Advanced Search
Volume 45 Issue 1
Jan.  2021
Turn off MathJax
Article Contents
WU Zhipeng, LI Yueqing, LI Xiaolan, et al. 2021. Influence of Different Planetary Boundary Layer Parameterization Schemes on the Simulation of Precipitation Caused by Southwest China Vortex in Sichuan Basin Based on the WRF Model [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 45(1): 58−72 doi: 10.3878/j.issn.1006-9895.2005.19171
Citation: WU Zhipeng, LI Yueqing, LI Xiaolan, et al. 2021. Influence of Different Planetary Boundary Layer Parameterization Schemes on the Simulation of Precipitation Caused by Southwest China Vortex in Sichuan Basin Based on the WRF Model [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 45(1): 58−72 doi: 10.3878/j.issn.1006-9895.2005.19171

Influence of Different Planetary Boundary Layer Parameterization Schemes on the Simulation of Precipitation Caused by Southwest China Vortex in Sichuan Basin Based on the WRF Model

doi: 10.3878/j.issn.1006-9895.2005.19171
Funds:  National Natural Science Foundation of China (Grants 91937301, 42030611), The Second Tibetan Plateau Scientific Expedition and Research (STEP) Program (Grants 2019QZKK0103, 2019QZKK0105); Cooperation Project between Sichuan Provincial Meteorological Bureau and Nanjing University of Information Science–Technology (Grant SCJXHZ03); Sichuan Provincial Science and Technology Project (Grant 2016JY0046)
  • Received Date: 2019-06-13
  • Accepted Date: 2020-06-10
  • Available Online: 2020-06-11
  • Publish Date: 2021-01-19
  • Five planetary boundary layer (PBL) parameterization schemes [Yonsei University (YSU), Mellor–Yamada–Janjic (MYJ), Mellor–Yamada–Nakanishi–Niino Level 2.5 (MYNN2), Shin-Hong (SH), and the asymmetric convective model, version 2 (ACM2)] in the Weather Research and Forecast model (WRF v4.0), were used to simulate all well-developed Southwest China vortex (SWCV) processes in the eastern Sichuan basin in 2016. Each level of precipitation prediction was verified, and the L-band radiosonde data with temporal resolution of 1 s were used to reveal the fine structure of the PBL during a midday. The differences between the observation and simulation are assessed, and the reasons are discussed based on the characteristics of the turbulence algorithm used in each scheme. Finally, the parameter of turbulence intensity was adjusted for the ACM2 scheme to improve the structure of the PBL that influences the simulation of the precipitation in the eastern Sichuan basin. The results show that the ACM2 and YSU schemes show a relatively better TS performance. Compared with other schemes, ACM2 has fewer false alarms. The attribute of ACM2 that can modify local or nonlocal algorithms according to the stability of the surrounding environment seems to be more suitable for the Sichuan basin precipitation simulation than the other schemes. However, all PBL schemes show a high false-alarm rate in the prediction of the SWCV precipitation, especially when the precipitation is heavy. The sounding data with 1 s temporal and 3 m spatial resolution further show that all the PBL schemes predict a higher PBL height compared with that of the observations, which means that the simulation has a stronger mixing intensity compared with that of the real atmosphere. By parameter adjustment, using the ACM2 scheme with reduced mixing intensity, the potential temperature and humidity structure in PBL are more aligned with the observations. Further, the potential temperature of the low PBL is low, humidity is high, and false alarm reports of heavy precipitation are reduced, which leads to an improvement regarding the precipitation simulation in the Sichuan basin. The different characters of the PBL schemes that are used in the simulation of the SWCV mainly lead to different positions of the vortex and precipitation intensity. Essentially, these characters are derived from a local or nonlocal attribute and the intensity of vertical mixing. A selection based on regional features of a research object is the key to the accurate simulation of a PBL structure and precipitation process.
  • loading
  • [1]
    Bougeault P, Lacarrere P. 1989. Parameterization of orography-induced turbulence in a mesobeta-scale model [J]. Mon. Wea. Rev., 117(8): 1872−1890. doi:10.1175/1520-0493(1989)117<1872:POOITI>2.0.CO;2
    [2]
    陈良吕, 杜钦. 2016. SWC-WARMS在重庆地区的降水预报性能分析 [J]. 高原山地气象研究, 36(3): 1−6.

