Processing math: 100%

Advanced Search
YAO Lu, YANG Dongxu, CAI Zhaonan, et al. 2022. Status and Trend Analysis of Atmospheric Methane Satellite Measurement for Carbon Neutrality and Carbon Peaking in China [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 46(6): 1469−1483. DOI: 10.3878/j.issn.1006-9895.2207.22096
Citation: YAO Lu, YANG Dongxu, CAI Zhaonan, et al. 2022. Status and Trend Analysis of Atmospheric Methane Satellite Measurement for Carbon Neutrality and Carbon Peaking in China [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 46(6): 1469−1483. DOI: 10.3878/j.issn.1006-9895.2207.22096

Status and Trend Analysis of Atmospheric Methane Satellite Measurement for Carbon Neutrality and Carbon Peaking in China

Funds: National Key Research and Development Program of China (Grant 2021YFB3901000), National Natural Science Foundation of China (Grants 41905029, 42105113)
More Information
  • Received Date: June 07, 2022
  • Accepted Date: August 11, 2022
  • Available Online: August 23, 2022
  • Published Date: November 23, 2022
  • Methane (CH4) is an important greenhouse gas, and its radiative forcing is second only to that of carbon dioxide (CO2). Reducing CH4 emissions is necessary to control global warming and achieve carbon neutrality. To achieve carbon neutrality by 2060, quickly locating emission sources and accurately estimating the distribution of global and regional CH4 sources and sinks are of great practical importance for formulating, implementing, and evaluating mitigation measures. In addition, combining long-term CH4 observation data and climate system models to explore the changing trend in atmospheric CH4 concentration is a premise for predicting and actively responding to climate change. The 49th session of the Intergovernmental Panel on Climate Change (IPCC 49) proposed a “top-down” approach to calculating fluxes to verify emission inventories. This method is mainly based on atmospheric measurements, indicating the importance of obtaining high-precision, global-scale CH4 observation data with high spatial and temporal resolution. To achieve carbon neutrality, we start with several key scientific issues that must be solved in atmospheric CH4 research to analyze the requirements of CH4 satellite measurement. In this paper, we also summarize the status and development trend of CH4 satellite measurement and briefly introduce the implementation of China’s next-generation carbon satellite. Space-based CH4 measurement relies on high-precision retrieval algorithms to provide reliable data products for monitoring and further applications. On the basis of the status of the CH4 satellite remote sensing retrieval algorithm and the application of corresponding data products in emission monitoring and flux estimation, we further discuss the necessity of improving calculation efficiency and accuracy for the remote sensing retrieval algorithm and flux inversion algorithm. As for monitoring and controlling the anthropogenic emission process, developing a rapid identification algorithm for methane plumes and an emission evaluation method should also be considered. Finally, this paper summarizes the detection, data acquisition, and application of satellite-based CH4 measurements and indicates the scientific application potential of CH4 satellite observations for carbon neutrality goals.
  • Alberti C, Hase F, Frey M, et al. 2022. Improved calibration procedures for the EM27/SUN spectrometers of the COllaborative Carbon Column Observing Network (COCCON) [J]. Atmos. Meas. Tech., 15(8): 2433−2463. doi: 10.5194/amt-15-2433-2022
    Bergamaschi P, Frankenberg C, Meirink J F, et al. 2009. Inverse modeling of global and regional CH4 emissions using SCIAMACHY satellite retrievals [J]. J. Geophys. Res. Atmos., 114(22): 1−28. doi: 10.1029/2009JD012287
    Bergamaschi P, Corazza M, Karstens U, et al. 2015. Top-down estimates of European CH4 and N2O emissions based on four different inverse models [J]. Atmos. Chem. Phys., 15(2): 715−736. doi: 10.5194/acp-15-715-2015
    Bi Y M, Zhang P, Yang Z D, et al. 2022. Fast CO2 retrieval using a semi-physical statistical model for the high-resolution spectrometer on the Fengyun-3D satellite [J]. J. Meteor. Res., 36(2): 374−386. doi: 10.1007/s13351-022-1149-8
    Boesch H, Baker D, Connor B, et al. 2011. Global characterization of CO2 column retrievals from shortwave-infrared satellite observations of the Orbiting Carbon Observatory-2 mission [J]. Remote Sens., 3(2): 270−304. doi: 10.3390/rs3020270
    Buchwitz M, De Beek R, Bramstedt K, et al. 2004. Global carbon monoxide as retrieved from Sciamachy by WFM-DOAS [J]. Atmos. Chem. Phys., 4(7): 1945−1960. doi: 10.5194/acp-4-1945-2004
    Buchwitz M, De Beek R, Noël S, et al. 2006. Atmospheric carbon gases retrieved from SCIAMACHY by WFM-DOAS: Version 0.5 CO and CH4 and impact of calibration improvements on CO2 retrieval [J]. Atmos. Chem. Phys., 6(9): 2727−2751. doi: 10.5194/acp-6-2727-2006
    Buchwitz M, Reuter M, Schneising O, et al. 2015. The Greenhouse Gas Climate Change Initiative (GHG-CCI): Comparison and quality assessment of near-surface-sensitive satellite-derived CO2 and CH4 global data sets [J]. Remote Sens. Environ., 162: 344−362. doi: 10.1016/j.rse.2013.04.024
    Buchwitz M, Schneising O, Reuter M, et al. 2017. Satellite-derived methane hotspot emission estimates using a fast data-driven method [J]. Atmos. Chem. Phys., 17(9): 5751−5774. doi: 10.5194/acp-17-5751-2017
    Butz A, Hasekamp O P, Frankenberg C, et al. 2010. CH4 retrievals from space-based solar backscatter measurements: Performance evaluation against simulated aerosol and cirrus loaded scenes [J]. J. Geophys. Res. Atmos., 115(D24): D24302. doi: 10.1029/2010JD014514
    Butz A, Guerlet S, Hasekamp O, et al. 2011. Toward accurate CO2 and CH4 observations from GOSAT [J]. Geophys. Res. Lett., 38(14): L14812. doi: 10.1029/2011GL047888
    Cai Z N, Che K, Liu Y, et al. 2021. Decreased anthropogenic CO2 emissions during the COVID-19 pandemic estimated from FTS and MAX-DOAS measurements at urban Beijing [J]. Remote Sens., 13(3): 517. doi: 10.3390/rs13030517
    蔡兆男, 成里京, 李婷婷, 等. 2021. 碳中和目标下的若干地球系统科学和技术问题分析 [J]. 中国科学院院刊, 36(5): 602−613. doi: 10.16418/j.issn.1000-3045.20210402002

    Cai Zhaonan, Cheng Lijing, Li Tingting, et al. 2021. Key scientific and technical issues in earth system science towards achieving carbon neutrality in China [J]. Bull. Chinese Acad. Sci. (in Chinese), 36(5): 602−613. doi: 10.16418/j.issn.1000-3045.20210402002
    Checa-Garcia R, Landgraf J, Galli A, et al. 2015. Mapping spectroscopic uncertainties into prospective methane retrieval errors from Sentinel-5 and its precursor [J]. Atmos. Meas. Tech., 8(9): 3617−3629. doi: 10.5194/amt-8-3617-2015
    Chen J, Dietrich F, Maazallahi H, et al. 2020. Methane emissions from the Munich Oktoberfest [J]. Atmos. Chem. Phys., 20(6): 3683−3696. doi: 10.5194/acp-20-3683-2020
    陈良富, 尚华哲, 范萌, 等. 2021. 高分五号卫星大气参数探测综述 [J]. 遥感学报, 25(9): 1917−1931. doi: 10.11834/jrs.20210582

    Chen Liangfu, Shang Huazhe, Fan Meng, et al. 2021. Mission overview of the GF-5 satellite for atmospheric parameter monitoring [J]. Natl. Remote Sens. Bull. (in Chinese), 25(9): 1917−1931. doi: 10.11834/jrs.20210582
    Crevoisier C, Nobileau D, Fiore A M, et al. 2009. A new insight on tropospheric methane in the Tropics-first year from IASI hyperspectral infrared observations [J]. Atmos. Chem. Phys., 9(2): 6855−6887. doi: 10.5194/acpd-9-6855-2009
    Crisp D, Fisher B M, O’Dell C, et al. 2012. The ACOS CO2 retrieval algorithm. Part II: Global XCO2 data characterization [J]. Atmos. Meas. Tech., 5(4): 687−707. doi: 10.5194/amt-5-687-2012
    Crisp D, Meijer Y, Munro R, et al. 2018. A constellation architecture for monitoring carbon dioxide and methane from space [R]. Committee on Earth Observation Satellites.
