Advanced Search
KONG Fanchao, LIAN Zhiluan. 2022. Statistical Characteristics and Formation Mechanisms of Night Warming Events at Yunding Winter Olympic Stadium in Chongli [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 46(1): 191−205. DOI: 10.3878/j.issn.1006-9895.2107.21057
Citation: KONG Fanchao, LIAN Zhiluan. 2022. Statistical Characteristics and Formation Mechanisms of Night Warming Events at Yunding Winter Olympic Stadium in Chongli [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 46(1): 191−205. DOI: 10.3878/j.issn.1006-9895.2107.21057

Statistical Characteristics and Formation Mechanisms of Night Warming Events at Yunding Winter Olympic Stadium in Chongli

Funds: National Key Research and Development Program of China (Grants 2018YFF0300104, 2018YFF0300101), Technological Innovation Pilot Project of Hebei Province(Grant 19975414D)
More Information
  • Received Date: April 06, 2021
  • Accepted Date: September 02, 2021
  • Available Online: September 08, 2021
  • Published Date: January 17, 2022
  • Based on the observed data from automated weather stations during November 2018–March 2019 and November 2019–March 2020 at the Yunding Winter Olympic Stadium in Chongli, Hebei Province, nocturnal warming events at the stadium are statistically analyzed in this paper. Several possible formation mechanisms for these events are then discussed based on microwave radiometer, three-dimensional laser radar and the wind profiler data, and reanalysis data from NCEP/NACR. The results show that the occurrence probability of nocturnal warming events in Yunding Stadium reaches 76.9% from November to the following March, indicating that such warming events are a common phenomenon there. The frequency and amplitude of the warming decrease with increasing altitude. The triggering mechanisms of nocturnal warming events at Yunding Stadium can be classified into four categories: (1) mixed warming in the inversion layer caused by vertical wind shears, (2) Foehn-type warming, (3) whole-layer subsidence warming, and (4) warm advection in the mid and low levels. During the warming process of the second through fourth types, the warming amplitude at the bottom of the valley may be significantly larger than that at the top of the mountain when there is an initial temperature inversion in the valley. In this scenario, warming amplitude decreases with increasing altitude. The warming at the top of the mountain is only affected by the third and fourth types of formation mechanisms, while all four types can trigger warming events in the valley. This explains why the occurrence frequency of warming events decreases with increasing altitude.
  • Beffrey G, Jaubert G, Dabas A. 2004. Föhn flow and stable air mass in the Rhine valley: The beginning of a MAP event [J]. Quart. J. Roy. Meteor. Soc., 130(597): 541−560. doi: 10.1256/qj.02.228
    Doswell III C A, Haugland M J. 2007. A comparison of two cold fronts—Effects of the planetary boundary layer on the mesoscale [J]. Electronic J. Severe Storms Meteor., 2(4): 1−12.
    Flamant C, Drobinski P, Furger M, et al. 2006. Föohn/cold-pool interactions in the Rhine valley during MAP IOP 15 [J]. Quart. J. Roy. Meteor. Soc., 132(621C): 3035−3058. doi: 10.1256/qj.06.36
    甘茹蕙, 马媛媛, 杨毅, 等. 2016. 兰州地区突发性夜间增温的统计特征 [J]. 兰州大学学报(自然科学版), 52(5): 652−659. doi: 10.13885/j.issn.0455-2059.2016.05.014

    Gan R H, Ma Y Y, Yang Y, et al. 2016. Statistical characteristics of sudden nocturnal warming events in Lanzhou region [J]. J. Lanzhou Univ. Nat. Sci. (in Chinese), 52(5): 652−659. doi: 10.13885/j.issn.0455-2059.2016.05.014
    Hornsteiner, M. 2005. Local foehn effects in the upper Isar valley. Part 1: Observations [J]. Meteor. Atmos. Phys., 88(3-4): 175−192. doi: 10.1007/s00703-003-0073-4
    陆琛莉, 潘士雄, 盛文斌, 等. 2015. 杭州湾北岸一次极端高温过程分析 [J]. 气象科技, 43(3): 522−529. doi: 10.3969/j.issn.1671-6345.2015.03.030

    Lu C L, Pan S X, Sheng W B, et al. 2015. Analysis of an extreme heat process along north shore of Hangzhou bay [J]. Meteor. Sci. Technol. (in Chinese), 43(3): 522−529. doi: 10.3969/j.issn.1671-6345.2015.03.030
    罗然, 郑永光, 陈敏. 2020. 北京一次罕见夜间突发性强增温事件成因分析 [J]. 气象, 46(4): 478−489. doi: 10.7519/j.issn.1000-0526.2020.04.003

