Advanced Search
ZHOU Shu, SUN Fang, WANG Meirong, et al. 2023. Effect of Atmospheric Heat Source on the Tibetan Plateau Vortex During Different Developmental Stages—A Case Study in July 2013 [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 47(3): 907−919. DOI: 10.3878/j.issn.1006-9895.2211.21267
Citation: ZHOU Shu, SUN Fang, WANG Meirong, et al. 2023. Effect of Atmospheric Heat Source on the Tibetan Plateau Vortex During Different Developmental Stages—A Case Study in July 2013 [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 47(3): 907−919. DOI: 10.3878/j.issn.1006-9895.2211.21267

Effect of Atmospheric Heat Source on the Tibetan Plateau Vortex During Different Developmental Stages—A Case Study in July 2013

Funds: Open Project of the Institute of Tibetan Plateau and Polar Meteorology (Grant ITPP2021K01), Second Tibetan Plateau Scientific Expedition and Research (STEP) Program (Grant 2019QZKK0105), Key Program of National Natural Science Foundation of China (Grant 42030602)
More Information
  • Received Date: December 20, 2021
  • Accepted Date: November 24, 2022
  • Available Online: December 25, 2022
  • Published Date: May 14, 2023
  • The Tibetan Plateau (TP) vortex (TPV) is the main precipitation system in summer over the TP and downstream regions. This study analyzes a TPV case from 19 to 21 July 2013, based on high-resolution ERA5 reanalysis, the temperature of black body (TBB) obtained from the Fengyun-2E (FY-2E) satellite, and precipitation amount from TRMM (Tropical Rainfall Measurement Mission). The TPV case keeps active on the TP for about 56 h, which can be divided into three stages: Initial, development, and moving-out. Further, the roles of atmospheric heat sources in TPV during different stages and the related mechanisms are investigated. The results show that the TPV intensity increases with fluctuations. Furthermore, by diagnosing the potential vorticity (PV) tendency equation, it was found that the vertical gradient of diabatic heating is the main factor causing TPV development, i.e., a positive (negative) PV is produced below (above) the height where the maximum center of diabatic heating is situated, strengthening the low-level cyclonic and high-level anticyclonic circulations. Further analyses indicate that the atmospheric heat source increased with fluctuations, with the maximum value appearing at noon and the strongest in the moving-out stage. Notably, the formation of TPV is related to the surface warming center driven by surface sensible heat, while its enhancement is mainly dependent on the latent heat of condensation. Furthermore, the main contributor to the latent heat is analyzed as a vertical transport of water vapor that promotes TPV development.
  • Dell’ Osso L, Chen S J. 1986. Numerical experiments on the genesis of vortices over the Qinghai–Tibet Plateau [J]. Tellus A:Dynamic Meteorology and Oceanography, 38(3): 236−250. doi: 10.3402/tellusa.v38i3.11715
    丁一汇. 1993.1991年江淮流域持续性特大暴雨研究[M]. 北京: 气象出版社, 113–128

    Ding Yihui. 1993. Study on Persistent Torrential Rain in Jianghuai River Basin in 1991 (in Chinese) [M]. Beijing: China Meteorological Press, 113–128.
    董元昌, 李国平. 2014. 凝结潜热在高原涡东移发展不同阶段作用的初步研究 [J]. 成都信息工程学院学报, 29(4): 400−407. doi: 10.16836/j.cnki.jcuit.2014.04.013

    Dong Yuanchang, Li Guoping. 2014. A preliminary study on the role played by latent heating during the different periods of the Tibetan Plateau vortex’s eastward movement and development [J]. Journal of Chengdu University of Information Technology (in Chinese), 29(4): 400−407. doi: 10.16836/j.cnki.jcuit.2014.04.013
    董元昌, 李国平. 2015. 大气能量学揭示的高原低涡个例结构及降水特征 [J]. 大气科学, 39(6): 1136−1148. doi: 10.3878/j.issn.1006-9895.1502.14263

    Dong Yuanchang, Li Guoping. 2015. The structure and precipitation characteristics of typical Tibetan Plateau vortices as revealed by energy analysis [J]. Chinese Journal of Atmospheric Sciences (in Chinese), 39(6): 1136−1148. doi: 10.3878/j.issn.1006-9895.1502.14263
    Feng X Y, Liu C H, Rasmussen R, et al. 2014. A 10-yr climatology of Tibetan Plateau vortices with NCEP climate forecast system reanalysis [J]. J. Appl. Meteor. Climatol., 53(1): 34−46. doi: 10.1175/JAMC-D-13-014.1
    干全. 2019. 2013年7月21~22日陕西省大暴雨天气诊断分析 [J]. 成都信息工程大学学报, 34(1): 77−82. doi: 10.16836/j.cnki.jcuit.2019.01.015

    Gan Quan. 2019. The heavy rainfall event over Shanxi during 21–22th July 2013 [J]. Journal of Chengdu University of Information Technology (in Chinese), 34(1): 77−82. doi: 10.16836/j.cnki.jcuit.2019.01.015
    何光碧, 高文良, 屠妮妮. 2009. 两次高原低涡东移特征及发展机制动力诊断 [J]. 气象学报, 67(4): 599−612. doi: 10.11676/qxxb2009.060

    He Guangbi, Gao Wenliang, Tu Nini. 2009. The dynamic diagnosis on eastwards moving characteristics and developing mechanism of two Tibetan Plateau vortex processes [J]. Acta Meteor. Sinica (in Chinese), 67(4): 599−612. doi: 10.11676/qxxb2009.060
    Hersbach H, Bell B, Berrisford P, et al. 2020. The ERA5 global reanalysis [J]. Quart. J. Roy. Meteor. Soc., 146(730): 1999−2049. doi: 10.1002/qj.3803
    Hoskins B. 2015. Potential vorticity and the PV perspective [J]. Adv. Atmos. Sci., 32(1): 2−9. doi: 10.1007/s00376-014-0007-8
    Hoskins B J, McIntyre M E, Robertson A W. 1985. On the use and significance of isentropic potential vorticity maps [J]. Quart. J. Roy. Meteor. Soc., 111(470): 877−946. doi: 10.1002/qj.49711147002
    李国平, 赵邦杰, 杨锦青. 2002. 地面感热对青藏高原低涡流场结构及发展的作用 [J]. 大气科学, 26(4): 519−525. doi: 10.3878/j.issn.1006-9895.2002.04.09

    Li Guoping, Zhao Bangjie, Yang Jinqing. 2002. A dynamical study of the role of surface sensible heating in the structure and intensification of the Tibetan Plateau vortices [J]. Chinese J. Atmos. Sci. (in Chinese), 26(4): 519−525. doi: 10.3878/j.issn.1006-9895.2002.04.09
    Li L, Zhang R H, Wen M, et al. 2014. Effect of the atmospheric heat source on the development and eastward movement of the Tibetan Plateau vortices [J]. Tellus A: Dynamic Meteorology and Oceanography, 66(1): 24451. doi: 10.3402/tellusa.v66.24451
    Li L, Zhang R H, Wu P L, et al. 2020. Characteristics of convections associated with the Tibetan Plateau vortices based on geostationary satellite data [J]. International Journal of Climatology, 40(11): 4876−4887. doi: 10.1002/joc.6494
    Lin Z Q, Guo W D, Jia L, et al. 2020. Climatology of Tibetan Plateau vortices derived from multiple reanalysis datasets [J]. Climate Dyn., 55(7): 2237−2252. doi: 10.1007/s00382-020-05380-6
    刘晓冉, 李国平. 2006. 青藏高原低涡研究的回顾与展望 [J]. 干旱气象, 24(1): 60−66. doi: 10.3969/j.issn.1006-7639.2006.01.013

    Liu Xiaoran, Li Guoping. 2006. Review and prospect of research on the Tibetan Plateau vortex [J]. J. Arid Meteor. (in Chinese), 24(1): 60−66. doi: 10.3969/j.issn.1006-7639.2006.01.013
    刘云丰, 李国平. 2016. 夏季高原大气热源的气候特征以及与高原低涡生成的关系 [J]. 大气科学, 40(4): 864−876. doi: 10.3878/j.issn.1006-9895.1512.15184

    Liu Yunfeng, Li Guoping. 2016. Climatic characteristics of atmospheric heat source over the Tibetan Plateau and its possible relationship with the generation of the Tibetan Plateau vortex in the summer [J]. Chinese J. Atmos. Sci. (in Chinese), 40(4): 864−876. doi: 10.3878/j.issn.1006-9895.1512.15184
    Luo H B, Yanai M. 1984. The large-scale circulation and heat sources over the Tibetan Plateau and surrounding areas during the early summer of 1979. Part Ⅱ: Heat and Moisture Budgets [J]. Mon. Wea. Rev., 112(5): 966−989. doi: 10.1175/1520-0493(1984)112<0966:TLSCAH>2.0.CO;2
    罗四维, 杨洋. 1992. 一次青藏高原夏季低涡的数值模拟研究 [J]. 高原气象, 11(1): 39−48.

    Luo Siwei, Yang Yang. 1992. A case study on numerical simulation of summer vortex over Qinghai–Xizang (Tibetan) Plateau [J]. Plateau Meteor. (in Chinese), 11(1): 39−48.
    马婷, 刘屹岷, 吴国雄, 等. 2020. 青藏高原低涡形成、发展和东移影响下游暴雨天气个例的位涡分析 [J]. 大气科学, 44(3): 472−486. doi: 10.3878/j.issn.1006-9895.1904.18275

    Ma Ting, Liu Yimin, Wu Guoxiong, et al. 2020. Effect of potential vorticity on the formation, development, and eastward movement of a Tibetan Plateau vortex and its influence on downstream precipitation [J]. Chinese J. Atmos. Sci. (in Chinese), 44(3): 472−486. doi: 10.3878/j.issn.1006-9895.1904.18275
    彭广, 李跃清, 郁淑华, 等. 2015. 青藏高原低涡切变线年鉴 (2013) [M]. 北京: 科学出版社.

    Peng Guang, Li Yueqing, Yu Shuhua, et al. 2015. Tibetan Plateau Vortex and Shear Line Yearbook (2013) [M]. Beijing: China Science Press.
    青藏高原低值系统协作组. 1978. 盛夏青藏高原低涡发生发展的初步研究 [J]. 中国科学(3): 341−350.

    Qinghai–Tibet Plateau Low Value System Cooperation Group. 1978. Preliminary study on the occurrence and development of low vortex in Qinghai–Tibetan Plateau in midsummer [J]. Science China (in Chinese)(3): 341−350.
    宋雯雯, 李国平, 唐钱奎. 2012. 加热和水汽对两例高原低涡影响的数值试验 [J]. 大气科学, 36(1): 117−129. doi: 10.3878/j.issn.1006-9895.2012.01.10

    Song Wenwen, Li Guoping, Tang Qiankui. 2012. Numerical simulation of the effect of heating and water vapor on two cases of Plateau vortex [J]. Chinese J. Atmos. Sci. (in Chinese), 36(1): 117−129. doi: 10.3878/j.issn.1006-9895.2012.01.10
    田珊儒, 段安民, 王子谦, 等. 2015. 地面加热与高原低涡和对流系统相互作用的一次个例研究 [J]. 大气科学, 39(1): 125−136. doi: 10.3878/j.issn.1006-9895.1404.13311

    Tian Shanru, Duan Anmin, Wang Ziqian, et al. 2015. Interaction of surface heating, the Tibetan Plateau vortex, and a convective system: A case study [J]. Chinese J. Atmos. Sci. (in Chinese), 39(1): 125−136. doi: 10.3878/j.issn.1006-9895.1404.13311
    王鑫, 李跃清, 郁淑华, 等. 2009. 青藏高原低涡活动的统计研究 [J]. 高原气象, 28(1): 64−71.

    Wang Xin, Li Yueqing, Yu Shuhua, et al. 2009. Statistical study on the plateau low vortex activities [J]. Plateau Meteor. (in Chinese), 28(1): 64−71.
    Wu D, Zhang F M, Wang C H. 2018. Impacts of diabatic heating on the genesis and development of an inner Tibetan Plateau vortex [J]. J. Geophys. Res.: Atmos., 123(20): 11691−11704. doi: 10.1029/2018JD029240
    吴国雄, 刘屹岷, 刘新, 等. 2005. 青藏高原加热如何影响亚洲夏季的气候格局 [J]. 大气科学, 29(1): 47−56. doi: 10.3878/j.issn.1006-9895.2005.01.06

    Wu Guoxiong, Liu Yimin, Liu Xin, et al. 2005. How the heating over the Tibetan Plateau affects the Asian climate in summer [J]. Chinese J. Atmos. Sci. (in Chinese), 29(1): 47−56. doi: 10.3878/j.issn.1006-9895.2005.01.06
    吴国雄, 刘屹岷, 何编, 等. 2018. 青藏高原感热气泵影响亚洲夏季风的机制 [J]. 大气科学, 42(3): 488−504. doi: 10.3878/j.issn.1006-9895.1801.17279

    Wu Guoxiong, Liu Yimin, He Bian, et al. 2018. Review of the impact of the Tibetan Plateau sensible heat driven air-pump on the Asian summer monsoon [J]. Chinese J. Atmos. Sci. (in Chinese), 42(3): 488−504. doi: 10.3878/j.issn.1006-9895.1801.17279
    许威杰, 张耀存. 2017. 凝结潜热加热与对流反馈对一次高原低涡过程影响的数值模拟 [J]. 高原气象, 36(3): 763−775. doi: 10.7522/j.issn.1000-0534.2016.00061

    Xu Weijie, Zhang Yaocun. 2017. Numerical study on the feedback between latent heating and convection in a Qinghai–Tibetan Plateau vortex [J]. Plateau Meteor. (in Chinese), 36(3): 763−775. doi: 10.7522/j.issn.1000-0534.2016.00061
    Yanai M, Esbensen S, Chu J H. 1973. Determination of bulk properties of tropical cloud clusters from large-scale heat and moisture budgets [J]. J. Atmos. Sci., 30(4): 611−627. doi: 10.1175/1520-0469(1973)030<0611:dobpot>2.0.co;2
    杨克明, 毕宝贵, 李月安, 等. 2001. 1998年长江上游致洪暴雨的分析研究 [J]. 气象, 27(8): 9−14. doi: 10.7519/j.issn.1000-0526.2001.8.002

    Yang Keming, Bi Baogui, Li Yuean, et al. 2001. On flood-causing torrential rainfall in the upstream district of Changjiang River in 1998 [J]. Meteor. Mon. (in Chinese), 27(8): 9−14. doi: 10.7519/j.issn.1000-0526.2001.8.002
    杨颖璨, 李跃清, 陈永仁. 2018. 高原低涡东移加深过程的结构分析 [J]. 高原气象, 37(3): 702−720. doi: 10.7522/j.issn.1000-0534.2017.00054

    Yang Yingcan, Li Yueqing, Chen Yongren. 2018. The characteristic analysis of an eastwards plateau vortex by its strengthening process [J]. Plateau Meteor. (in Chinese), 37(3): 702−720. doi: 10.7522/j.issn.1000-0534.2017.00054
    叶笃正, 高由禧. 1979. 青藏高原气象学[M]. 北京: 科学出版社, 122–126

    Ye Duzhen, Gao Youxi, 1979. Meteorology of Qinghai–Tibet Plateau (in Chinese) [M]. Beijing: Science Press, 122–126.
    郁淑华, 高文良, 彭骏. 2012. 青藏高原低涡活动对降水影响的统计分析 [J]. 高原气象, 31(3): 592−604.

    Yu Shuhua, Gao Wenliang, Peng Jun. 2012. Statistical analysis on influence of Qinghai–Xizang Plateau vortex activity on precipitation in China [J]. Plateau Meteor. (in Chinese), 31(3): 592−604.
    Zhang G S, Mao J Y, Liu Y M, et al. 2021. PV perspective of impacts on downstream extreme rainfall event of a Tibetan Plateau vortex collaborating with a southwest China vortex [J]. Adv. Atmos. Sci., 38(11): 1835−1851. doi: 10.1007/s00376-021-1027-9
    张顺利, 陶诗言, 张庆云, 等. 2001. 1998年夏季中国暴雨洪涝灾害的气象水文特征 [J]. 应用气象学报, 12(4): 442−457. doi: 10.3969/j.issn.1001-7313.2001.04.007

    Zhang Shunli, Tao Shiyan, Zhang Qingyun, et al. 2001. Meteorological and hydrological characteristics of severe flooding in China during the summer of 1998 [J]. Quart. J. Appl. Meteor. (in Chinese), 12(4): 442−457. doi: 10.3969/j.issn.1001-7313.2001.04.007
    赵平, 陈隆勋. 2001. 35年来青藏高原大气热源气候特征及其与中国降水的关系 [J]. 中国科学(D辑), 31(4): 327–332.

    Zhao Ping, Chen Longxun. 2001. Climatic features of atmospheric heat source/sink over the Qinghai–Xizang Plateau in 35 years and its relation to rainfall in China [J]. Science in China Series D: Earth Sciences, 44(9): 858–864. doi:10.3969/j.issn.1674-7240.2001.04.009
    郑永骏, 吴国雄, 刘屹岷. 2013. 涡旋发展和移动的动力和热力问题. I: PV–Q观点 [J]. 气象学报, 71(2): 185−197. doi: 10.11676/qxxb2013.018

    Zheng Yongjun, Wu Guoxiong, Liu Yimin. 2013. Dynamical and thermal problems in vortex development and movement. Part I: A PV–Q view [J]. Acta Meteor. Sinica (in Chinese), 71(2): 185−197. doi: 10.11676/qxxb2013.018

Catalog

    Article views (400) PDF downloads (160) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return