    De Vrese P, Stacke T, Kleinen T, et al. 2021. Diverging responses of high-latitude CO2 and CH4 emissions in idealized climate change scenarios [J]. Cryosphere, 15(2): 1097−1130. doi: 10.5194/tc-15-1097-2021
    邓剑波. 2015. 短波红外卫星遥感甲烷大气柱平均干空气混合比反演算法研究 [D]. 中国科学院大学博士学位论文. Deng Jianbo. 2015. Retrieval algorithm for XCH4 with shortwave infrared satellite observations [D]. Ph. D. dissertation (in Chinese), University of Chinese Academy of Sciences.
    Deng J B, Liu Y, Yang D X, et al. 2014. CH4 retrieval from hyperspectral satellite measurements in short-wave infrared: Sensitivity study and preliminary test with GOSAT data [J]. Chinese Sci. Bull., 59(14): 1499−1507. doi: 10.1007/s11434-014-0245-2
    Dupuy E, Morino I, Deutscher N M, et al. 2016. Comparison of XH2O retrieved from GOSAT short-wavelength infrared spectra with observations from the TCCON network [J]. Remote Sens., 8(5): 414. doi: 10.3390/rs8050414
    Ehret G, Bousquet P, Pierangelo C, et al. 2017. MERLIN: A French-German space lidar mission dedicated to atmospheric methane [J]. Remote Sens., 9(10): 1052. doi: 10.3390/rs9101052
    Feng L, Palmer P I, Zhu S H, et al. 2022. Tropical methane emissions explain large fraction of recent changes in global atmospheric methane growth rate [J]. Nat. Commun., 13(1): 1378. doi: 10.1038/s41467-022-28989-z
    Forster P, Ramaswamy P, Artaxo P, et al. 2007. Changes in atmospheric constituents and in radiative forcing [M]//IPCC. Climate Change 2007: The Physical Science Basis, Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (in Chinese). Cambridge: Cambridge University Press, 204.
    GCOS-200. 2016. The Global Observing System for Climate: Implementation Needs [R]. WMO.
    GHG-CCI. 2020. User Requirements Document for the GHG-CCI+ project of ESA’ s Climate Change Initiative, pp. 42, version 3.0.
    Han G, Xu H, Gong W, et al. 2018. Feasibility study on measuring atmospheric CO2 in urban areas using spaceborne CO2-IPDA LIDAR [J]. Remote Sens., 10(7): 985. doi: 10.3390/rs10070985
    Hase F, Frey M, Blumenstock T, et al. 2015. Application of portable FTIR spectrometers for detecting greenhouse gas emissions of the major city Berlin [J]. Atmos. Meas. Tech., 8(7): 3059−3068. doi: 10.5194/amt-8-3059-2015
    Hu H L, Hasekamp O, Butz A, et al. 2016. The operational methane retrieval algorithm for TROPOMI [J]. Atmos. Meas. Tech., 9(11): 5423−5440. doi: 10.5194/amt-9-5423-2016
    IPCC, 2018. Annex I: Glossary [Matthews, J. B. R. (ed.)]. In: Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty [Masson-Delmotte, V. , P. Zhai, H. -O. Pörtner, D. Roberts, J. Skea, P. R. Shukla, A. Pirani, W. Moufouma-Okia, C. Péan, R. Pidcock, S. Connors, J. B. R. Matthews, Y. Chen, X. Zhou, M. I. Gomis, E. Lonnoy, T. Maycock, M. Tignor, and T. Waterfield (eds. )]. Cambridge University Press, Cambridge, UK and New York, NY, USA, 541−562, doi:10.1017/9781009157940.008.
