Advanced Search
ZHENG Tianxue, TAN Yongbo, LUO Linjie. 2022. Numerical Simulation of the Effects of Thunderstorm Charge Distributions on the Discharge Characteristics of Positive Intracloud Lightning Flashes [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 46(6): 1407−1424. DOI: 10.3878/j.issn.1006-9895.2109.21079
Citation: ZHENG Tianxue, TAN Yongbo, LUO Linjie. 2022. Numerical Simulation of the Effects of Thunderstorm Charge Distributions on the Discharge Characteristics of Positive Intracloud Lightning Flashes [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 46(6): 1407−1424. DOI: 10.3878/j.issn.1006-9895.2109.21079

Numerical Simulation of the Effects of Thunderstorm Charge Distributions on the Discharge Characteristics of Positive Intracloud Lightning Flashes

Funds: National Key Research Development Program of China (Grant 2017YFC1501504), National Natural Science Foundation of China (Grant 41875003), Open Research Program of the State Key Laboratory of Severe Weather (Grant 2019LASW-A03)
More Information
  • Received Date: May 07, 2021
  • Accepted Date: September 12, 2021
  • Available Online: October 07, 2021
  • Published Date: November 23, 2022
  • In this study, a stochastic lightning parameterization scheme is coupled with a dipole charge structure, and the parameters and positions of the main negative charge region are fixed. Positive intracloud (+IC) flashes initiating at different altitudes are simulated by adjusting the parameters (charge concentration and horizontal range) of the upper positive charge region, and then the relationships between the characteristics of the +IC flashes and thunderstorm charge distributions are discussed. Simulation results indicate that in dipole charge structures, the elevation of the upper positive charge region can generate high-altitude +IC flashes, which is consistent with observations. Unlike normal IC flashes that are dominated by upward negative leaders and horizontal or slightly downward positive leaders, IC flashes initiated at high altitudes are characterized by long-distance downward positive leaders and horizontal or slightly upward negative leaders. The initiation altitudes of +IC flashes increase with the elevation of the upper positive charge region. When the upper positive charge region is lifted to a certain altitude (in this paper, the upper positive charge region’s lower boundary altitude is 12 km), IC flashes are usually initiated from the main positive charge region, and the concentration and horizontal radius of the upper positive charge region have no major effect on the initiation altitude of IC flashes. In addition, the length of positive or negative leader channels has a substantial positive correlation with concentration and horizontal radius of the charge region and the distance between the initiation point and the negative or positive charge region.
  • Bruning E C, MacGorman D R. 2013. Theory and observations of controls on lightning flash size spectra [J]. J. Atmos. Sci., 70(12): 4012−4029. doi: 10.1175/jas-d-12-0289.1
    Byrne G J, Few A A, Weber M E. 1983. Altitude, thickness and charge concentration of charged regions of four thunderstorms during trip 1981 based upon in situ balloon electric field measurements [J]. Geophys. Res. Lett., 10(1): 39−42. doi: 10.1029/GL010i001p00039
    Calhoun K M, MacGorman D R, Ziegler C L, et al. 2013. Evolution of lightning activity and storm charge relative to dual-Doppler analysis of a high-precipitation supercell storm [J]. Mon Wea Rev, 141(7): 2199−2223. doi: 10.1175/mwr-d-12-00258.1
    Coleman L M, Marshall T C, Stolzenburg M, et al. 2003. Effects of charge and electrostatic potential on lightning propagation [J]. J. Geophys. Res., 108(D9): 4298. doi: 10.1029/2002JD002718
    董万胜, 刘欣生, 张义军, 等. 2003. 云闪放电通道发展及其辐射特征 [J]. 高原气象, 22(3): 221−225. doi: 10.3321/j.issn:1000-0534.2003.03.003

    Dong Wansheng, Liu Xinsheng, Zhang Yijun, et al. 2003. Propagation of the lightning channel and electromagnetic radiation in IC flashes [J]. Plateau Meteor. (in Chinese), 22(3): 221−225. doi: 10.3321/j.issn:1000-0534.2003.03.003
    Dwyer J R. 2003. A fundamental limit on electric fields in air [J]. Geophys. Res. Lett., 30(20): 2055. doi: 10.1029/2003gl017781
    Fuchs B R, Bruning E C, Rutledge S A, et al. 2016. Climatological analyses of LMA data with an open-source lightning flash-clustering algorithm [J]. J. Geophys. Res., 121(14): 8625−8648. doi: 10.1002/2015JD024663
    郭凤霞, 张义军, 言穆弘. 2007. 青藏高原那曲地区雷暴云电荷结构特征数值模拟研究 [J]. 大气科学, 31(1): 28−36. doi: 10.3878/j.issn.1006-9895.2007.01.03