    Chen Lianglü, Du Qin. 2016. Analysis on the precipitation forecast performance of SWC-WARMS model in Chongqing [J]. Plateau and Mountain Meteorology Research (in Chinese), 36(3): 1−6.
    [3]
    Cheng Xiaolong, Li Yueqing, Xu Li. 2016. An analysis of an extreme rainstorm caused by the interaction of the Tibetan Plateau vortex and the Southwest China vortex from an intensive observation [J]. Meteor. Atmos. Phys., 128(3): 373−399. doi: 10.1007/s00703-015-0420-2
    [4]
    Cohen A E, Cavallo S M, Coniglio M C, et al. 2015. A review of planetary boundary layer parameterization schemes and their sensitivity in simulating southeastern U.S. cold season severe weather environments [J]. Wea. Forecasting, 30(3): 591−612. doi: 10.1175/WAF-D-14-00105.1
    [5]
    Coniglio M C, Correia Jr J, Marsh P T, et al. 2013. Verification of convection-allowing WRF model forecasts of the planetary boundary layer using sounding observations [J]. Wea. Forecasting, 28(3): 842−862. doi: 10.1175/WAF-D-12-00103.1
    [6]
    Feng Xinyuan, Liu Changhai, Fan Guangzhou, et al. 2016. Climatology and structures of southwest vortices in the NCEP climate forecast system reanalysis [J]. J. Climate, 29(21): 7675−7701. doi: 10.1175/JCLI-D-15-0813.1
    [7]
    Fu Shenming, Li Wanli, Sun Jianhua, et al. 2015. Universal evolution mechanisms and energy conversion characteristics of long-lived mesoscale vortices over the Sichuan basin [J]. Atmospheric Science Letters, 16(2): 127−134. doi: 10.1002/asl2.533
    [8]
    高笃鸣, 李跃清, 蒋兴文, 等. 2016. WRF模式多种边界层参数化方案对四川盆地不同量级降水影响的数值试验 [J]. 大气科学, 40(2): 371−389. doi: 10.3878/j.issn.1006-9895.1503.14323

    Gao Duming, Li Yueqing, Jiang Xingwen, et al. 2016. Influence of planetary boundary layer parameterization schemes on the prediction of rainfall with different magnitudes in the Sichuan basin using the WRF model [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 40(2): 371−389. doi: 10.3878/j.issn.1006-9895.1503.14323
    [9]
    Hacker J P. 2010. Spatial and temporal scales of boundary layer wind predictability in response to small-amplitude land surface uncertainty [J]. J. Atmos. Sci., 67(1): 217−233. doi: 10.1175/2009JAS3162.1
    [10]
    Hong Songyou, Noh Y, Dudhia J. 2006. A new vertical diffusion package with an explicit treatment of entrainment processes [J]. Mon. Wea. Rev., 134(9): 2318−2341. doi: 10.1175/MWR3199.1
    [11]
    Hu Xiaoming, Nielsen-Gammon J W, Zhang Fuqing. 2010. Evaluation of three planetary boundary layer schemes in the WRF model [J]. Journal of Applied Meteorology and Climatology, 49(9): 1831−1844. doi: 10.1175/2010JAMC2432.1
    [12]
    Janjić Z I. 2001. Nonsingular implementation of the Mellor-Yamada level 2.5 scheme in the NCEP meso model [R]. NCEP Office Note, 437.
    [13]
    Jiang Ping, Liu Xiaoran, Zhu Haonan, et al. 2019. Features of urban heat island in mountainous Chongqing from a dense surface monitoring network [J]. Atmosphere, 10(2): 67. doi: 10.3390/atmos10020067
    [14]
    李超, 李跃清, 蒋兴文. 2015. 四川盆地低涡的月际变化及其日降水分布统计特征 [J]. 大气科学, 39(6): 1191−1203. doi: 10.3878/j.issn.1006-9895.1502.14270

