Advanced Search
XIE Zuowei, BUEH Cholaw, ZHUGE Anran, et al. 2022. An Intensification of the Warm and Moist Conveyor Belt of the Asian Summer Monsoon in the “21.7” Henan Rainstorm and Its Key Circulation from the Quasi-geostrophic Potential Vorticity Perspective [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 46(5): 1147−1166. DOI: 10.3878/j.issn.1006-9895.2205.22039
Citation: XIE Zuowei, BUEH Cholaw, ZHUGE Anran, et al. 2022. An Intensification of the Warm and Moist Conveyor Belt of the Asian Summer Monsoon in the “21.7” Henan Rainstorm and Its Key Circulation from the Quasi-geostrophic Potential Vorticity Perspective [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 46(5): 1147−1166. DOI: 10.3878/j.issn.1006-9895.2205.22039

An Intensification of the Warm and Moist Conveyor Belt of the Asian Summer Monsoon in the “21.7” Henan Rainstorm and Its Key Circulation from the Quasi-geostrophic Potential Vorticity Perspective

Funds: National Natural Science Foundation of China (Grants 41630424, 41875078), Huaneng Group Technology Project (Phase 1) “Offshore Wind Power and Intelligent Energy System” (Grant HNKJ20-H88)
More Information
  • Received Date: February 17, 2022
  • Accepted Date: May 26, 2022
  • Available Online: May 30, 2022
  • Published Date: September 21, 2022
  • This study uses rain-gauge observation data, the fifth reanalysis dataset of the European Center for Medium-Range Weather Forecasts, and the piecewise quasi-geostrophic potential vorticity (QGPV) inversion to mainly investigate the intensification of the warm and moist conveyor belt of the Asian summer monsoon of the Henan extreme rainstorm and its key circulation during July 18–21, 2021. The result shows that the continual westward extension of the subtropical high covered eastern China, on whose southwestern flank, broad southwesterlies transported not only a warm and moist air mass but also a high QGPV over Henan to northwestern China. Meanwhile, in northwestern China, the sensible heating of the Alxa Plateau maintained and deepened a local thermal low, which generated high QGPV anomalies in the near-surface layer of the low-pressure center and the middle and lower tropospheres (750–650 hPa) over the Hetao region. Thus, an extensively high QGPV was formed with low-pressure circulation over Henan, which yielded an extensive confrontation with the subtropical high. The QGPV inversion results show that this meteorological circulation pattern in the middle and lower tropospheres intensified the southerly over Henan. The amplified southerly effectively transported a hot and humid air mass of the warm and moist conveyor belt to the Henan region, which was a key factor for the extreme downpour on July 20. The southerly over Henan on July 20 was primarily contributed by the subtropical high, with secondary contributions from the positive QGPV anomaly at the middle and lower tropospheres over Hetao, while the contribution of the local low-pressure circulation over Henan was slightly smaller.
  • 布和朝鲁, 诸葛安然, 谢作威, 等. 2022. 2021年“7.20”河南暴雨水汽输送特征及其关键天气尺度系统 [J]. 大气科学, 46(3): 725−744. doi: 10.3878/j.issn.1006-9895.2202.21226

    Bueh Cholaw, Zhuge Anran, Xie Zuowei, et al. 2022. Water vapor transportation features and key synoptic-scale systems of the “7.20” rainstorm in Henan Province [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 46(3): 725−744. doi: 10.3878/j.issn.1006-9895.2202.21226
    Davis C A, Emanuel K A. 1991. Potential vorticity diagnostics of cyclogenesis [J]. Mon. Wea. Rev., 119(8): 1929−1953. doi: 10.1175/1520-0493(1991)119<1929:PVDOC>2.0.CO;2
    丁一汇. 2015. 论河南“75.8”特大暴雨的研究: 回顾与评述 [J]. 气象学报, 73(3): 411−424. doi: 10.11676/qxxb2015.067

    Ding Yihui. 2015. On the study of the unprecedented heavy rainfall in Henan Province during 4–8 August 1975: Review and assessment [J]. Acta Meteorologica Sinica (in Chinese), 73(3): 411−424. doi: 10.11676/qxxb2015.067
    丁一汇. 2019. 中国暴雨理论的发展历程与重要进展 [J]. 暴雨灾害, 38(5): 395−406. doi: 10.3969/j.issn.1004-9045.2019.05.001

