619.2007.04.005

    Liu Yanju, Ding Yihui. 2007. Analysis of the basic features of the onset of Asian summer monsoon [J]. Acta Meteorologica Sinica (in Chinese), 65(4): 511−526. doi: 10.3321/j.issn:0577-6619.2007.04.005
    刘玉芝, 石广玉, 赵剑琦. 2007. 一维辐射对流模式对云辐射强迫的数值模拟研究 [J]. 大气科学, 31(3): 486−494. doi: 10.3878/j.issn.1006-9895.2007.03.12

    Liu Yuzi, Shi Guangyu, Zhao Jianqi. 2007. A study of the radiative forcing of clouds by using a one-dimensional radiative-convective model [J]. Chinese J. Atmos. Sci. (in Chinese), 31(3): 486−494. doi: 10.3878/j.issn.1006-9895.2007.03.12
    Mace G G, Benson-Troth S. 2002. Cloud-layer overlap characteristics derived from long-term cloud radar data [J]. J Climate, 15(17): 2505−2515. doi:10.1175/1520-0442(2002)015<2505:clocdf>2.0.co;2
    Ramanathan V, Cess R D, Harrison E F, et al. 1989. Cloud-radiative forcing and climate: Results from the Earth radiation budget experiment [J]. Science, 243(4887): 57−63. doi: 10.1126/science.243.4887.57
    Randall D A, Coakley A J Jr, Fairall C W, et al. 1984. Outlook for research on subtropical marine stratiform clouds [J]. Bull. Amer. Meteor. Soc., 65(12): 1290−1301. doi:10.1175/1520-0477(1984)065<1290:ofrosm>2.0.co;2
    石广玉. 1991. 大气微量气体的辐射强迫与温室气候效应 [J]. 中国科学(B辑), 34(7): 776−784. doi: 10.3321/j.issn:1006-9240.1991.07.002

    Shi Guangyu. 1991. Radiative forcing and greenhouse effect due to the atmospheric trace gases [J]. Science in China (Series B)(in Chinese), 34(7): 776−784. doi: 10.3321/j.issn:1006-9240.1991.07.002
    石广玉. 1992. CFCs及其代用品的全球增温潜能 [J]. 大气科学, 16(3): 345−352. doi: 10.3878/j.issn.1006-9895.1992.03.11

    Shi Guangyu. 1992. Global warming potential due to CFCs and their substitutes [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 16(3): 345−352. doi: 10.3878/j.issn.1006-9895.1992.03.11
    石广玉. 1998. 大气辐射计算的吸收系数分布模式 [J]. 大气科学, 22(4): 277−294. doi: 10.3878/j.issn.1006-9895.1998.04.25

    Shi Guangyu. 1998. On the k-distribution and correlated k distribution models in the atmospheric radiation calculations [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 22(4): 277−294. doi: 10.3878/j.issn.1006-9895.1998.04.25
    石广玉. 2007. 大气辐射学 [M]. 北京: 科学出版社, 239-248.