    Li Chao, Li Yueqing, Jiang Xinwen. 2015. Statistical characteristics of the inter-monthly variation of the Sichuan Basin vortex and the distribution of daily precipitation [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 39(6): 1191−1203. doi: 10.3878/j.issn.1006-9895.1502.14270
    [15]
    李斐, 邹捍, 周立波, 等. 2017. WRF模式中边界层参数化方案在藏东南复杂下垫面适用性研究 [J]. 高原气象, 36(2): 340−357. doi: 10.7522/j.issn.1000-0534.2016.00041

    Li Fei, Zou Han, Zhou Libo, et al. 2017. Study of boundary layer parameterization schemes' applicability of WRF model over complex underlying surfaces in southeast Tibet [J]. Plateau Meteorology (in Chinese), 36(2): 340−357. doi: 10.7522/j.issn.1000-0534.2016.00041
    [16]
    李国平. 2002. 青藏高原动力气象学 [M]. 北京: 气象出版社, 23–26.

    Li Guoping. 2002. Dynamic Meteorology of the Tibetan Plateau (in Chinese) [M]. Beijing: China Meteorological Press, 23–26.
    [17]
    李跃清. 1996. 长江上游暴雨的边界层动力诊断研究 [J]. 大气科学, 20(1): 73−78. doi: 10.3878/j.issn.1006-9895.1996.01.09

    Li Yueqing. 1996. The PBL dynamic diagnosis of heavy rain over the upper reaches of the Changjiang River [J]. Chinese Journal of Atmospheric Sciences (Scientia Atmospherica Sinica) (in Chinese), 20(1): 73−78. doi: 10.3878/j.issn.1006-9895.1996.01.09
    [18]
    李跃清. 2000. 1998年青藏高原东侧边界层风场与长江暴雨洪水的关系 [J]. 大气科学, 24(5): 641−648. doi: 10.3878/j.issn.1006-9895.2000.05.08

    Li Yueqing. 2000. The PBL wind field at the eastern edge of the Tibetan Plateau and its relations with heavy rain-flood of the Changjiang River in 1998 [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 24(5): 641−648. doi: 10.3878/j.issn.1006-9895.2000.05.08
    [19]
    李跃清. 2018. 西南低涡年鉴(2016) [M]. 北京: 科学出版社, 1–219.

    Li Yueqing. 2018. Southwest China Vortex Yearbook 2016 (in Chinese) [M]. Beijing: Science Press, 1–219.
    [20]
    李跃清, 徐祥德. 2016. 西南涡研究和观测试验回顾及进展 [J]. 气象科技进展, 6(3): 134−140.

    Li Yueqing, Xu Xiangde. 2016. A review of the research and observing experiment on southwest China vortex [J]. Advances in Meteorological Science and Technology (in Chinese), 6(3): 134−140.
    [21]
    卢敬华. 1986. 西南低涡概论 [M]. 北京: 气象出版社, 63–64.

    Lu Jinghua. 1986. The Introduction of Southwest Vortex (in Chinese) [M]. Beijing: China Meteorological Press, 63–64.
    [22]
    卢萍, 李跃清, 郑伟鹏, 等. 2014. 影响华南持续性强降水的西南涡分析和数值模拟 [J]. 高原气象, 33(6): 1457−1467. doi: 10.7522/j.issn.1000-0534.2013.00137

    Lu Ping, Li Yueqing, Zheng Weipeng, et al. 2014. Analysis and numerical simulation of southwest vortex on continuous heavy rain processes in South China [J]. Plateau Meteorology (in Chinese), 33(6): 1457−1467. doi: 10.7522/j.issn.1000-0534.2013.00137
    [23]
    慕丹, 李跃清. 2018. 基于ERA-interim再分析资料的近30年九龙低涡气候特征 [J]. 气象学报, 76(1): 15−31. doi: 10.11676/qxxb2017.077

    Mu Dan, Li Yueqing. 2018. Climatic characteristics of the Jiulong low vortex in recent 30 years based on the ERA-interim reanalysis data [J]. Acta Meteor. Sinica (in Chinese), 76(1): 15−31. doi: 10.11676/qxxb2017.077
    [24]
    Nakanishi M, Niino H. 2006. An improved Mellor–Yamada level-3 model: Its numerical stability and application to a regional prediction of advection fog [J]. Bound.-Layer Meteor., 119(2): 397−407. doi: 10.1007/s10546-005-9030-8
    [25]
    Nielsen-Gammon J W, Hu Xiaoming, Zhang Fuqing, et al. 2010. Evaluation of planetary boundary layer scheme sensitivities for the purpose of parameter estimation [J]. Mon. Wea. Rev., 138(9): 3400−3417. doi: 10.1175/2010MWR3292.1
    [26]
    Pleim F E. 2007. A combined local and nonlocal closure model for the atmospheric boundary layer. Part Ⅱ: Application and evaluation in a mesoscale meteorological model [J]. Journal of Applied Meteorology and Climatology, 46(9): 1396−1409. doi: 10.1175/JAM2534.1
    [27]
    盛裴轩, 毛节泰, 李建国, 等. 2013. 大气物理学 [M]. 北京: 北京大学出版社.

    Sheng Peixuan, Mao Jietai, Li Jianguo, et al. 2013. Atmospheric Physics (in Chinese) [M]. Beijing: Beijing University Press 239-272.
    [28]
    Shin H H, Hong S Y. 2015. Representation of the subgrid-scale turbulent transport in convective boundary layers at gray-zone resolutions [J]. Mon. Wea. Rev., 143(1): 250−271. doi: 10.1175/MWR-D-14-00116.1
    [29]
    Stensrud D J. 2007. Parameterization Schemes: Keys to Understanding Numerical Weather Prediction Models [M]. Cambridge: Cambridge University Press, 459pp. doi: 10.1017/CBO9780511812590
    [30]
    Stull R B. 1988. An Introduction to Boundary Layer Meteorology [M]. Dordrecht: Springer, 666pp. doi: 10.1007/978-94-009-3027-8
    [31]
    Troen I B, Mahrt L. 1986. A simple model of the atmospheric boundary layer; sensitivity to surface evaporation [J]. Bound.-Layer Meteor., 37(1–2): 129−148. doi: 10.1007/BF00122760
    [32]
    屠妮妮, 何光碧, 衡志炜, 等. 2017. SWCWARMS模式对西南区域预报能力的检验 [J]. 高原山地气象研究, 37(3): 21−30. doi: 10.3969/j.issn.1674-2184.2017.03.004

    Tu Nini, He Guangbi, Heng Zhiwei, et al. 2017. The verification of SWCWARMS model in southwest of China [J]. Plateau and Mountain Meteorology Research (in Chinese), 37(3): 21−30. doi: 10.3969/j.issn.1674-2184.2017.03.004
    [33]
    Wang Qiwei, Tan Zhemin. 2014. Multi-scale topographic control of southwest vortex formation in Tibetan Plateau region in an idealized simulation [J]. J. Geophys. Res.: Atmos., 119(20): 11543−11561. doi: 10.1002/2014JD021898
    [34]
    王作述, 汪迎辉, 梁益国. 1996. 一次西南低涡暴雨的数值试验研究 [C]//暴雨科学、业务实验和天气动力学理论的研究. 北京: 气象出版社, 257–267.