    Ding Yihui. 2019. The major advances and development process of the theory of heavy rainfalls in China [J]. Torrential Rain and Disasters (in Chinese), 38(5): 395−406. doi: 10.3969/j.issn.1004-9045.2019.05.001
    Evans K J, Black R X. 2003. Piecewise tendency diagnosis of weather regime transitions [J]. J. Atmos. Sci., 60(16): 1941−1959. doi: 10.1175/1520-0469(2003)060<1941:PTDOWR>2.0.CO;2
    Fu S M, Zhang Y C, Wang H J, et al. 2022. On the evolution of a long-lived mesoscale convective vortex that acted as a crucial condition for the extremely strong hourly precipitation in Zhengzhou [J]. J. Geophys. Res.: Atmos., 127: e2021JD036233. doi: 10.1029/2021JD036233
    Hersbach H, Bell B, Berrisford P, et al. 2020. The ERA5 global reanalysis [J]. Quart. J. Roy. Meteor. Soc., 146(730): 1999−2049. doi: 10.1002/qj.3803
    姜立智, 傅慎明, 孙建华, 等. 2019. 2014年11月上旬西北太平洋一次极端强度爆发气旋的数值模拟和分片位涡反演分析 [J]. 气候与环境研究, 24(2): 152−168. doi: 10.3878/j.issn.1006-9585.2018.17174

    Jiang Lizhi, Fu Shenming, Sun Jianhua, et al. 2019. Numerical simulation and piecewise potential vorticity inversion analysis of an extreme explosive cyclone over the Northwest Pacific Ocean in early November of 2014 [J]. Climatic and Environmental Research (in Chinese), 24(2): 152−168. doi: 10.3878/j.issn.1006-9585.2018.17174
    Li W, Ma H, Fu R, et al. 2022. Development and maintenance mechanisms of a long-lived mesoscale vortex which governed the earlier stage of the “21.7” Henan torrential rainfall event [J]. Front. Earth Sci.: 10. doi: 10.3389/feart.2022.909662
    梁钰, 乔春贵, 董俊玲. 2020. 近34年河南首场暴雨时空分布特征及环流背景分析 [J]. 气象与环境科学, 43(2): 26−32. doi: 10.16765/j.cnki.1673-7148.2020.02.004

    Liang Yu, Qiao Chungui, Dong Junling. 2020. Spatial-temporal distribution and impact analysis of the first rainstorm in Henan Province over the recent 34 years [J]. Meteorological and Environmental Sciences (in Chinese), 43(2): 26−32. doi: 10.16765/j.cnki.1673-7148.2020.02.004
    梁旭东, 夏茹娣, 宝兴华, 等. 2022. 2021年7月河南极端暴雨过程概况及多尺度特征初探 [J]. 科学通报, 67: 997−1011. doi: 10.1360/TB-2021-0827

    Liang Xudong, Xia Rudi, Bao Xinghua, et al. 2022. Preliminary investigation on the extreme rainfall event during July 2021 in Henan Province and its multi-scale processes [J]. Chin. Sci. Bull. (in Chinese), 67: 997−1011. doi: 10.1360/TB-2021-0827
    柳艳菊, 丁一汇, 张颖娴, 等. 2015. 季风暖湿输送带与北方冷空气对“7·21”暴雨的作用 [J]. 热带气象学报, 31(6): 721−732. doi: 10.16032/j.issn.1004-4965.2015.06.001

    Liu Yanju, Ding Yihui, Zhang Yingxian, et al. 2015. Role of a warm and wet transport belt of Asian summer monsoon and cold air from north in the Beijing July 21 heavy rainstorm [J]. Journal of Tropical Meteorology (in Chinese), 31(6): 721−732. doi: 10.16032/j.issn.1004-4965.2015.06.001
    罗亚丽, 孙继松, 李英, 等. 2020. 中国暴雨的科学与预报: 改革开放40年研究成果 [J]. 气象学报, 78(3): 419−450. doi: 10.11676/qxxb2020.057

    Luo Yali, Sun Jisong, Li Ying, et al. 2020. Science and prediction of heavy rainfall over China: Research progress since the reform and opening-up of the People’s Republic of China [J]. Acta Meteorologica Sinica (in Chinese), 78(3): 419−450. doi: 10.11676/qxxb2020.057
    Nie Y B, Sun J Q. 2022. Moisture sources and transport for extreme precipitation over Henan in July 2021 [J]. Geophys. Res. Lett., 49(4): e2021GL097446. doi: 10.1029/2021GL097446
    Nielsen-Gammon J W, Lefevre R J. 1996. Piecewise tendency diagnosis of dynamical processes governing the development of an upper-tropospheric mobile trough [J]. J. Atmos. Sci., 53(21): 3120−3142. doi: 10.1175/1520-0469(1996)053<3120:PTDODP>2.0.CO;2
    齐道日娜, 何立富, 王秀明, 等. 2022. “7·20”河南极端暴雨精细观测及热动力成因 [J]. 应用气象学报, 33(1): 1−15. doi: 10.11898/1001-7313.20220101

    Chyi Dorina, He Lifu, Wang Xiuming, et al. 2022. Fine observation characteristics and thermodynamic mechanisms of extreme heavy rainfall in Henan on 20 July 2021 [J]. Journal of Applied Meteorological Science (in Chinese), 33(1): 1−15. doi: 10.11898/1001-7313.20220101
    冉令坤, 李舒文, 周玉淑, 等. 2021. 2021年河南“7.20”极端暴雨动、热力和水汽特征观测分析 [J]. 大气科学, 45(6): 1366−1383. doi: 10.3878/j.issn.1006-9895.2109.21160

    Ran Lingkun, Li Shuwen, Zhou Yushu, et al. 2021. Observational analysis of the dynamic, thermal, and water vapor characteristics of the “7.20” extreme rainstorm event in Henan Province, 2021 [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 45(6): 1366−1383. doi: 10.3878/j.issn.1006-9895.2109.21160
    施宁, 布和朝鲁. 2015. 中国大范围持续性极端低温事件的一类平流层前兆信号 [J]. 大气科学, 39(1): 210−220. doi: 10.3878/j.issn.1006-9895.1403.13309

    Shi Ning, Bueh Cholaw. 2015. A specific stratospheric precursory signal for the extensive and persistent extreme cold events in China [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 39(1): 210−220. doi: 10.3878/j.issn.1006-9895.1403.13309
    苏爱芳, 吕晓娜, 崔丽曼, 等. 2021. 郑州“7.20”极端暴雨天气的基本观测分析 [J]. 暴雨灾害, 40(5): 445−454. doi: 10.3969/j.issn.1004-9045.2021.05.001

    Su Aifang, Lü Xiaona, Cui Liman, et al. 2021. The basic observational analysis of “7.20” extreme rainstorm in Zhengzhou [J]. Torrential Rain and Disasters (in Chinese), 40(5): 445−454. doi: 10.3969/j.issn.1004-9045.2021.05.001
    苏爱芳, 席乐, 吕晓娜, 等. 2022. 豫北“21.7”极端暴雨过程特征及成因分析 [J]. 气象, 48(5): 556−570. doi: 10.7519/j.issn.1000-0526.2022.032501

    Su Aifang, Xi Le, Lü Xiaona, et al. 2022. Analysis on characteristics and causes of the July 2021 extreme rainstorm in northern Henan [J]. Meteor. Mon. (in Chinese), 48(5): 556−570. doi: 10.7519/j.issn.1000-0526.2022.032501
    Wang T, Wei K, Ma J. 2021. Atmospheric rivers and Mei-yu rainfall in China: A case study of summer 2020 [J]. Adv. Atmos. Sci., 38(12): 2137−2152. doi: 10.1007/s00376-021-1096-9
    Xie Z W, Black R X, Deng Y. 2019. Planetary and synoptic-scale dynamic control of extreme cold wave patterns over the United States [J]. Climate Dyn., 53(3): 1477−1495. doi: 10.1007/s00382-019-04683-7
    Xu L, Cheng W, Deng Z R, et al. 2022. Assimilation of the FY-4A AGRI clear-sky radiance data in a regional numerical model and its impact on the forecast of the “21·7” Henan extremely persistent heavy rainfall [J]. Adv. Atmos. Sci. . doi: 10.1007/s00376-022-1380-3
    Yin J F, Gu H D, Liang X D, et al. 2022. A possible dynamic mechanism for rapid production of the extreme hourly rainfall in Zhengzhou City on 20 July 2021 [J]. J. Meteor. Res., 36(1): 6−25. doi: 10.1007/s13351-022-1166-7
    Zhang R N, Zhang R H, Zuo Z Y. 2017. Impact of Eurasian spring snow decrement on East Asian summer precipitation [J]. J. Climate, 30(9): 3421−3437. doi: 10.1175/JCLI-D-16-0214.1
    Zhang R N, Chu Q C, Zuo Z Y, et al. 2021. Summertime moisture sources and transportation pathways for China and associated atmospheric circulation patterns [J]. Front. Earth Sci., 9: 756943. doi: 10.3389/feart.2021.756943
    张若楠, 孙丞虎, 李维京. 2018. 北极海冰与夏季欧亚遥相关型年际变化的联系及对我国夏季降水的影响 [J]. 地球物理学报, 61(1): 91−105. doi: 10.6038/cjg2018K0755

    Zhang Ruonan, Sun Chenghu, Li Weijing. 2018. Relationship between the interannual variations of Arctic sea ice and summer Eurasian teleconnection and associated influence on summer precipitation over China [J]. Chinese Journal of Geophysics (in Chinese), 61(1): 91−105. doi: 10.6038/cjg2018K0755
    张霞, 杨慧, 王新敏, 等. 2021. “21·7”河南极端强降水特征及环流异常性分析 [J]. 大气科学学报, 44(5): 672−687. doi: 10.13878/j.cnki.dqkxxb.20210907001

    Zhang Xia, Yang Hui, Wang Xinmin, et al. 2021. Analysis on characteristic and abnormality of atmospheric circulations of the July 2021 extreme precipitation in Henan [J]. Transactions of Atmospheric Sciences (in Chinese), 44(5): 672−687. doi: 10.13878/j.cnki.dqkxxb.20210907001

Catalog

    Article views (1009) PDF downloads (301) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return