    Guo Fengxia, Zhang Yijun, Yan Muhong. 2007. A numerical study of the charge structure in thunderstorm in Nagqu area of the QinghaiXizang Plateau [J]. Chinese J. Atmos. Sci. (in Chinese), 31(1): 28−36. doi: 10.3878/j.issn.1006-9895.2007.01.03
    Gurevich A V, Milikh G M, Roussel-Dupre R. 1992. Runaway electron mechanism of air breakdown and preconditioning during a thunderstorm [J]. Phys. Lett. A, 165(5–6): 463–468. doi:10.1016/0375-9601(92)90348-p
    Iudin D I, Rakov V A, Mareev E A, et al. 2017. Advanced numerical model of lightning development: Application to studying the role of LPCR in determining lightning type [J]. J. Geophys. Res., 122(12): 6416−6430. doi: 10.1002/2016JD026261
    刘恒毅, 董万胜, 张义军. 2017. 云闪K过程的三维时空特征 [J]. 应用气象学报, 28(6): 700−713. doi: 10.11898/1001-7313.20170606

    Liu Hengyi, Dong Wansheng, Zhang Yijun. 2017. The 3D spatial and temporal evolution of K process in intra-cloud flash [J]. J. Appl. Meteor. Sci. (in Chinese), 28(6): 700−713. doi: 10.11898/1001-7313.20170606
    Lund N R, MacGorman D R, Schuur T J, et al. 2009. Relationships between lightning location and polarimetric radar signatures in a small mesoscale convective system [J]. Mon. Wea. Rev., 137(12): 4151−4170. doi: 10.1175/2009mwr2860.1
    Ma Z L, Jiang R B, Qie X S, et al. 2021. A low frequency 3D lightning mapping network in North China [J]. Atmos. Res., 249: 105314. doi: 10.1016/j.atmosres.2020.105314
    Mansell E R, MacGorman D R, Ziegler C L, et al. 2002. Simulated three-dimensional branched lightning in a numerical thunderstorm model [J]. J. Geophys. Res., 107(D9): 4075. doi: 10.1029/2000jd000244
    Marchand M, Hilburn K, Miller S D. 2019. Geostationary lightning mapper and Earth networks lightning detection over the contiguous United States and dependence on flash characteristics [J]. J. Geophys. Res. :Atmos., 124(21): 11552−11567. doi: 10.1029/2019JD031039
    Marshall T C, McCarthy M P, Rust W D. 1995. Electric field magnitudes and lightning initiation in thunderstorms [J]. J. Geophys. Res., 100(D4): 7097−7103. doi: 10.1029/95jd00020
    Mecikalski R M, Carey L D. 2017. Lightning characteristics relative to radar, altitude and temperature for a multicell, MCS and supercell over northern Alabama [J]. Atmos. Res., 191: 128−140. doi: 10.1016/j.atmosres.2017.03.001
    Montanyà J, van der Velde O, Williams E R. 2015. The start of lightning: Evidence of bidirectional lightning initiation [J]. Sci. Rep., 5: 15180. doi: 10.1038/srep15180
    Nag A, Rakov V A. 2009. Some inferences on the role of lower positive charge region in facilitating different types of lightning [J]. Geophys. Res. Lett., 36(5): L05815. doi: 10.1029/2008GL036783
    Proctor D E. 1991. Regions where lightning flashes began [J]. J. Geophys. Res., 96(D3): 5099−5112. doi: 10.1029/90jd02120
    Proctor D E. 1997. Lightning flashes with high origins [J]. J. Geophys. Res., 102(D2): 1693−1706. doi: 10.1029/96JD02635
    郄秀书, 张义军, 张其林. 2005. 闪电放电特征和雷暴电荷结构研究 [J]. 气象学报, 63(5): 646−658. doi: 10.3321/j.issn:0577-6619.2005.05.010

    Qie Xiushu, Zhang Yijun, Zhang Qilin. 2005. Study on the characteristics of lightning discharges and the electric structure of thunderstorm [J]. Acta Meteor. Sinica (in Chinese), 63(5): 646−658. doi: 10.3321/j.issn:0577-6619.2005.05.010
    Qie X S, Zhang T L, Zhang G S, et al. 2009. Electrical characteristics of thunderstorms in different plateau regions of China [J]. Atmos. Res. , 91(2–4): 244–249. doi: 10.1016/j.atmosres.2008.04.014
    Qie X S, Pu Y J, Jiang R B, et al. 2017. Bidirectional leader development in a preexisting channel as observed in rocket-triggered lightning flashes [J]. J. Geophys. Res., 122(2): 586−599. doi: 10.1002/2016JD025224
    Rison W, Thomas R J, Krehbiel P R, et al. 1999. A GPS-based three-dimensional lightning mapping system: Initial observations in central New Mexico [J]. Geophys. Res. Lett., 26(23): 3573−3576. doi: 10.1029/1999gl010856
    Rust W D, MacGorman D R, Bruning E C, et al. 2005. Inverted-polarity electrical structures in thunderstorms in the severe thunderstorm electrification and precipitation study (STEPS) [J]. Atmos. Res., 76(1–4): 247–271. doi:10.1016/j.atmosres.2004.11.029
    Scholten O, Hare B M, Dwyer J, et al. 2021. The initial stage of cloud lightning imaged in high-resolution [J]. J. Geophys. Res., 126(4): e2020JD033126. doi: 10.1029/2020JD033126
    Shao X M, Krehbiel P R. 1996. The spatial and temporal development of intracloud lightning [J]. J. Geophys. Res., 101(D21): 26641−26668. doi: 10.1029/96JD01803
    Solomon R, Schroeder V, Baker M B. 2001. Lightning initiation-conventional and runaway-breakdown hypotheses [J]. Quart. J. Roy. Meteor. Soc., 127(578): 2683−2704. doi: 10.1002/qj.49712757809
    Stolzenburg M, Marshall T C, Rust W D, et al. 2007. Electric field values observed near lightning flash initiations [J]. Geophys. Res. Lett., 34(4): L04804. doi: 10.1029/2006GL028777
    Symbalisty E M D, Roussel-Dupre R A, Yukhimuk V A. 1998. Finite volume solution of the relativistic Boltzmann equation for electron avalanche studies [J]. IEEE Trans. Plasma Sci., 26(5): 1575−1582. doi: 10.1109/27.736065
    Syssoev A A, Iudin D I, Bulatov A A, et al. 2020. Numerical simulation of stepping and branching processes in negative lightning leaders [J]. J. Geophys. Res., 125(7): e2019JD031360. doi: 10.1029/2019JD031360
    Takahashi T. 1978. Riming electrification as a charge generation mechanism in thunderstorms [J]. J. Atmos. Sci., 35(8): 1536−1548. doi: 10.1175/1520-0469(1978)035<1536:REAACG>2.0.CO;2
    谭涌波. 2006. 闪电放电与雷暴云电荷、电位分布相互关系的数值模似 [D]. 中国科学技术大学博士学位论文. Tan Y B. 2006. Numerical simulation of the relationship of the lightning discharge with the space charge and potential distribution in thundercloud [D]. Ph. D. dissertation (in Chinese), University of Science and Technology of China.
    Tan Y B, Tao S C, Zhu B Y. 2006. Fine-resolution simulation of the channel structures and propagation features of intracloud lightning [J]. Geophys. Res. Lett., 33(9): L09809. doi: 10.1029/2005GL025523
    Tan Y B, Tao S C, Zhu B Y, et al. 2007. A simulation of the effects of intra-cloud lightning discharges on the charges and electrostatic potential distributions in a thundercloud [J]. Chinese J. Geophys., 50(4): 916−930. doi: 10.1002/cjg2.1109
    Tan Y B, Tao S C, Liang Z W, et al. 2014. Numerical study on relationship between lightning types and distribution of space charge and electric potential [J]. J. Geophys. Res., 119(2): 1003−1014. doi: 10.1002/2013JD019983
    Thomas R J, Krehbiel P R, Rison W, et al. 2000. Comparison of ground-based 3-dimensional lightning mapping observations with satellite-based LIS observations in Oklahoma [J]. Geophys. Res. Lett., 27(12): 1703−1706. doi: 10.1029/1999gl010845
    Wang F, Zhang Y J, Zheng D, et al. 2017. Semi-idealized modeling of lightning initiation related to vertical air motion and cloud microphysics [J]. J. Meteor. Res., 31(5): 976−986. doi: 10.1007/s13351-017-6201-8
    Warner T A, Saba M M F, Schumann C, et al. 2016. Observations of bidirectional lightning leader initiation and development near positive leader channels [J]. J. Geophys. Res., 121(15): 9251−9260. doi: 10.1002/2016jd025365
    Wilkes R A, Uman M A, Pilkey J T, et al. 2016. Luminosity in the initial breakdown stage of cloud-to-ground and intracloud lightning [J]. J. Geophys. Res., 121(3): 1236−1247. doi: 10.1002/2015JD024137
    Williams E R. 1989. The tripole structure of thunderstorms [J]. J. Geophys. Res., 94(D11): 13151−13167. doi: 10.1029/jd094id11p13151
    Williams E R. 2006. Problems in lightning physics-the role of polarity asymmetry [J]. Plasma Sources Sci. Technol., 15(2): S91−S108. doi: 10.1088/0963-0252/15/2/s12
    Wu T, Yoshida S, Akiyama Y, et al. 2015. Preliminary breakdown of intracloud lightning: Initiation altitude, propagation speed, pulse train characteristics, and step length estimation [J]. J. Geophys. Res., 120(18): 9071−9086. doi: 10.1002/2015JD023546
    Wu, T., Wang, D., & Takagi, N. (2019). Intracloud lightning flashes initiated at high altitudes and dominated by downward positive leaders. Journal of Geophysical Research: Atmospheres, 124, 6982–6998. doi:10.1029/2018JD029907
    Zhang Y J, Krehbiel P R, Liu X S. 2002. Polarity inverted intracloud discharges and electric charge structure of thunderstorm [J]. Chinese Sci. Bull., 47(20): 1725−1729. doi: 10.1007/BF03183317
    张义军, Krehbiel P R, 刘欣生, 等. 2003. 闪电放电通道的三维结构特征 [J]. 高原气象, 22(3): 217−220. doi: 10.3321/j.issn:1000-0534.2003.03.002