    Wang Zuoshu, Wang Yinghui, Liang Yiguo. 1996. The numeric experiment research on a southwest vortex rainstorm [C]//The Research on Rainstorm Science, Professional Experiment and the Theory Research on Weather Dynamics (in Chinese). Beijing: China Meteorological Press, 257–267.
    [35]
    许鲁君, 刘辉志, 徐祥德, 等. 2018. WRF模式对青藏高原那曲地区大气边界层模拟适用性研究 [J]. 气象学报, 76(6): 955−967. doi: 10.11676/qxxb2018.059

    Xu Lujun, Liu Huizhi, Xu Xiangde, et al. 2018. Evaluation of the WRF model to simulate atmospheric boundary layer over Nagqu area in the Tibetan Plateau [J]. Acta Meteor. Sinica (in Chinese), 76(6): 955−967. doi: 10.11676/qxxb2018.059
    [36]
    杨颖璨, 李跃清, 陈永仁. 2018. 青藏高原及邻近地区低涡系统结构研究进展 [J]. 气象科技, 46(1): 76−83. doi: 10.19517/j.1671-6345.20170118

    Yang Yingcan, Li Yueqing, Chen Yongren. 2018. Progresses and new understanding of researches on vortex systems over Tibetan Plateau and its adjacent areas [J]. Meteorological Science and Technology (in Chinese), 46(1): 76−83. doi: 10.19517/j.1671-6345.20170118
    [37]
    叶瑶, 李国平. 2016. 近61年夏半年西南低涡的统计特征与异常发生的流型分析 [J]. 高原气象, 35(4): 946−954. doi: 10.7522/j.issn.1000-0534.2015.00073

    Ye Yao, Li Guoping. 2016. Statistics characteristics and the abnormal development of flow pattern of the southwest vortex in recent 61 summer half years [J]. Plateau Meteorology (in Chinese), 35(4): 946−954. doi: 10.7522/j.issn.1000-0534.2015.00073
    [38]
    Yu Shuhua, Gao Wenliang, Xiao Dixiang, et al. 2016. Observational facts regarding the joint activities of the southwest vortex and plateau vortex after its departure from the Tibetan Plateau [J]. Adv. Atmos. Sci., 33(1): 34−46. doi: 10.1007/s00376-015-5039-1
    [39]
    Zhang Chunxi, Xue Ming, Supinie T A, et al. 2019. How well does an FV3‐based model predict precipitation at a convection-allowing resolution? Results from CAPS forecasts for the 2018 NOAA hazardous weather test bed with different physics combinations [J]. Geophys. Res. Lett., 46(6): 3523−3531. doi: 10.1029/2018GL081702
    [40]
    Zhang Yuanchun, Sun Jianhua, Fu Shenming. 2014. Impacts of diurnal variation of mountain–plain solenoid circulations on precipitation and vortices East of the Tibetan Plateau during the Mei-yu season [J]. Adv. Atmos. Sci., 31(1): 139−153. doi: 10.1007/s00376-013-2052-0
    [41]
    赵鸣. 2008. 边界层和陆面过程对中国暴雨影响研究的进展 [J]. 暴雨灾害, 27(2): 186−190. doi: 10.3969/j.issn.1004-9045.2008.02.016

    Zhao Ming. 2008. A review of the research on the effects of boundary layer and land surface process on heavy rain in China [J]. Torrential Rain and Disasters (in Chinese), 27(2): 186−190. doi: 10.3969/j.issn.1004-9045.2008.02.016
    [42]
    赵思雄, 傅慎明. 2007. 2004年9月川渝大暴雨期间西南低涡结构及其环境场的分析 [J]. 大气科学, 31(6): 1059−1075. doi: 10.3878/j.issn.1006-9895.2007.06.03

    Zhao Sixiong, Fu Shenming. 2007. An analysis on the southwest vortex and its environment fields during heavy rainfall in eastern Sichuan Province and Chongqing in September 2004 [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 31(6): 1059−1075. doi: 10.3878/j.issn.1006-9895.2007.06.03
    [43]
    Zhong Rui, Zhong Linhao, Hua Lijuan, et al. 2014. A climatology of the southwest vortex during 1979–2008 [J]. Atmos. Oceanic Sci. Lett., 7(6): 577−583.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(4)

    Article Metrics

    Article views (1514) PDF downloads(371) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return