Advanced Search
WEN Xinsheng, YANG Shuangyan, GAO Mingxiang, et al. 2024. Relation of Atmospheric ISOs over the Mid–High Latitudes of Eurasia to the European Blocking Frequency and Their Co-effect on Extreme Hot Events during Boreal Summer [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 48(3): 1043−1058. DOI: 10.3878/j.issn.1006-9895.2207.22077
Citation: WEN Xinsheng, YANG Shuangyan, GAO Mingxiang, et al. 2024. Relation of Atmospheric ISOs over the Mid–High Latitudes of Eurasia to the European Blocking Frequency and Their Co-effect on Extreme Hot Events during Boreal Summer [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 48(3): 1043−1058. DOI: 10.3878/j.issn.1006-9895.2207.22077

Relation of Atmospheric ISOs over the Mid–High Latitudes of Eurasia to the European Blocking Frequency and Their Co-effect on Extreme Hot Events during Boreal Summer

Funds: National Key Research and Development Program of China (Grant 2023YFF0805404), National Natural Science Foundation of China (Grant 42305043), Natural Science Foundation of Jiangsu Province (Grant BK20210660), Youth Fund of Natural Science Foundation Projects of Xinjiang Uyghur Autonomous Region (Grant 2023D01B06)
More Information
  • Received Date: May 10, 2022
  • Available Online: October 08, 2022
  • Published Date: October 18, 2022
  • Using the NCEP reanalysis daily data during 1979–2018, the spatiotemporal evolution of the 10–30-day atmospheric intraseasonal oscillations (ISOs) over the mid–high latitudes of Eurasia and their effects on the European blocking frequency are examined. Furthermore, the co-effect of the blocking and ISOs on extreme hot event frequency is studied. The ISO shows two modes, namely, the eastward and westward propagating modes. During the eastward (westward) propagating mode, the northwest–southeast tilted quadrupole (east–west dipole) quasi-barotropic geopotential height anomaly, together with the air temperature anomaly at the troposphere, propagates southeastward (westward). Phase composite reveals that, during both modes, the mid–high latitude low-frequency Rossby wave trains substantially influence the European blocking frequency during the propagating journey. The most frequent European blocking emerges in phases 6–7 (5–6) during the eastward (westward) mode, which is referred to as E-P67 (W-P56). During E-P67 (W-P56), western Europe, the eastern European plain, the Ural Mountains, and the northeast plain of China (Europe and the Ural Mountains) are controlled by quasi-barotropic + − + − (+ −) height anomalies, respectively, thereby resulting in considerable positive frequency anomalies of extreme hot events over western Europe and the Ural Mountains (Europe) and negative anomalies over the eastern European plain and the northeast plain of China (Ural Mountains). If blocking occurs during E-P67, the positive height anomaly intensity over western Europe increases substantially, and the positive or negative ones over the Ural Mountains, eastern European plain, and northeast plain of China weaken; meanwhile, a negative height anomaly emerges in the south of Europe, causing a negative extreme hot frequency anomaly. During W-P56, the positive and negative height anomalies are increased, and they materialize over the northeastern plains of China and south of Europe, decreasing and increasing the hot events in the two regions, respectively. Therefore, during E-P67 and W-P56, the European blocking increases (decreases) the frequency of extreme hot events in Europe and the northeast plains of China (south of Europe and the Ural Mountains). Thus, European blocking activities considerably control the influences of the two propagating ISO modes on the extreme hot events over the mid–high latitudes of Eurasia.
  • Alexander L V, Zhang X, Peterson T C, et al. 2006. Global observed changes in daily climate extremes of temperature and precipitation [J]. J. Geophys. Res.: Atmos., 111(D5): D05109. doi: 10.1029/2005JD006290
    Anderson J R, Rosen R D. 1983. The latitude−height structure of 40−50 day variations in atmospheric angular momentum [J]. J. Atmos. Sci., 40(6): 1584−1591. doi:10.1175/1520-0469(1983)040<1584: TLHSOD>2.0.CO;2
    Davini P, Cagnazzo C, Gualdi S, et al. 2012. Bidimensional diagnostics, variability, and trends of Northern Hemisphere blocking [J]. J. Climate, 25(19): 6496−6509. doi: 10.1175/JCLI-D-12-00032.1
    Duchon C E. 1979. Lanczos filtering in one and two dimensions [J]. J. Appl. Meteor., 18(8): 1016−1022. doi:10.1175/1520-0450(1979)018< 1016:LFIOAT>2.0.CO;2
    Gao M N, Yang J, Wang B, et al. 2018. How are heat waves over Yangtze River valley associated with atmospheric quasi-biweekly oscillation? [J]. Climate Dyn., 51(11-12): 4421−4437. doi:10.1007/ s00382-017-3526-z
    高庆九, 尤琦. 2019. 我国江南夏季极端高温季节内变化特征初探 [J]. 长江流域资源与环境, 28(7): 1682–1690.

