Advanced Search
WANG Dongfang, SUN Zhuling, YUAN Shanfeng, et al. 2020. Beijing Broadband Lightning NETwork and the Spatiotemporal Evolution of Lightning Flashes during a Thunderstorm [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 44(4): 851−864. DOI: 10.3878/j.issn.1006-9895.1910.19161
Citation: WANG Dongfang, SUN Zhuling, YUAN Shanfeng, et al. 2020. Beijing Broadband Lightning NETwork and the Spatiotemporal Evolution of Lightning Flashes during a Thunderstorm [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 44(4): 851−864. DOI: 10.3878/j.issn.1006-9895.1910.19161

Beijing Broadband Lightning NETwork and the Spatiotemporal Evolution of Lightning Flashes during a Thunderstorm

Funds: National Natural Science Foundation of China (Grants 41630425, 41875008), International (Regional) Cooperation and Exchange Project (Grant 41761144074)
More Information
  • Received Date: May 22, 2019
  • Available Online: September 08, 2020
  • Published Date: September 15, 2020
  • The Beijing Broadband Lightning NETwork (BLNET) is a regional total flashes 3D (three-dimensional) location network that combines research and business. In 2015, the BLNET hardware, station network layout, and location algorithm were updated and upgraded to improve the sensitivity of the sensor and improve computational efficiency and detection performance. BLNET features the functions of IC (Intra-Cloud) flashes, CG (Cloud-to-Ground) flash-pulse-type identification, and current peak estimation, as well as 3D real-time location of lightning radiation pulses and the fine location of the channel-resolvable lightning discharge process. The analysis of the real-time 3D location results for the lightning radiation source pulse during the thunderstorm that occurred on 7 July 2017 shows a total of 11,902 lightning flashes during the thunderstorm process. Most of these flashes were dominated by IC flashes, with CG flashes accounting for just 28% of the total. PCG (Positive Cloud-to-Ground) flashes account for only 5% of the total number of CG flashes. During the mature period of the thunderstorm, the maximum lightning frequency was 927 flashes (6 min)−1. By comparing and analyzing the location of the lightning radiation source and the radar echo at the corresponding time, the radiation source was found to be basically concentrated in the strong echo range. The fine location results of the PCG flashes indicate that the initial stage involved a clear pre-breakdown process. The origin of the lightning radiation source was about 5.4 km above sea level, and then the channel developed upward. At about 10 km, the channel began to exhibit a horizontal development. The fine location results of the NCG (Negative Cloud-to-Ground) flashes indicate that the discharge first originated from a height of about 7.1 km, then the channel developed to the south, and some negative pilot branches developed downward. After about 38 ms, the channel stopped developing for a short time. After 17 ms, the channel development began again and the air was re-energized. The above results show that BLNET can locate and monitor 3D real-time lightning activity of the whole thunderstorm life history, as well as obtain the fine location of the lightning 3D discharge channel.
  • Betz H D, Schmidt K, Laroche P, et al. 2009. LINET—An international lightning detection network in Europe [J]. Atmospheric Research, 91(2−4): 564−573. doi: 10.1016/j.atmosres.2008.06.012
    Biagi C J, Cummins K L, Kehoe K E, et al. 2007. National Lightning Detection Network (NLDN) performance in southern Arizona, Texas, and Oklahoma in 2003−2004 [J]. J. Geophys. Res., 112(D5): D05208. doi: 10.1029/2006JD007341
    曹冬杰, 郄秀书, 杨静, 等. 2011. 闪电初始放电阶段亚微秒电场变化波形特征 [J]. 大气科学, 35(4): 645−656. doi: 10.3878/j.issn.1006-9895.2011.04.05

    Cao Dongjie, Qie Xiushu, Yang Jing, et al. 2011. Analysis on characteristics of sub-microsecond electric field change waveform during the initial stage of lightning discharge [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 35(4): 645−656. doi: 10.3878/j.issn.1006-9895.2011.04.05
    Chronis T G, Anagnostou E N. 2003. Error analysis for a long-range lightning monitoring network of ground-based receivers in Europe [J]. J. Geophys. Res., 108(D24): 4779. doi: 10.1029/2003JD003776
    Chronis T G, Anagnostou E N. 2006. Evaluation of a long-range lightning detection network with receivers in Europe and Africa [J]. IEEE Trans. Geosci. Remote Sens., 44(6): 1504−1510. doi: 10.1109/TGRS.2006.871217
    Cummins K L, Cramer J A, Biagi C J, et al. 2006. The U.S. National Lightning Detection Network: Post-upgrade status [C]//Proceedings of the Second Conference on Meteorological Applications of Lightning Data. Atlanta, GA: American Meteorological Society.
    Fan X P, Zhang Y J, Zheng D, et al. 2018. A new method of three-dimensional location for low-frequency electric field detection array [J]. J. Geophys. Res., 123(16): 8792−8812. doi: 10.1029/2017JD028249
    樊艳峰, 陆高鹏, 蒋如斌, 等. 2017. 利用低频磁场天线遥感测量人工引雷中的初始连续电流 [J]. 大气科学, 41(5): 1027−1036. doi: 10.3878/j.issn.1006-9895.1702.16248