    Luo R, Zheng Y G, Chen M. 2020. Mechanism of a rare night sudden intense warming event in Beijing and surrounding area [J]. Meteor. Mon. (in Chinese), 46(4): 478−489. doi: 10.7519/j.issn.1000-0526.2020.04.003
    Ma Y Y, Yang Y, Hu X M, et al. 2015. Characteristics and mechanisms of the sudden warming events in the nocturnal atmospheric boundary layer: A case study using WRF [J]. J. Meteor. Res., 29(5): 747−763. doi: 10.1007/s13351-015-4101-3
    McPherson R A, Lane J D, Crawford K C, et al. 2011. A climatological analysis of heat bursts in Oklahoma (1994-2009) [J]. Int. J. Climatol., 31(4): 531−544. doi: 10.1002/joc.2087
    Nallapareddy A, Shapiro A, Gourley J J. 2011. A climatology of nocturnal warming events associated with cold-frontal passages in Oklahoma [J]. J. Appl. Meteor. Climatol., 50(10): 2042−2061. doi: 10.1175/JAMC-D-11-020.1
    钱敏伟, 李军. 1996. 夜间近地面稳定边界层湍流间歇与增温 [J]. 大气科学, 20(2): 250−254. doi: 10.3878/j.issn.1006-9895.1996.02.16

    Qian M W, Li J. 1996. Intermittent turbulence and temperature burst in the nocturnal surface layer [J]. Chinese Journal of Atmospheric Sciences (Scientia Atmospherica Sinica) (in Chinese), 20(2): 250−254. doi: 10.3878/j.issn.1006-9895.1996.02.16
    Sanders F, Kessler E. 1999. Frontal analysis in the light of abrupt temperature changes in a shallow valley [J]. Mon. Wea. Rev., 127(6): 1125−1133. doi:10.1175/1520-0493(1999)127<1125:FAITLO>2.0.CO;2
    Schicker I, Seibert P, Mursch-Radlgruber E. 2008. Investigation of observed and modelled nocturnal wind and temperature oscillations in an Alpine valley [R]. 18th Symposium on Boundary Layers and Turbulence, 13A. 1: 1–4.
    Seibert P. 1990. South foehn studies since the ALPEX experiment [J]. Meteor. Atmos. Phys., 43(1-4): 91−103. doi: 10.1007/BF01028112
    寿绍文. 2009. 中尺度气象学[M]. 2版. 北京: 气象出版社, 55–56.

    Shou S W. 2009. Mesoscale Meteorology (in Chinese) [M]. 2nd ed. Beijing: China Meteorological Press, 55–56.
    Sun J L, Mahrt L, Banta R M, et al. 2012. Turbulence regimes and turbulence intermittency in the stable boundary layer during CASES-99 [J]. J. Atmos. Sci., 69(1): 338−351. doi: 10.1175/JAS-D-11-082.1
    Sun J L, Mahrt L, Nappo C, et al. 2015. Wind and temperature oscillations generated by wave-turbulence interactions in the stably stratified boundary layer [J]. J. Atmos. Sci., 72(4): 1484−1503. doi: 10.1175/JAS-D-14-0129.1
    王岑, 任保华, 郑建秋, 等. 2017. 2015年12月29日北极地面爆发性增温的成因分析 [J]. 大气科学, 41(6): 1343−1351. doi: 10.3878/j.issn.1006-9895.1705.16287

    Wang C, Ren B H, Zheng J Q, et al. 2017. Mechanism analysis of the sudden arctic surface warming on 29 December 2015 [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 41(6): 1343−1351. doi: 10.3878/j.issn.1006-9895.1705.16287
    White L D. 2009. Sudden nocturnal warming events in Mississippi [J]. J. Appl. Meteor. Climatol., 48(4): 758−775. doi: 10.1175/2008JAMC1971.1
    Yu Y, Cai X M, King J C, et al. 2005. Numerical simulations of katabatic jumps in coats land, Antartica [J]. Bound. -Layer Meteor., 114(2): 413−437. doi: 10.1007/s10546-004-9564-1
    Zängl G, Chimani B, Häberli C. 2004. Numerical simulations of the Foehn in the Rhine Valley on 24 October 1999 (MAP IOP 10) [J]. Mon. Wea. Rev., 132(1): 368−389. doi:10.1175/1520-0493(2004)132<0368:NSOTFI>2.0.CO;2

Catalog

    Article views (866) PDF downloads (106) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return