    Shi Guangyu. 2007. Atmospheric Radiation (in Chinese) [M]. Beijing: Science Press, 239-248.
    Stephens G L. 1978. Radiation profiles in extended water clouds. I: Theory [J]. Journal of the Atmospheric Sciences, 78(35): 2111−2122. doi:10.1175/1520-0469(1978)035<2111:RPIEWC>2.0.CO;2
    Stephens G L. 2005. Cloud feedbacks in the climate system: A critical review [J]. Journal of Climate, 18(2): 237−273. doi: 10.1175/jcli-3243.1
    Sun B, Groisman P Y, Bradley R S, et al. 2000. Temporal changes in the observed relationship between cloud cover and surface air temperature [J]. Journal of Climate, 13(24): 4341−4357. doi:10.1175/1520-0442(2000)013<4341:tcitor>2.0.co;2
    Tang Q H, Leng G Y. 2012. Damped summer warming accompanied with cloud cover increase over Eurasia from 1982 to 2009 [J]. Environmental Research Letters, 7(1): 014004. doi: 10.1088/1748-9326/7/1/014004
    Tang Q, Leng G Y. 2013. Changes in cloud cover, precipitation, and summer temperature in North America from 1982 to 2009 [J]. Journal of Climate, 26(5): 1733−1744. doi: 10.1175/jcli-d-12-00225.1
    Warren S G, Eastman R M, Hahn C J. 2007. A survey of changes in cloud cover and cloud types over land from surface observations, 1971-96 [J]. Journal of Climate, 20(4): 717−738. doi: 10.1175/jcli4031.1
    Wielicki B A, Barkstrom B R, Baum B A, et al. 1998. Clouds and the Earth's Radiant Energy System (CERES): Algorithm overview [J]. IEEE Transactions on Geoscience and Remote Sensing, 36(4): 1127−1141. doi: 10.1109/36.701020
    Wu G X, Liu Y M, He B, et al. 2012. Thermal controls on the Asian summer monsoon [J]. Scientific Reports, 2: 404. doi: 10.1038/srep00404
    Yan H R, Huang J P, Minnis P, et al. 2011. Comparison of CERES surface radiation fluxes with surface observations over Loess Plateau [J]. Remote Seneing of Environment, 115(6): 1489−1500. doi: 10.1016/j.rse.2011.02.008
    Yu R C, Wang B, Zhou T J. 2004. Climate effects of the deep continental stratus clouds generated by the Tibetan Plateau [J]. Journal of Climate, 17(13): 2702−2713. doi:10.1175/1520-0442(2004)017<2702:ceotdc>2.0.co;2
    于秀兰, 石广玉. 2001. 平流层温度调整后的辐射强迫的简化计算 [J]. 高原气象, 20(3): 271−274. doi: 10.3321/j.issn:1000-0534.2001.03.008

    Yu Xiulan, Shi Guangyu. 2001. Simplified calculation of radiative forcing with adjusted stratosphere temperature [J]. Plateau Meteorology (in Chinese), 20(3): 271−274. doi: 10.3321/j.issn:1000-0534.2001.03.008
    张华, 荆现文. 2016. 气候模式中云的垂直重叠及其辐射传输问题研究进展 [J]. 气象学报, 74(01): 103−113. doi: 10.11676/qxxb2016.009

    Zhang Hua, Jing Xianwen. 2016. Advances in studies of cloud overlap and its radiative transfer issues in the climate models [J]. Acta Meteor Sinica (in Chinese), 74(01): 103−113. doi: 10.11676/qxxb2016.009
    张华, 谢冰, 刘煜, 等. 2017. 东亚地区云对地球辐射收支和降水变化的影响研究 [J]. 中国基础科学, 19(5): 18−22, 28. doi: 10.3969/j.issn.1009-2412.2017.05.004

    Zhang Hua, Xie Bing, Liu Yu, et al. 2017. Study on the influence of clouds on the Earth radiation budget and precipitation changes in East Asia region [J]. China Basic Science (in Chinese), 19(5): 18−22, 28. doi: 10.3969/j.issn.1009-2412.2017.05.004
    张华, 杨冰韵, 彭杰, 等. 2015. 东亚地区云微物理量分布特征的CloudSat卫星观测研究 [J]. 大气科学, 39(2): 235−248. doi: 10.3878/j.issn.1006-9895.1408.13313

    Zhang Hua, Yang Bingyun, Peng Jie, et al. 2015. The characteristics of cloud microphysical properties in East Asia with the CloudSat dataset [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 39(2): 235−248. doi: 10.3878/j.issn.1006-9895.1408.13313
    Zhang X T, Liang S L, Wang G X, et al. 2016. Evaluation of the reanalysis surface incident shortwave radiation products from NCEP, ECMWF, GSFC, and JMA using satellite and surface observations [J]. Remote Sensing, 8(3): 225. doi: 10.3390/rs8030225
    周喜讯, 张华, 荆现文. 2016. 中国地区云量和云光学厚度的分布与变化趋势 [J]. 大气与环境光学学报, 11(1): 1−13. doi: 10.3969/j.issn:1673-6141.2016.01.001

    Zhou Xixun, Zhang Hua, Jing Xianwen. 2016. Distribution and variation trends of cloud amount and optical thickness over China [J]. J. Atmos. Environ. Opt. (in Chinese), 11(1): 1−13. doi: 10.3969/j.issn:1673-6141.2016.01.001

Catalog

    Article views (582) PDF downloads (195) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return