    Fan Yanfeng, Lu Gaopeng, Jiang Rubin, et al. 2017. Application of low-frequency magnetic sensor for remote measurement of the initial continuous current in rocket-triggering lightning [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 41(5): 1027−1036. doi: 10.3878/j.issn.1006-9895.1702.16248
    Hamlin T D. 2004. The New Mexico tech lightning mapping array [D]. Ph. D. dissertation, New Mexico Institute of Mining and Technology.
    Jerauld J, Rakov V A, Uman M A, et al. 2005. An evaluation of the performance characteristics of the U.S. National Lightning Detection Network in Florida using rocket-triggered lightning [J]. J. Geophys. Res., 110(D19): D19106. doi: 10.1029/2005JD005924
    Krehbiel P R, Thomas R J, Rison W, et al. 2000. Lightning mapping observations in central Oklahoma [J]. EOS, 81(3): 21−25. doi: 10.1029/00EO00014
    Lagouvardos K, Kotroni V, Betz H D, et al. 2009. A comparison of lightning data provided by ZEUS and LINET networks over western Europe [J]. Natural Hazards and Earth System Sciences, 9(5): 1713−1717. doi: 10.5194/nhess-9-1713-2009
    Lhermitte R, Krehbiel P R. 1979. Doppler radar and radio observations of thunderstorms [J]. IEEE Transactions on Geoscience Electronics, 17(4): 162−171. doi: 10.1109/TGE.1979.294644
    黎勋, 郄秀书, 刘昆, 等. 2017. 基于高时间分辨率快电场变化资料的北京地区地闪回击统计特征 [J]. 气候与环境研究, 22(2): 231−241. doi: 10.3878/j.issn.1006-9585.2016.16007

    Li Xun, Qie Xiushu, Liu Kun, et al. 2017. Characteristics of cloud-to-ground lightning return strokes in Beijing based on high temporal resolution data of fast electric field change [J]. Climatic and Environmental Research (in Chinese), 22(2): 231−241. doi: 10.3878/j.issn.1006-9585.2016.16007
    Li Y J, Zhang G S, Wen J, et al. 2012. Spatial and temporal evolution of a multi-cell thunderstorm charge structure in coastal areas [J]. Chinese Journal of Geophysics, 55(5): 498−508. doi: 10.1002/cjg2.1745
    Li Y J, Zhang G S, Wen J, et al. 2013. Electrical structure of a Qinghai-Tibet Plateau thunderstorm based on three-dimensional lightning mapping [J]. Atmospheric Research, 134: 137−149. doi: 10.1016/j.atmosres.2013.07.020
    刘恒毅, 董万胜, 蔡力, 等. 2019. 一套双频段三维全闪电定位系统及其初步观测结果 [J]. 中国电机工程学报, 39(12): 3561−3569. doi: 10.13334/j.0258-8013.pcsee.181285

    Liu Hengyi, Dong Wansheng, Cai Li, et al. 2019. Initial results of a dual band 3-D lightning locating system [J]. Proceedings of the CSEE (in Chinese), 39(12): 3561−3569. doi: 10.13334/j.0258-8013.pcsee.181285
    Lu G P, Cummer S A, Li J B, et al. 2013. Coordinated observations of sprites and in-cloud lightning flash structure [J]. J. Geophys. Res., 118(12): 6607−6632. doi: 10.1002/jgrd.50459
    Lu G P, Jiang R B, Qie X S, et al. 2014. Burst of intracloud current pulses during the initial continuous current in a rocket-triggered lightning flash [J]. Geophys. Res. Lett., 41(24): 9174−9181. doi: 10.1002/2014GL062127
    Maier L, Lennon C, Britt T, et al. 1995. Lightning Detection and Ranging (LDAR) system performance analysis [C]//Proceedings of the 6th Conference on Aviation Weather Systems. Dallas, Texas: American Meteorological Society.
    Poehler H, Lennon C. 1979. Lightning Detection and Ranging (LDAR) system description & performance objectives [J]. NASA Technical Memorandum, 74106: 86.
    Rison W, Thomas R, Krehbiel P R, et al. 1999. A GPS-based three-dimensional lightning mapping system: Initial observations in central New Mexico [J]. Geophys. Res. Lett., 26(23): 3573−3576. doi: 10.1029/1999GL010856
    Shao X M, Stanley M, Regan A, et al. 2006. Total lightning observations with the new and improved Los Alamos Sferic Array (LASA) [J]. J. Atmos. Oceanic Technol., 23(10): 1273−1288. doi: 10.1175/JTECH1908.1
    Srivastava A, Tian Y, Qie X S, et al. 2017. Performance assessment of Beijing Lightning Network (BLNET) and comparison with other lightning location networks across Beijing [J]. Atmospheric Research, 197: 76−83. doi: 10.1016/j.atmosres.2017.06.026
    孙凌, 陈志雄, 徐燕, 等. 2019. 北京一次强飑线过程的闪电辐射源演变特征及其与对流区域和地面热力条件的关系 [J]. 大气科学, 43(4): 759−772. doi: 10.3878/j.issn.1006-9895.1805.18128