    Jervis D, McKeever J, Durak B O A, et al. 2021. The GHGSat-D imaging spectrometer [J]. Atmos. Meas. Tech., 14(3): 2127−2140. doi: 10.5194/amt-14-2127-2021
    Jones T S, Franklin J E, Chen J, et al. 2021. Assessing urban methane emissions using column observing portable Fourier transform infrared (FTIR) spectrometers and a novel Bayesian inversion framework [J]. Atmos. Chem. Phys., 21(17): 13131−13147. doi: 10.5194/acp-21-13131-2021
    Lan X, Thoning K W, and Dlugokencky E J. 2022. Trends in globally-averaged CH4, N2O, and SF6 determined from NOAA Global Monitoring Laboratory measurements. Version 2022-10, https://doi.org/10.15138/P8XG-AA10
    刘良云, 陈良富, 刘毅, 等. 2022. 全球碳盘点卫星遥感监测方法、进展与挑战 [J]. 遥感学报, 26(2): 243−267. doi: 10.11834/jrs.20221806

    Liu Liangyun, Chen Liangfu, Liu Yi, et al. 2022. Satellite remote sensing for global stocktaking: Methods, progress and perspectives [J]. Natl. Remote Sens. Bull. (in Chinese), 26(2): 243−267. doi: 10.11834/jrs.20221806
    刘毅, 杨东旭, 蔡兆男. 2013. 中国碳卫星大气CO2反演方法: GOSAT数据初步应用 [J]. 科学通报, 58(11): 996–999. Liu Yi, Yang Dongxu, Cai Zhaonan. 2013. A retrieval algorithm for TanSat XCO2 observation: Retrieval experiments using GOSAT data [J]. Chinese Sci. Bull. , 58(13): 1520–1523. doi: 10.1007/s11434-013-5680-y
    刘毅, 王婧, 车轲, 等. 2021. 温室气体的卫星遥感—进展与趋势 [J]. 遥感学报, 25(1): 53−64. doi: 10.11834/jrs.20210081

    Liu Yi, Wang Jing, Che Ke, et al. 2021. Satellite remote sensing of greenhouse gases: Progress and trends [J]. Natl. Remote Sens. Bull. (in Chinese), 25(1): 53−64. doi: 10.11834/jrs.20210081
    Lorente A, Borsdorff T, Butz A, et al. 2021. Methane retrieved from TROPOMI: Improvement of the data product and validation of the first 2 years of measurements [J]. Atmos. Meas. Tech., 14(1): 665−684. doi: 10.5194/amt-14-665-2021
    Lunt M F, Palmer P I, Feng L, et al. 2019. An increase in methane emissions from tropical Africa between 2010 and 2016 inferred from satellite data [J]. Atmos. Chem. Phys., 19(23): 14721−14740. doi: 10.5194/acp-19-14721-2019
    Maasakkers J D, Jacob D J, Sulprizio M P, et al. 2019. Global distribution of methane emissions, emission trends, and OH concentrations and trends inferred from an inversion of GOSAT satellite data for 2010–2015 [J]. Atmos. Chem. Phys., 19(11): 7859−7881. doi: 10.5194/acp-19-7859-2019
    Maasakkers J D, Jacob D J, Sulprizio M P, et al. 2021. 2010–2015 North American methane emissions, sectoral contributions, and trends: A high-resolution inversion of GOSAT observations of atmospheric methane [J]. Atmos. Chem. Phys., 21(6): 4339−4356. doi: 10.5194/acp-21-4339-2021
    Meijer Y, Boesch H, Bombelli A, et al. 2020. Copernicus CO2 Monitoring Mission Requirements Document (MRD)[R]. European Space Agency, Earth and Mission Science Division revision 3. https://esamultimedia.esa.int/docs/EarthObservation/CO2M_MRD_v3.0_20201001_Issued.pdf.