    Zhang Yijun, Krehbiel P R, Liu Xinsheng, et al. 2003. Three dimensions structure of lightning discharge channel [J]. Plateau Meteor. (in Chinese), 22(3): 217−220. doi: 10.3321/j.issn:1000-0534.2003.03.002
    张廷龙, 郄秀书, 袁铁, 等. 2008. 中国内陆高原地区典型雷暴过程的地闪特征及电荷结构反演 [J]. 大气科学, 32(5): 1221−1228. doi: 10.3878/j.issn.1006-9895.2008.05.19

    Zhang Tinglong, Qie Xiushu, Yuan Tie. et al 2008. The characteristics of cloud-to-ground lightning flashes and charge structure of a typical thunderstorm in Chinese inland Plateau [J]. Chinese J. Atmos. Sci. (in Chinese), 32(5): 1221−1228. doi: 10.3878/j.issn.1006-9895.2008.05.19
    张广庶, 王彦辉, 郄秀书, 等. 2010. 基于时差法三维定位系统对闪电放电过程的观测研究 [J]. 中国科学: 地球科学, 40(4): 523–534. Zhang Guangshu, Wang Yanhui, Qie Xiushu, et al. 2010. Using lightning locating system based on time-of-arrival technique to study three-dimensional lightning discharge processes [J]. Sci. China Earth Sci. , 53(4): 591–602. doi: 10.1007/s11430-009-0116-x
    Zheng D, MacGorman D R. 2016. Characteristics of flash initiations in a supercell cluster with tornadoes [J]. Atmos. Res., 167: 249−264. doi: 10.1016/j.atmosres.2015.08.015
    Zheng D, Zhang Y J, Meng Q. 2018. Properties of negative initial leaders and lightning flash size in a cluster of supercells [J]. J. Geophys. Res., 123(22): 12857−12876. doi: 10.1029/2018JD028824
    Zheng D, Shi D D, Zhang Y, et al. 2019a. Initial leader properties during the preliminary breakdown processes of lightning flashes and their associations with initiation positions [J]. J. Geophys. Res., 124(14): 8025−8042. doi: 10.1029/2019jd030300
    Zheng D, Wang D H, Zhang Y J, et al. 2019b. Charge regions indicated by LMA lightning flashes in Hokuriku’s winter thunderstorms [J]. J. Geophys. Res., 124(13): 7179−7206. doi: 10.1029/2018jd030060
    Zheng T X, Tan Y B, Wang Y R. 2021. Numerical simulation to evaluate the effects of upward lightning discharges on thunderstorm electrical parameters [J]. Adv. Atmos. Sci., 38(3): 446−459. doi: 10.1007/s00376-020-0154-z

Catalog

    Article views (472) PDF downloads (113) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return