    Sun Ling, Chen Zhixiong, Xu Yan, et al. 2019. Evolution of lightning radiation sources of a strong squall line over Beijing metropolitan region and its relation to convection region and surface thermodynamic condition [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 43(4): 759−772. doi: 10.3878/j.issn.1006-9895.1805.18128
    孙萌宇, 郄秀书, 孙凌, 等. 2020. 北京城区相继多次降雹的一次强雷暴的闪电特征 [J]. 大气科学, 44(3): 601−610. doi: 10.3878/j.issn.1006-9895.1910.19134

    Sun Mengyu, Qie Xiushu, Sun Ling, et al. 2020. Lightning activity of a severe thunderstorm with several hail-fall stages in Beijing metropolitan region [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 44(3): 601−610. doi: 10.3878/j.issn.1006-9895.1910.19134
    Sun Z L, Qie X S, Liu M Y, et al. 2013. Lightning VHF radiation location system based on short-baseline TDOA technique—Validation in rocket-triggered lightning [J]. Atmospheric Research, 129-130: 58−66. doi: 10.1016/j.atmosres.2012.11.010
    Thomas R J, Krehbiel P R, Rison W, et al. 2004. Accuracy of the lightning mapping array [J]. J. Geophys. Res., 109(D14): D14207. doi: 10.1029/2004JD004549
    Uman M A, McLain D K, Krider E P. 1975. The electromagnetic radiation from a finite antenna [J]. Am. J. Phys., 43(1): 33−38. doi: 10.1119/1.10027
    Uman M A, Beasley W H, Tiller J A, et al. 1978. An unusual lightning flash at Kennedy Space Center [J]. Science, 201(4350): 9−16. doi: 10.1126/science.201.4350.9
    徐燕, 孙竹玲, 周筠珺, 等. 2018. 一次具有对流合并现象的强飑线系统的闪电活动特征及其与动力场的关系 [J]. 大气科学, 42(6): 1393−1406.
    Xu Yan, Sun Zhuling, Zhou Yunjun, et al. 2008. Lightning activity of a severe squall line with cell merging process and its relationships with dynamic fields [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 42(6): 1393−1406. doi: 10.3878/j.issn.1006-9895.1801.17220
    王东方, 郄秀书, 袁铁, 等. 2009. 利用快电场变化脉冲定位进行云闪初始放电过程的研究 [J]. 气象学报, 67(1): 165−174. doi: 10.3321/j.issn:0577-6619.2009.01.017

    Wang Dongfang, Qie Xiushu, Yuan Tie, et al. 2009. An analysis on the initial stage of intracloud lightning with the location technique of fast electric field change pulses [J]. Acta Meteor. Sinica (in Chinese), 67(1): 165−174. doi: 10.3321/j.issn:0577-6619.2009.01.017
    王东方, 郄秀书, 袁善锋, 等. 2020. 北京地区的闪电时空分布特征及不同强度雷暴的贡献 [J]. 大气科学, 44(2): 225−238.

    Wang Dongfang, Qie Xiushu, Yuan Shanfeng, et al. 2020. Spatial and temporal distribution of lightning activity and contribution of thunderstorms with different lightning-producing capabilities in Beijing metropolitan region [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 44(2): 225−238.
    王宇, 郄秀书, 王东方, 等. 2015. 北京闪电综合探测网(BLNET): 网络构成与初步定位结果 [J]. 大气科学, 39(3): 571−582. doi: 10.3878/j.issn.1006-9895.1407.14138

    Wang Yu, Qie Xiushu, Wang Dongfang, et al. 2015. Beijing Lightning NETwork (BLNET): Configuration and preliminary results of lightning location [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 39(3): 571−582. doi: 10.3878/j.issn.1006-9895.1407.14138
    Wang Y, Qie X S, Wang D F, et al. 2016. Beijing Lightning Network (BLNET) and the observation on preliminary breakdown processes [J]. Atmospheric Research, 171: 121−132. doi: 10.1016/j.atmosres.2015.12.012
    Wu B, Zhang G S, Wen J, et al. 2016. Correlation analysis between initial preliminary breakdown process, the characteristic of radiation pulse, and the charge structure on the Qinghai-Tibetan Plateau [J]. J. Geophys. Res., 121(20): 12434−12459. doi: 10.1002/2016JD025281
    Zhang G S, Wang Y H, Qie X S, et al. 2010. Using lightning locating system based on time-of-arrival technique to study three-dimensional lightning discharge processes [J]. Sci. China Earth Sci., 53(4): 591−602. doi: 10.1007/s11430-009-0116-x
    Zhang H B, Lu G P, Qie X S, et al. 2016. Locating narrow bipolar events with single-station measurement of low-frequency magnetic fields [J]. J. Atmos. Sol. Terr. Phy., 143−144: 88−101. doi: 10.1016/j.jastp.2016.03.009

Catalog

    Article views (640) PDF downloads (185) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return