    Miller S M, Michalak A M, Detmers R G, et al. 2019. China’s coal mine methane regulations have not curbed growing emissions [J]. Nat. Commun., 10(1): 303. doi: 10.1038/s41467-018-07891-7
    Moore III B, Crowell S M R, Rayner P J, et al. 2018. The Potential of the Geostationary Carbon Cycle Observatory (GeoCarb) to provide multi-scale constraints on the carbon cycle in the Americas [J]. Front. Environ. Sci., 6: 109. doi: 10.3389/fenvs.2018.00109
    Murray L T, Leibensperger E M, Orbe C, et al. 2021. GCAP 2.0: A global 3-D chemical-transport model framework for past, present, and future climate scenarios [J]. Geosci. Model Dev., 14(9): 5789−5823. doi: 10.5194/gmd-14-5789-2021
    Myhre G, Shindell D, Bréon F M, et al. 2013. Anthropogenic and natural radiative forcing [M]//IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the 5th Assessment Report of the IPCC. Cambridge: Cambridge University Press, 659–740.
    O’ Dell C W, Connor B, Bösch H, et al. 2012. The ACOS CO2 retrieval algorithm-Part 1: Description and validation against synthetic observations [J]. Atmos. Meas. Tech., 5(1): 99−121. doi: 10.5194/amt-5-99-2012
    Palmer P I, Feng L, Lunt M F, et al. 2021. The added value of satellite observations of methane for understanding the contemporary methane budget [J]. Philos. Trans. Roy. Soc. A Mathemat. Phys. Eng. Sci., 379(2210): 20210106. doi: 10.1098/rsta.2021.0106
    Pandey S, Gautam R, Houweling S, et al. 2019. Satellite observations reveal extreme methane leakage from a natural gas well blowout [J]. Proc. Natl. Acad. Sci. USA, 116(52): 26376−26381. doi: 10.1073/pnas.1908712116
    Parker R J, Webb A, Boesch H, et al. 2020. A decade of GOSAT Proxy satellite CH4 observations [J]. Earth Syst. Sci. Data, 12(4): 3383−3412. doi: 10.5194/essd-12-3383-2020
    Payne V H, Clough S A, Shephard M W, et al. 2009. Information-centered representation of retrievals with limited degrees of freedom for signal: Application to methane from the tropospheric emission spectrometer [J]. J. Geophys. Res. Atmos., 114(D10): D10307. doi: 10.1029/2008JD010155
    朴世龙, 何悦, 王旭辉, 等. 2022. 中国陆地生态系统碳汇估算: 方法、进展、展望 [J]. 中国科学: 地球科学, 52(6): 1010–1020.

    Piao Shilong, He Yue, Wang Xuhui, et al. 2022. Estimation of China’ s Terrestrial ecosystem carbon sink: Methods, progress and prospects [J]. Sci. China Earth Sci. , 65(4): 641-651. doi:10.1007/s11430-021-9892-6
    Plant G, Kort E A, Murray L T, et al. 2022. Evaluating urban methane emissions from space using TROPOMI methane and carbon monoxide observations [J]. Remote Sens. Environ., 268: 112756. doi: 10.1016/j.rse.2021.112756
    Qu Z, Jacob D J, Shen L, et al. 2021. Global distribution of methane emissions: A comparative inverse analysis of observations from the TROPOMI and GOSAT satellite instruments [J]. Atmos. Chem. Phys., 21(18): 14159−14175. doi: 10.5194/acp-21-14159-2021
    Rohrschneider R R, Wofsy S, Franklin J E, et al. 2021. The MethaneSAT Mission [C]//35th Annual Small Satellite Conference.
    Saito R, Patra P K, Sweeney C, et al. 2013. TransCom model simulations of methane: Comparison of vertical profiles with aircraft measurements [J]. J. Geophys. Res. Atmos., 118(9): 3891−3904. doi: 10.1002/jgrd.50380
    Saunois M, Stavert A R, Poulter B, et al. 2020. The Global Methane Budget 2000–2017 [J]. Earth Syst. Sci. Data, 12(3): 1561−1623. doi: 10.5194/essd-12-1561-2020
    Schneising O, Burrows J P, Dickerson R R, et al. 2014. Remote sensing of fugitive methane emissions from oil and gas production in North American tight geologic formations [J]. Earth’ s Fut., 2(10): 548–558. doi:10.1002/2014EF000265
    Schneising O, Buchwitz M, Reuter M, et al. 2019. A scientific algorithm to simultaneously retrieve carbon monoxide and methane from TROPOMI onboard Sentinel-5 Precursor [J]. Atmos. Meas. Tech., 12(12): 6771−6802. doi: 10.5194/amt-12-6771-2019
    Sierk B, Fernandez V, Bézy J L, et al. 2021. The Copernicus CO2M mission for monitoring anthropogenic carbon dioxide emissions from space [C]//Proceedings Volume 11852, International Conference on Space Optics — ICSO 2020. ICSO, 118523M. doi:10.1117/12.2599613
    Somkuti P, O’ Dell C W, Crowell S, et al. 2021. Solar-induced chlorophyll fluorescence from the Geostationary Carbon Cycle Observatory (GeoCarb): An extensive simulation study [J]. Remote Sens. Environ., 263: 112565. doi: 10.1016/j.rse.2021.112565
    Stanevich I, Jones D B A, Strong K, et al. 2020. Characterizing model errors in chemical transport modeling of methane: Impact of model resolution in versions v9-02 of GEOS-Chem and v35j of its adjoint model [J]. Geosci. Model Dev., 13(9): 3839−3862. doi: 10.5194/gmd-13-3839-2020
    孙允珠, 蒋光伟, 李云端, 等. 2018. “高分五号”卫星概况及应用前景展望 [J]. 航天返回与遥感, 39(3): 1−13. doi: 10.3969/j.issn.1009-8518.2018.03.001

    Sun Yunzhu, Jiang Guangwei, Li Yunduan, et al. 2018. GF-5 satellite: Overview and application prospects [J]. Spacecr. Recov. Remote Sens. (in Chinese), 39(3): 1−13. doi: 10.3969/j.issn.1009-8518.2018.03.001
    Suto H, Kataoka F, Kikuchi N, et al. 2021. Thermal and near-infrared sensor for carbon observation Fourier transform spectrometer-2 (TANSO-FTS-2) on the Greenhouse gases Observing SATellite-2 (GOSAT-2) during its first year in orbit [J]. Atmos. Meas. Tech., 14(3): 2013−2039. doi: 10.5194/amt-14-2013-2021
    Tenkanen M, Tsuruta A, Rautiainen K, et al. 2021. Utilizing earth observations of soil freeze/thaw data and atmospheric concentrations to estimate cold season methane emissions in the northern high latitudes [J]. Remote Sens., 13(24): 5059. doi: 10.3390/rs13245059
    Tollefson J. 2022. Scientists raise alarm over ‘dangerously fast’ growth in atmospheric methane [J/OL]. Nature. https://www.nature.com/articles/d41586-022-00312-2
    Trishchenko A P, Trichtchenko L D, Garand L. 2019. Highly elliptical orbits for polar regions with reduced total ionizing dose [J]. Adv. Space Res., 63(12): 3761−3767. doi: 10.1016/j.asr.2019.04.005
    Turner A J, Frankenberg C, Kort E A. 2019. Interpreting contemporary trends in atmospheric methane [J]. Proc. Natl. Acad. Sci. USA, 116(8): 2805−2813. doi: 10.1073/pnas.1814297116
    Turner A J, Jacob D J, Wecht K J, et al. 2015. Estimating global and North American methane emissions with high spatial resolution using GOSAT satellite data [J]. Atmos. Chem. Phys., 15(12): 7049−7069. doi: 10.5194/acp-15-7049-2015
    Varon D J, Jacob D J, Jervis D, et al. 2020. Quantifying time-averaged methane emissions from individual coal mine vents with GHGSat-D satellite observations [J]. Environ. Sci. Technol., 54(16): 10246−10253. doi: 10.1021/acs.est.0c01213
    Varon D J, Jervis D, McKeever J, et al. 2021. High-frequency monitoring of anomalous methane point sources with multispectral Sentinel-2 satellite observations [J]. Atmos. Meas. Tech., 14(4): 2771−2785. doi: 10.5194/amt-14-2771-2021
    Von Clarmann T, Degenstein D A, Livesey N J, et al. 2020. Overview: Estimating and reporting uncertainties in remotely sensed atmospheric composition and temperature [J]. Atmos. Meas. Tech., 13(8): 4393−4436. doi: 10.5194/amt-13-4393-2020
    Wang S B, Ke J, Chen S J, et al. 2020. Performance evaluation of spaceborne integrated path differential absorption lidar for carbon dioxide detection at 1572 nm [J]. Remote Sens., 12(16): 2570. doi: 10.3390/rs12162570
    Wang Y L, Wang X H, Wang K, et al. 2022. The size of the land carbon sink in China [J]. Nature, 603(7901): E7−E9. doi: 10.1038/s41586-021-04255-y
    Weber T, Wiseman N A, Kock A. 2019. Global ocean methane emissions dominated by shallow coastal waters [J]. Nat. Commun., 10(1): 4584. doi: 10.1038/s41467-019-12541-7
    Worden J R, Turner A J, Bloom A, et al. 2015. Quantifying lower tropospheric methane concentrations using GOSAT near-IR and TES thermal IR measurements [J]. Atmos. Meas. Tech., 8(8): 3433−3445. doi: 10.5194/amt-8-3433-2015
    Wunch D, Toon G C, Blavier J F L, et al. 2011. The total carbon column observing network [J]. Philos. Trans. Roy. Soc. A, 369(1943): 2087−2112. doi: 10.1098/rsta.2010.0240
    Xiong X, Barnet C, Maddy E S, et al. 2013. Mid-upper tropospheric methane retrieval from IASI and its validation [J]. Atmos. Meas. Tech., 6(9): 2255−2265. doi: 10.5194/amt-6-2255-2013
    Yang D, Boesch H, Liu Y, et al. 2020a. Toward high precision XCO2 retrievals from TanSat observations: Retrieval improvement and validation against TCCON measurements [J]. J. Geophys. Res. Atmos., 125(22): e2020JD032794. doi: 10.1029/2020JD032794
    Yang D X, Liu Y, Cai Z N, et al. 2015. An advanced carbon dioxide retrieval algorithm for satellite measurements and its application to GOSAT observations [J]. Sci. Bull., 60(23): 2063−2066. doi: 10.1007/s11434-015-0953-2
    Yang D X, Zhang H F, Liu Y, et al. 2017. Monitoring carbon dioxide from space: Retrieval algorithm and flux inversion based on GOSAT data and using CarbonTracker-China [J]. Adv. Atmos. Sci., 34(8): 965−976. doi: 10.1007/s00376-017-6221-4
    Yang Y, Zhou M Q, Langerock B, et al. 2020b. New ground-based Fourier-transform near-infrared solar absorption measurements of XCO2, XCH4 and XCO at Xianghe, China [J]. Earth Syst. Sci. Data, 12(3): 1679−1696. doi: 10.5194/essd-12-1679-2020
    Yoshida Y, Ota Y, Eguchi N, et al. 2011. Retrieval algorithm for CO2 and CH4 column abundances from short-wavelength infrared spectral observations by the Greenhouse gases observing satellite [J]. Atmos. Meas. Tech., 4(4): 717−734. doi: 10.5194/amt-4-717-2011
    Yoshida Y, Kikuchi N, Morino I, et al. 2013. Improvement of the retrieval algorithm for GOSAT SWIR XCO2 and XCH4 and their validation using TCCON data [J]. Atmos. Meas. Tech., 6(6): 1533−1547. doi: 10.5194/amt-6-1533-2013
    Zhang Y Z, Jacob D J, Maasakkers J D, et al. 2018. Monitoring global tropospheric OH concentrations using satellite observations of atmospheric methane [J]. Atmos. Chem. Phys., 18(21): 15959−15973. doi: 10.5194/acp-18-15959-2018
    Zhang Y Z, Gautam R, Pandey S, et al. 2020. Quantifying methane emissions from the largest oil-producing basin in the United States from space [J]. Sci. Adv., 6(17): eaaz5120. doi: 10.1126/sciadv.aaz5120
    Zhang Y Z, Jacob D J, Lu X, et al. 2021. Attribution of the accelerating increase in atmospheric methane during 2010–2018 by inverse analysis of GOSAT observations [J]. Atmos. Chem. Phys., 21(5): 3643−3666. doi: 10.5194/acp-21-3643-2021

Catalog

    Article views (726) PDF downloads (295) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return