    Gao Qingjiu, You Qi. Preliminary analysis of intraseasonal oscillation of summer extreme daily temperature in China [J]. Resources and Environment in the Yangtze Basin (in Chinese), 28(7): 1682–1690. doi: 10.11870/cjlyzyyhj201907018
    Ghil M, Allen M R, Dettinger M D, et al. 2002. Advanced spectral methods for climatic time series [J]. Rev. Geophys. , 40(1): 3-1–3-41. doi: 10.1029/2000RG000092
    Henderson S A, Maloney E D, Barnes E A. 2016. The influence of the Madden–Julian oscillation on Northern Hemisphere winter blocking [J]. J. Climate, 29(12): 4597−4616. doi: 10.1175/JCLI-D-15-0502.1
    Hsu P C, Lee J Y, Ha K J, et al. 2017. Influences of boreal summer intraseasonal oscillation on heat waves in monsoon Asia [J]. J. Climate, 30(18): 7191−7211. doi: 10.1175/JCLI-D-16-0505.1
    Hu W T, Duan A M, Li Y, et al. 2016. The intraseasonal oscillation of eastern Tibetan Plateau precipitation in response to the summer Eurasian wave train [J]. J. Climate, 29(20): 7215−7230. doi:10. 1175/JCLI-D-15-0620.1
    Kalnay E, Kanamitsu M, Kistler R, et al. 1996. The NCEP/NCAR 40-year reanalysis project [J]. Bull. Amer. Meteor. Soc., 77(3): 437−472. doi:10.1175/1520-0477(1996)077<0437:tnyrp>2.0.co;2
    Kikuchi K, Wang B. 2009. Global perspective of the quasi-biweekly oscillation [J]. J. Climate, 22(6): 1340−1359. doi:10.1175/2008 JCLI2368.1
    李崇银. 1995. 热带大气季节内振荡的几个基本问题 [J]. 热带气象学报, 11(3): 276−288.

    Li Chongyin. 1995. Some basic problems of intraseasonal oscillation in tropical atmosphere [J]. J. Trop. Meteor. (in Chinese), 11(3): 276−288.
    李崇银, 顾薇. 2010. 2008年1月乌拉尔阻塞高压异常活动的分析研究 [J]. 大气科学, 34(5): 865−874. doi: 10.3878/j.issn.1006-9895.2010.05.02

    Li Chongyin, Gu Wei. 2010. An analyzing study of the anomalous activity of blocking high over the Ural Mountains in January 2008 [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 34(5): 865−874. doi: 10.3878/j.issn.1006-9895.2010.05.02
    李崇银, 龙振夏, 穆明权. 2003. 大气季节内振荡及其重要作用 [J]. 大气科学, 27(4): 518−535. doi: 10.3878/j.issn.1006-9895.2003.04.07

    Li Chongyin, Long Zhenxia, Mu Mingquan. 2003. Atmospheric intraseasonal oscillation and its important effect [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 27(4): 518−535. doi: 10.3878/j.issn.1006-9895.2003.04.07
    李峰, 丁一汇. 2004. 近30年夏季亚欧大陆中高纬度阻塞高压的统计特征 [J]. 气象学报, 62(3): 347−354. doi: 10.11676/qxxb2004.035

    Li Feng, Ding Yihui. 2004. Statistical characteristic of atmospheric blocking in the Eurasia high−mid latitudes based on recent 30-year summers [J]. Acta Meteor. Sinica (in Chinese), 62(3): 347−354. doi:10.11676/qxxb 2004.035
    李峰, 丁一汇, 鲍媛媛. 2008. 2003年淮河大水期间亚洲北部阻塞高压的形成特征 [J]. 大气科学, 32(3): 469−480. doi: 10.3878/j.issn.1006-9895.2008.03.05

    Li Feng, Ding Yihui, Bao Yuanyuan. 2008. A study of the forming characteristics of blocking high in northern Asia during the flood period of the Huaihe River basin in 2003 [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 32(3): 469−480. doi: 10.3878/j.issn.1006-9895.2008.03.05
    李亚飞, 任荣彩. 2019. 北半球冬季各阻塞系统对大范围极端温度异常的单独和协同影响 [J]. 大气科学, 43(6): 1313−1328. doi: 10.3878/j.issn.1006-9895.1811.18214

    Li Yafei, Ren Rongcai. 2019. The independent and coordinative influences of the four blocking systems in the Northern Hemisphere winter on the occurrence of widespread extreme cold surface temperature [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 43(6): 1313−1328. doi: 10.3878/j.issn.1006-9895.1811.18214
    Liu H B, Yang J, Zhang D L, et al. 2014. Roles of synoptic to quasi-biweekly disturbances in generating the summer 2003 heavy rainfall in East China [J]. Mon. Wea. Rev., 142(2): 886−904. doi: 10.1175/MWR-D-13-00055.1
    Madden R A, Julian P R. 1971. Detection of a 40−50 day oscillation in the zonal wind in the tropical Pacific [J]. J. Atmos. Sci., 28(5): 702−708. doi:10.1175/1520-0469(1971)028<0702:DOADOI>2.0. CO;2
    Matthews A J. 2000. Propagation mechanisms for the Madden–Julian oscillation [J]. Quart. J. Roy. Meteor. Soc., 126(569): 2637−2651. doi: 10.1002/qj.49712656902
    Scherrer S C, Croci-Maspoli M, Schwierz C, et al. 2006. Two-dimensional indices of atmospheric blocking and their statistical relationship with winter climate patterns in the Euro-Atlantic region [J]. Int. J. Climatol., 26(2): 233−249. doi: 10.1002/joc.1250
    沈爱华, 任广成, 王冰. 2008. 东亚阻塞高压与我国降水关系的分析及预测 [J]. 气候与环境研究, 13(2): 205−211. doi: 10.3878/j.issn.1006-9585.2008.02.10

    Shen Aihua, Ren Guangcheng, Wang Bing. 2008. Analysis and forecasting of relationship between East Asia blocking situation and precipitation of China in July [J]. Climatic Environ. Res. (in Chinese), 13(2): 205−211. doi: 10.3878/j.issn.1006-9585.2008.02.10
    史湘军, 智协飞. 2007. 1950–2004年欧亚大陆阻塞高压活动的统计特征 [J]. 南京气象学院学报, 30(3): 338−344. doi: 10.3969/j.issn.1674-7097.2007.03.007

    Shi Xiangjun, Zhi Xiefei. 2007. Statistical characteristics of blockings in Eurasia from 1950 to 2004 [J]. Journal of Nanjing Institute of Meteorology (in Chinese), 30(3): 338−344. doi: 10.3969/j.issn.1674-7097.2007.03.007
    Tibaldi S, Molteni F. 1990. On the operational predictability of blocking [J]. Tellus A, 42(3): 343−365. doi:10.1034/j.1600-0870.1990. t01-2-00003.x
    王倩云, 罗德海, 王佳妮. 2016. 欧洲地区夏季热浪的特征及其与阻塞环流的联系 [J]. 气候与环境研究, 21(4): 367−379. doi: 10.3878/j.issn.1006-9585.2015.15022

    Wang Qianyun, Luo Dehai, Wang Jiani. 2016. Characteristics of summer heatwaves over Europe and their link with European blocking circulations [J]. Climatic Environ. Res. (in Chinese), 21(4): 367−379. doi: 10.3878/j.issn.1006-9585.2015.15022
    王遵娅, 丁一汇. 2008. 夏季长江中下游旱涝年季节内振荡气候特征 [J]. 应用气象学报, 19(6): 710−715. doi: 10.3969/j.issn.1001-7313.2008.06.010

    Wang Zunya, Ding Yihui. 2008. Climatic features of intraseasonal oscillations of summer rainfalls over mid–lower reaches of the Yangtze River in the flood and drought years [J]. J. Appl. Meteor. Sci. (in Chinese), 19(6): 710−715. doi: 10.3969/j.issn.1001-7313.2008.06.010
    Yang H, Li C Y. 2003. The relation between atmospheric intraseasonal oscillation and summer severe flood and drought in the Changjiang–Huaihe river basin [J]. Adv. Atmos. Sci., 20(4): 540−553. doi:10. 1007/BF02915497
    Yang S Y, Li T. 2016. Intraseasonal variability of air temperature over the mid–high latitude Eurasia in boreal winter [J]. Climate Dyn., 47(7-8): 2155−2175. doi: 10.1007/s00382-015-2956-8
    Yang S Y, Li T. 2017. The role of intraseasonal variability at mid–high latitudes in regulating Pacific blockings during boreal winter [J]. Int. J. Climatol., 37(S1): 1248−1256. doi: 10.1002/joc.5080
    杨双艳, 李天明. 2020. 中高纬大气ISO对夏季鄂海阻高形成和维持的调节作用 [J]. 大气科学学报, 43(1): 104−115. doi: 10.13878/j.cnki.dqkxxb.20191001010

    Yang Shuangyan, Li Tianming. 2020. The role of intraseasonal oscillation at mid–high latitudes in regulating the formation and maintenance of Okhotsk blocking in boreal summer [J]. Trans. Atmos. Sci. (in Chinese), 43(1): 104−115. doi: 10.13878/j.cnki.dqkxxb.20191001010
    Yang S Y, Wu B Y, Zhang R H, et al. 2013a. The zonal propagating characteristics of low-frequency oscillation over the Eurasian mid–high latitude in boreal summer [J]. Sci. China Earth Sci., 56(9): 1566−1575. doi: 10.1007/s11430-012-4576-z
    Yang S Y, Wu B Y, Zhang R H, et al. 2013b. Relationship between an abrupt drought–flood transition over mid–low reaches of the Yangtze River in 2011 and the intraseasonal oscillation over mid–high latitudes of East Asia [J]. Acta Meteor. Sinica, 27(2): 129−143. doi: 10.1007/s13351-013-0201-0
    姚秀萍, 于玉斌. 2005. 2003年梅雨期干冷空气的活动及其对梅雨降水的作用 [J]. 大气科学, 29(6): 973−985. doi: 10.3878/j.issn.1006-9895.2005.06.13

    Yao Xiuping, Yu Yubin. 2005. Activity of dry cold air and its impacts on Meiyu rain during 2003 Meiyu period [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 29(6): 973−985. doi: 10.3878/j.issn.1006-9895.2005.06.13
    Zhao C, Li T, Yao S X, et al. 2017. Intraseasonal variability of air temperature over East Asia in boreal summer [J]. Front. Earth Sci., 5: 63. doi: 10.3389/feart.2017.00063
    Zhu T, Yang J. 2021. Two types of mid–high-latitude low-frequency intraseasonal oscillations near the Ural Mountains during boreal summer [J]. J. Climate, 34(11): 4279−4296. doi: 10.1175/JCLI-D-20-0589.1

Catalog

    Article views (550) PDF downloads (164) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return