Advanced Search
Article Contents

Introduction to an Invariant Quantity Method


doi: 10.1007/BF02657028

  • It is impossible, mathematically, to use a time series which is regarded as a set or observational facts of a dynamic system to reconstruct the particular system. Physically, however, with a few assumptions put, a dynamic system can be rebuilt approximately by means of observational facts. This is the goal of the so called invariant quantity method (IQM), whose research and experiment are of potential significance to atmospheric sciences
  • [1] WANG Jun, BAO Qing, Ning ZENG, LIU Yimin, WU Guoxiong, JI Duoying, 2013: Earth System Model FGOALS-s2: Coupling a Dynamic Global Vegetation and Terrestrial Carbon Model with the Physical Climate System Model, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 1549-1559.  doi: 10.1007/s00376-013-2169-1
    [2] LI Xiaohan, PENG Xindong, LI Xingliang, 2015: An Improved Dynamic Core for a Non-hydrostatic Model System on the Yin-Yang Grid, ADVANCES IN ATMOSPHERIC SCIENCES, 32, 648-658.  doi: 10.1007/s00376-014-4120-5
    [3] Peng Yongqing, Zhu Yufeng, Yan Shaojin, 1994: Preliminary Study of Reconstruction of a Dynamic System Using an One-Dimensional Time Series, ADVANCES IN ATMOSPHERIC SCIENCES, 11, 277-284.  doi: 10.1007/BF02658146
    [4] Peng Yongqing, Yan Shaojin, Wang Tongmei, 1995: A Nonlinear Time-lag Differential Equation Model for Predicting Monthly Precipitation, ADVANCES IN ATMOSPHERIC SCIENCES, 12, 319-324.  doi: 10.1007/BF02656980
    [5] Zhong Qing, Ji Liren, 1992: A Further Study on an Extended Nonlinear Ocean-Atmosphere Coupled Hydrodynamic Characteristic System and the Abrupt Feature of ENSO Events, ADVANCES IN ATMOSPHERIC SCIENCES, 9, 131-146.  doi: 10.1007/BF02657504
    [6] LIU Dongxia, QIE Xiushu, XIONG Yajun, FENG Guili, 2011: Evolution of the Total Lightning Activity in a Leading-Line and Trailing Stratiform Mesoscale Convective System over Beijing, ADVANCES IN ATMOSPHERIC SCIENCES, 28, 866-878.  doi: 10.1007/s00376-010-0001-8
    [7] Wu Guoxiong, Chen Biao, 1989: Non-Acceleration Theorem in a Primitive Equation System: I. Acceleration of Zonal Mean Flow, ADVANCES IN ATMOSPHERIC SCIENCES, 6, 1-20.  doi: 10.1007/BF02656914
    [8] GAO Shouting, XU Pengcheng, LI Na, 2012: On the Generalized Ertel--Rossby Invariant, ADVANCES IN ATMOSPHERIC SCIENCES, 29, 690-694.  doi: 10.1007/s00376-012-1145-5
    [9] Yujie PAN, Mingjun WANG, 2019: Impact of the Assimilation Frequency of Radar Data with the ARPS 3DVar and Cloud Analysis System on Forecasts of a Squall Line in Southern China, ADVANCES IN ATMOSPHERIC SCIENCES, 36, 160-172.  doi: 10.1007/s00376-018-8087-5
    [10] Xingchao CHEN, Kun ZHAO, Juanzhen SUN, Bowen ZHOU, Wen-Chau LEE, 2016: Assimilating Surface Observations in a Four-Dimensional Variational Doppler Radar Data Assimilation System to Improve the Analysis and Forecast of a Squall Line Case, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 1106-1119.  doi: 10.1007/s00376-016-5290-0
    [11] Zhu Zhengxin, Xiao Jie, 1986: NUMERICAL EXPERIMENTS ON DYNAMIC MECHANISM OF BLOCKING, ADVANCES IN ATMOSPHERIC SCIENCES, 3, 105-114.  doi: 10.1007/BF02680049
    [12] LI Shan, RONG Xingyao, LIU Yun, LIU Zhengyu, Klaus FRAEDRICH, 2013: Dynamic Analogue Initialization for Ensemble Forecasting, ADVANCES IN ATMOSPHERIC SCIENCES, 30, 1406-1420.  doi: 10.1007/s00376-012-2244-z
    [13] Luo Dehai, Li Jianping, 2001: Interaction between a Slowly Moving Planetary-Scale Dipole Envelope Rossby Soliton and a Wavenumber-Two Topography in a Forced Higher Order Nonlinear Schr dinger Equation, ADVANCES IN ATMOSPHERIC SCIENCES, 18, 239-256.  doi: 10.1007/s00376-001-0017-1
    [14] Wang Angsheng, N. Fukuta, 1985: A QUANTITATIVE STUDY ON THE GROWTH LAW OF ICE CRYSTALS, ADVANCES IN ATMOSPHERIC SCIENCES, 2, 45-53.  doi: 10.1007/BF03179736
    [15] Keon-Tae SOHN, H. Joe KWON, Ae-Sook SUH, 2003: Prediction of Typhoon Tracks Using Dynamic Linear Models, ADVANCES IN ATMOSPHERIC SCIENCES, 20, 379-384.  doi: 10.1007/BF02690796
    [16] ZENG Xiaodong, LI Fang, SONG Xiang, 2014: Development of the IAP Dynamic Global Vegetation Model, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 505-514.  doi: 10.1007/s00376-013-3155-3
    [17] CHEN Gong, and LI Guoping, 2014: Dynamic and Numerical Study of Waves in the Tibetan Plateau Vortex, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 131-138.  doi: 10.1007/s00376-013-1035-5
    [18] Zhang Pei, Ni Yunqi, 1991: Effect of Nonlinear Dynamic Process on Formation and Breakdown of Blocking, ADVANCES IN ATMOSPHERIC SCIENCES, 8, 41-50.  doi: 10.1007/BF02657363
    [19] Zeng Qingcun, Zeng Xiaodong, Lu Peisheng, 1994: Simplified Dynamic Models of Grass Field Ecosystem, ADVANCES IN ATMOSPHERIC SCIENCES, 11, 385-390.  doi: 10.1007/BF02658157
    [20] Yang Dasheng, