Citation: | YAO Lu, YANG Dongxu, CAI Zhaonan, et al. 2022. Status and Trend Analysis of Atmospheric Methane Satellite Measurement for Carbon Neutrality and Carbon Peaking in China [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 46(6): 1469−1483. DOI: 10.3878/j.issn.1006-9895.2207.22096 |
Alberti C, Hase F, Frey M, et al. 2022. Improved calibration procedures for the EM27/SUN spectrometers of the COllaborative Carbon Column Observing Network (COCCON) [J]. Atmos. Meas. Tech., 15(8): 2433−2463. doi: 10.5194/amt-15-2433-2022
|
Bergamaschi P, Frankenberg C, Meirink J F, et al. 2009. Inverse modeling of global and regional CH4 emissions using SCIAMACHY satellite retrievals [J]. J. Geophys. Res. Atmos., 114(22): 1−28. doi: 10.1029/2009JD012287
|
Bergamaschi P, Corazza M, Karstens U, et al. 2015. Top-down estimates of European CH4 and N2O emissions based on four different inverse models [J]. Atmos. Chem. Phys., 15(2): 715−736. doi: 10.5194/acp-15-715-2015
|
Bi Y M, Zhang P, Yang Z D, et al. 2022. Fast CO2 retrieval using a semi-physical statistical model for the high-resolution spectrometer on the Fengyun-3D satellite [J]. J. Meteor. Res., 36(2): 374−386. doi: 10.1007/s13351-022-1149-8
|
Boesch H, Baker D, Connor B, et al. 2011. Global characterization of CO2 column retrievals from shortwave-infrared satellite observations of the Orbiting Carbon Observatory-2 mission [J]. Remote Sens., 3(2): 270−304. doi: 10.3390/rs3020270
|
Buchwitz M, De Beek R, Bramstedt K, et al. 2004. Global carbon monoxide as retrieved from Sciamachy by WFM-DOAS [J]. Atmos. Chem. Phys., 4(7): 1945−1960. doi: 10.5194/acp-4-1945-2004
|
Buchwitz M, De Beek R, Noël S, et al. 2006. Atmospheric carbon gases retrieved from SCIAMACHY by WFM-DOAS: Version 0.5 CO and CH4 and impact of calibration improvements on CO2 retrieval [J]. Atmos. Chem. Phys., 6(9): 2727−2751. doi: 10.5194/acp-6-2727-2006
|
Buchwitz M, Reuter M, Schneising O, et al. 2015. The Greenhouse Gas Climate Change Initiative (GHG-CCI): Comparison and quality assessment of near-surface-sensitive satellite-derived CO2 and CH4 global data sets [J]. Remote Sens. Environ., 162: 344−362. doi: 10.1016/j.rse.2013.04.024
|
Buchwitz M, Schneising O, Reuter M, et al. 2017. Satellite-derived methane hotspot emission estimates using a fast data-driven method [J]. Atmos. Chem. Phys., 17(9): 5751−5774. doi: 10.5194/acp-17-5751-2017
|
Butz A, Hasekamp O P, Frankenberg C, et al. 2010. CH4 retrievals from space-based solar backscatter measurements: Performance evaluation against simulated aerosol and cirrus loaded scenes [J]. J. Geophys. Res. Atmos., 115(D24): D24302. doi: 10.1029/2010JD014514
|
Butz A, Guerlet S, Hasekamp O, et al. 2011. Toward accurate CO2 and CH4 observations from GOSAT [J]. Geophys. Res. Lett., 38(14): L14812. doi: 10.1029/2011GL047888
|
Cai Z N, Che K, Liu Y, et al. 2021. Decreased anthropogenic CO2 emissions during the COVID-19 pandemic estimated from FTS and MAX-DOAS measurements at urban Beijing [J]. Remote Sens., 13(3): 517. doi: 10.3390/rs13030517
|
蔡兆男, 成里京, 李婷婷, 等. 2021. 碳中和目标下的若干地球系统科学和技术问题分析 [J]. 中国科学院院刊, 36(5): 602−613. doi: 10.16418/j.issn.1000-3045.20210402002
Cai Zhaonan, Cheng Lijing, Li Tingting, et al. 2021. Key scientific and technical issues in earth system science towards achieving carbon neutrality in China [J]. Bull. Chinese Acad. Sci. (in Chinese), 36(5): 602−613. doi: 10.16418/j.issn.1000-3045.20210402002
|
Checa-Garcia R, Landgraf J, Galli A, et al. 2015. Mapping spectroscopic uncertainties into prospective methane retrieval errors from Sentinel-5 and its precursor [J]. Atmos. Meas. Tech., 8(9): 3617−3629. doi: 10.5194/amt-8-3617-2015
|
Chen J, Dietrich F, Maazallahi H, et al. 2020. Methane emissions from the Munich Oktoberfest [J]. Atmos. Chem. Phys., 20(6): 3683−3696. doi: 10.5194/acp-20-3683-2020
|
陈良富, 尚华哲, 范萌, 等. 2021. 高分五号卫星大气参数探测综述 [J]. 遥感学报, 25(9): 1917−1931. doi: 10.11834/jrs.20210582
Chen Liangfu, Shang Huazhe, Fan Meng, et al. 2021. Mission overview of the GF-5 satellite for atmospheric parameter monitoring [J]. Natl. Remote Sens. Bull. (in Chinese), 25(9): 1917−1931. doi: 10.11834/jrs.20210582
|
Crevoisier C, Nobileau D, Fiore A M, et al. 2009. A new insight on tropospheric methane in the Tropics-first year from IASI hyperspectral infrared observations [J]. Atmos. Chem. Phys., 9(2): 6855−6887. doi: 10.5194/acpd-9-6855-2009
|
Crisp D, Fisher B M, O’Dell C, et al. 2012. The ACOS CO2 retrieval algorithm. Part II: Global
|
Crisp D, Meijer Y, Munro R, et al. 2018. A constellation architecture for monitoring carbon dioxide and methane from space [R]. Committee on Earth Observation Satellites.
|
De Vrese P, Stacke T, Kleinen T, et al. 2021. Diverging responses of high-latitude CO2 and CH4 emissions in idealized climate change scenarios [J]. Cryosphere, 15(2): 1097−1130. doi: 10.5194/tc-15-1097-2021
|
邓剑波. 2015. 短波红外卫星遥感甲烷大气柱平均干空气混合比反演算法研究 [D]. 中国科学院大学博士学位论文. Deng Jianbo. 2015. Retrieval algorithm for XCH4 with shortwave infrared satellite observations [D]. Ph. D. dissertation (in Chinese), University of Chinese Academy of Sciences.
|
Deng J B, Liu Y, Yang D X, et al. 2014. CH4 retrieval from hyperspectral satellite measurements in short-wave infrared: Sensitivity study and preliminary test with GOSAT data [J]. Chinese Sci. Bull., 59(14): 1499−1507. doi: 10.1007/s11434-014-0245-2
|
Dupuy E, Morino I, Deutscher N M, et al. 2016. Comparison of XH2O retrieved from GOSAT short-wavelength infrared spectra with observations from the TCCON network [J]. Remote Sens., 8(5): 414. doi: 10.3390/rs8050414
|
Ehret G, Bousquet P, Pierangelo C, et al. 2017. MERLIN: A French-German space lidar mission dedicated to atmospheric methane [J]. Remote Sens., 9(10): 1052. doi: 10.3390/rs9101052
|
Feng L, Palmer P I, Zhu S H, et al. 2022. Tropical methane emissions explain large fraction of recent changes in global atmospheric methane growth rate [J]. Nat. Commun., 13(1): 1378. doi: 10.1038/s41467-022-28989-z
|
Forster P, Ramaswamy P, Artaxo P, et al. 2007. Changes in atmospheric constituents and in radiative forcing [M]//IPCC. Climate Change 2007: The Physical Science Basis, Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (in Chinese). Cambridge: Cambridge University Press, 204.
|
GCOS-200. 2016. The Global Observing System for Climate: Implementation Needs [R]. WMO.
|
GHG-CCI. 2020. User Requirements Document for the GHG-CCI+ project of ESA’ s Climate Change Initiative, pp. 42, version 3.0.
|
Han G, Xu H, Gong W, et al. 2018. Feasibility study on measuring atmospheric CO2 in urban areas using spaceborne CO2-IPDA LIDAR [J]. Remote Sens., 10(7): 985. doi: 10.3390/rs10070985
|
Hase F, Frey M, Blumenstock T, et al. 2015. Application of portable FTIR spectrometers for detecting greenhouse gas emissions of the major city Berlin [J]. Atmos. Meas. Tech., 8(7): 3059−3068. doi: 10.5194/amt-8-3059-2015
|
Hu H L, Hasekamp O, Butz A, et al. 2016. The operational methane retrieval algorithm for TROPOMI [J]. Atmos. Meas. Tech., 9(11): 5423−5440. doi: 10.5194/amt-9-5423-2016
|
IPCC, 2018. Annex I: Glossary [Matthews, J. B. R. (ed.)]. In: Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty [Masson-Delmotte, V. , P. Zhai, H. -O. Pörtner, D. Roberts, J. Skea, P. R. Shukla, A. Pirani, W. Moufouma-Okia, C. Péan, R. Pidcock, S. Connors, J. B. R. Matthews, Y. Chen, X. Zhou, M. I. Gomis, E. Lonnoy, T. Maycock, M. Tignor, and T. Waterfield (eds. )]. Cambridge University Press, Cambridge, UK and New York, NY, USA, 541−562, doi:10.1017/9781009157940.008.
|
Jervis D, McKeever J, Durak B O A, et al. 2021. The GHGSat-D imaging spectrometer [J]. Atmos. Meas. Tech., 14(3): 2127−2140. doi: 10.5194/amt-14-2127-2021
|
Jones T S, Franklin J E, Chen J, et al. 2021. Assessing urban methane emissions using column observing portable Fourier transform infrared (FTIR) spectrometers and a novel Bayesian inversion framework [J]. Atmos. Chem. Phys., 21(17): 13131−13147. doi: 10.5194/acp-21-13131-2021
|
Lan X, Thoning K W, and Dlugokencky E J. 2022. Trends in globally-averaged CH4, N2O, and SF6 determined from NOAA Global Monitoring Laboratory measurements. Version 2022-10, https://doi.org/10.15138/P8XG-AA10
|
刘良云, 陈良富, 刘毅, 等. 2022. 全球碳盘点卫星遥感监测方法、进展与挑战 [J]. 遥感学报, 26(2): 243−267. doi: 10.11834/jrs.20221806
Liu Liangyun, Chen Liangfu, Liu Yi, et al. 2022. Satellite remote sensing for global stocktaking: Methods, progress and perspectives [J]. Natl. Remote Sens. Bull. (in Chinese), 26(2): 243−267. doi: 10.11834/jrs.20221806
|
刘毅, 杨东旭, 蔡兆男. 2013. 中国碳卫星大气CO2反演方法: GOSAT数据初步应用 [J]. 科学通报, 58(11): 996–999. Liu Yi, Yang Dongxu, Cai Zhaonan. 2013. A retrieval algorithm for TanSat XCO2 observation: Retrieval experiments using GOSAT data [J]. Chinese Sci. Bull. , 58(13): 1520–1523. doi: 10.1007/s11434-013-5680-y
|
刘毅, 王婧, 车轲, 等. 2021. 温室气体的卫星遥感—进展与趋势 [J]. 遥感学报, 25(1): 53−64. doi: 10.11834/jrs.20210081
Liu Yi, Wang Jing, Che Ke, et al. 2021. Satellite remote sensing of greenhouse gases: Progress and trends [J]. Natl. Remote Sens. Bull. (in Chinese), 25(1): 53−64. doi: 10.11834/jrs.20210081
|
Lorente A, Borsdorff T, Butz A, et al. 2021. Methane retrieved from TROPOMI: Improvement of the data product and validation of the first 2 years of measurements [J]. Atmos. Meas. Tech., 14(1): 665−684. doi: 10.5194/amt-14-665-2021
|
Lunt M F, Palmer P I, Feng L, et al. 2019. An increase in methane emissions from tropical Africa between 2010 and 2016 inferred from satellite data [J]. Atmos. Chem. Phys., 19(23): 14721−14740. doi: 10.5194/acp-19-14721-2019
|
Maasakkers J D, Jacob D J, Sulprizio M P, et al. 2019. Global distribution of methane emissions, emission trends, and OH concentrations and trends inferred from an inversion of GOSAT satellite data for 2010–2015 [J]. Atmos. Chem. Phys., 19(11): 7859−7881. doi: 10.5194/acp-19-7859-2019
|
Maasakkers J D, Jacob D J, Sulprizio M P, et al. 2021. 2010–2015 North American methane emissions, sectoral contributions, and trends: A high-resolution inversion of GOSAT observations of atmospheric methane [J]. Atmos. Chem. Phys., 21(6): 4339−4356. doi: 10.5194/acp-21-4339-2021
|
Meijer Y, Boesch H, Bombelli A, et al. 2020. Copernicus CO2 Monitoring Mission Requirements Document (MRD)[R]. European Space Agency, Earth and Mission Science Division revision 3. https://esamultimedia.esa.int/docs/EarthObservation/CO2M_MRD_v3.0_20201001_Issued.pdf.
|
Miller S M, Michalak A M, Detmers R G, et al. 2019. China’s coal mine methane regulations have not curbed growing emissions [J]. Nat. Commun., 10(1): 303. doi: 10.1038/s41467-018-07891-7
|
Moore III B, Crowell S M R, Rayner P J, et al. 2018. The Potential of the Geostationary Carbon Cycle Observatory (GeoCarb) to provide multi-scale constraints on the carbon cycle in the Americas [J]. Front. Environ. Sci., 6: 109. doi: 10.3389/fenvs.2018.00109
|
Murray L T, Leibensperger E M, Orbe C, et al. 2021. GCAP 2.0: A global 3-D chemical-transport model framework for past, present, and future climate scenarios [J]. Geosci. Model Dev., 14(9): 5789−5823. doi: 10.5194/gmd-14-5789-2021
|
Myhre G, Shindell D, Bréon F M, et al. 2013. Anthropogenic and natural radiative forcing [M]//IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the 5th Assessment Report of the IPCC. Cambridge: Cambridge University Press, 659–740.
|
O’ Dell C W, Connor B, Bösch H, et al. 2012. The ACOS CO2 retrieval algorithm-Part 1: Description and validation against synthetic observations [J]. Atmos. Meas. Tech., 5(1): 99−121. doi: 10.5194/amt-5-99-2012
|
Palmer P I, Feng L, Lunt M F, et al. 2021. The added value of satellite observations of methane for understanding the contemporary methane budget [J]. Philos. Trans. Roy. Soc. A Mathemat. Phys. Eng. Sci., 379(2210): 20210106. doi: 10.1098/rsta.2021.0106
|
Pandey S, Gautam R, Houweling S, et al. 2019. Satellite observations reveal extreme methane leakage from a natural gas well blowout [J]. Proc. Natl. Acad. Sci. USA, 116(52): 26376−26381. doi: 10.1073/pnas.1908712116
|
Parker R J, Webb A, Boesch H, et al. 2020. A decade of GOSAT Proxy satellite CH4 observations [J]. Earth Syst. Sci. Data, 12(4): 3383−3412. doi: 10.5194/essd-12-3383-2020
|
Payne V H, Clough S A, Shephard M W, et al. 2009. Information-centered representation of retrievals with limited degrees of freedom for signal: Application to methane from the tropospheric emission spectrometer [J]. J. Geophys. Res. Atmos., 114(D10): D10307. doi: 10.1029/2008JD010155
|
朴世龙, 何悦, 王旭辉, 等. 2022. 中国陆地生态系统碳汇估算: 方法、进展、展望 [J]. 中国科学: 地球科学, 52(6): 1010–1020.
Piao Shilong, He Yue, Wang Xuhui, et al. 2022. Estimation of China’ s Terrestrial ecosystem carbon sink: Methods, progress and prospects [J]. Sci. China Earth Sci. , 65(4): 641-651. doi:10.1007/s11430-021-9892-6
|
Plant G, Kort E A, Murray L T, et al. 2022. Evaluating urban methane emissions from space using TROPOMI methane and carbon monoxide observations [J]. Remote Sens. Environ., 268: 112756. doi: 10.1016/j.rse.2021.112756
|
Qu Z, Jacob D J, Shen L, et al. 2021. Global distribution of methane emissions: A comparative inverse analysis of observations from the TROPOMI and GOSAT satellite instruments [J]. Atmos. Chem. Phys., 21(18): 14159−14175. doi: 10.5194/acp-21-14159-2021
|
Rohrschneider R R, Wofsy S, Franklin J E, et al. 2021. The MethaneSAT Mission [C]//35th Annual Small Satellite Conference.
|
Saito R, Patra P K, Sweeney C, et al. 2013. TransCom model simulations of methane: Comparison of vertical profiles with aircraft measurements [J]. J. Geophys. Res. Atmos., 118(9): 3891−3904. doi: 10.1002/jgrd.50380
|
Saunois M, Stavert A R, Poulter B, et al. 2020. The Global Methane Budget 2000–2017 [J]. Earth Syst. Sci. Data, 12(3): 1561−1623. doi: 10.5194/essd-12-1561-2020
|
Schneising O, Burrows J P, Dickerson R R, et al. 2014. Remote sensing of fugitive methane emissions from oil and gas production in North American tight geologic formations [J]. Earth’ s Fut., 2(10): 548–558. doi:10.1002/2014EF000265
|
Schneising O, Buchwitz M, Reuter M, et al. 2019. A scientific algorithm to simultaneously retrieve carbon monoxide and methane from TROPOMI onboard Sentinel-5 Precursor [J]. Atmos. Meas. Tech., 12(12): 6771−6802. doi: 10.5194/amt-12-6771-2019
|
Sierk B, Fernandez V, Bézy J L, et al. 2021. The Copernicus CO2M mission for monitoring anthropogenic carbon dioxide emissions from space [C]//Proceedings Volume 11852, International Conference on Space Optics — ICSO 2020. ICSO, 118523M. doi:10.1117/12.2599613
|
Somkuti P, O’ Dell C W, Crowell S, et al. 2021. Solar-induced chlorophyll fluorescence from the Geostationary Carbon Cycle Observatory (GeoCarb): An extensive simulation study [J]. Remote Sens. Environ., 263: 112565. doi: 10.1016/j.rse.2021.112565
|
Stanevich I, Jones D B A, Strong K, et al. 2020. Characterizing model errors in chemical transport modeling of methane: Impact of model resolution in versions v9-02 of GEOS-Chem and v35j of its adjoint model [J]. Geosci. Model Dev., 13(9): 3839−3862. doi: 10.5194/gmd-13-3839-2020
|
孙允珠, 蒋光伟, 李云端, 等. 2018. “高分五号”卫星概况及应用前景展望 [J]. 航天返回与遥感, 39(3): 1−13. doi: 10.3969/j.issn.1009-8518.2018.03.001
Sun Yunzhu, Jiang Guangwei, Li Yunduan, et al. 2018. GF-5 satellite: Overview and application prospects [J]. Spacecr. Recov. Remote Sens. (in Chinese), 39(3): 1−13. doi: 10.3969/j.issn.1009-8518.2018.03.001
|
Suto H, Kataoka F, Kikuchi N, et al. 2021. Thermal and near-infrared sensor for carbon observation Fourier transform spectrometer-2 (TANSO-FTS-2) on the Greenhouse gases Observing SATellite-2 (GOSAT-2) during its first year in orbit [J]. Atmos. Meas. Tech., 14(3): 2013−2039. doi: 10.5194/amt-14-2013-2021
|
Tenkanen M, Tsuruta A, Rautiainen K, et al. 2021. Utilizing earth observations of soil freeze/thaw data and atmospheric concentrations to estimate cold season methane emissions in the northern high latitudes [J]. Remote Sens., 13(24): 5059. doi: 10.3390/rs13245059
|
Tollefson J. 2022. Scientists raise alarm over ‘dangerously fast’ growth in atmospheric methane [J/OL]. Nature. https://www.nature.com/articles/d41586-022-00312-2
|
Trishchenko A P, Trichtchenko L D, Garand L. 2019. Highly elliptical orbits for polar regions with reduced total ionizing dose [J]. Adv. Space Res., 63(12): 3761−3767. doi: 10.1016/j.asr.2019.04.005
|
Turner A J, Frankenberg C, Kort E A. 2019. Interpreting contemporary trends in atmospheric methane [J]. Proc. Natl. Acad. Sci. USA, 116(8): 2805−2813. doi: 10.1073/pnas.1814297116
|
Turner A J, Jacob D J, Wecht K J, et al. 2015. Estimating global and North American methane emissions with high spatial resolution using GOSAT satellite data [J]. Atmos. Chem. Phys., 15(12): 7049−7069. doi: 10.5194/acp-15-7049-2015
|
Varon D J, Jacob D J, Jervis D, et al. 2020. Quantifying time-averaged methane emissions from individual coal mine vents with GHGSat-D satellite observations [J]. Environ. Sci. Technol., 54(16): 10246−10253. doi: 10.1021/acs.est.0c01213
|
Varon D J, Jervis D, McKeever J, et al. 2021. High-frequency monitoring of anomalous methane point sources with multispectral Sentinel-2 satellite observations [J]. Atmos. Meas. Tech., 14(4): 2771−2785. doi: 10.5194/amt-14-2771-2021
|
Von Clarmann T, Degenstein D A, Livesey N J, et al. 2020. Overview: Estimating and reporting uncertainties in remotely sensed atmospheric composition and temperature [J]. Atmos. Meas. Tech., 13(8): 4393−4436. doi: 10.5194/amt-13-4393-2020
|
Wang S B, Ke J, Chen S J, et al. 2020. Performance evaluation of spaceborne integrated path differential absorption lidar for carbon dioxide detection at 1572 nm [J]. Remote Sens., 12(16): 2570. doi: 10.3390/rs12162570
|
Wang Y L, Wang X H, Wang K, et al. 2022. The size of the land carbon sink in China [J]. Nature, 603(7901): E7−E9. doi: 10.1038/s41586-021-04255-y
|
Weber T, Wiseman N A, Kock A. 2019. Global ocean methane emissions dominated by shallow coastal waters [J]. Nat. Commun., 10(1): 4584. doi: 10.1038/s41467-019-12541-7
|
Worden J R, Turner A J, Bloom A, et al. 2015. Quantifying lower tropospheric methane concentrations using GOSAT near-IR and TES thermal IR measurements [J]. Atmos. Meas. Tech., 8(8): 3433−3445. doi: 10.5194/amt-8-3433-2015
|
Wunch D, Toon G C, Blavier J F L, et al. 2011. The total carbon column observing network [J]. Philos. Trans. Roy. Soc. A, 369(1943): 2087−2112. doi: 10.1098/rsta.2010.0240
|
Xiong X, Barnet C, Maddy E S, et al. 2013. Mid-upper tropospheric methane retrieval from IASI and its validation [J]. Atmos. Meas. Tech., 6(9): 2255−2265. doi: 10.5194/amt-6-2255-2013
|
Yang D, Boesch H, Liu Y, et al. 2020a. Toward high precision XCO2 retrievals from TanSat observations: Retrieval improvement and validation against TCCON measurements [J]. J. Geophys. Res. Atmos., 125(22): e2020JD032794. doi: 10.1029/2020JD032794
|
Yang D X, Liu Y, Cai Z N, et al. 2015. An advanced carbon dioxide retrieval algorithm for satellite measurements and its application to GOSAT observations [J]. Sci. Bull., 60(23): 2063−2066. doi: 10.1007/s11434-015-0953-2
|
Yang D X, Zhang H F, Liu Y, et al. 2017. Monitoring carbon dioxide from space: Retrieval algorithm and flux inversion based on GOSAT data and using CarbonTracker-China [J]. Adv. Atmos. Sci., 34(8): 965−976. doi: 10.1007/s00376-017-6221-4
|
Yang Y, Zhou M Q, Langerock B, et al. 2020b. New ground-based Fourier-transform near-infrared solar absorption measurements of XCO2, XCH4 and XCO at Xianghe, China [J]. Earth Syst. Sci. Data, 12(3): 1679−1696. doi: 10.5194/essd-12-1679-2020
|
Yoshida Y, Ota Y, Eguchi N, et al. 2011. Retrieval algorithm for CO2 and CH4 column abundances from short-wavelength infrared spectral observations by the Greenhouse gases observing satellite [J]. Atmos. Meas. Tech., 4(4): 717−734. doi: 10.5194/amt-4-717-2011
|
Yoshida Y, Kikuchi N, Morino I, et al. 2013. Improvement of the retrieval algorithm for GOSAT SWIR XCO2 and XCH4 and their validation using TCCON data [J]. Atmos. Meas. Tech., 6(6): 1533−1547. doi: 10.5194/amt-6-1533-2013
|
Zhang Y Z, Jacob D J, Maasakkers J D, et al. 2018. Monitoring global tropospheric OH concentrations using satellite observations of atmospheric methane [J]. Atmos. Chem. Phys., 18(21): 15959−15973. doi: 10.5194/acp-18-15959-2018
|
Zhang Y Z, Gautam R, Pandey S, et al. 2020. Quantifying methane emissions from the largest oil-producing basin in the United States from space [J]. Sci. Adv., 6(17): eaaz5120. doi: 10.1126/sciadv.aaz5120
|
Zhang Y Z, Jacob D J, Lu X, et al. 2021. Attribution of the accelerating increase in atmospheric methane during 2010–2018 by inverse analysis of GOSAT observations [J]. Atmos. Chem. Phys., 21(5): 3643−3666. doi: 10.5194/acp-21-3643-2021
|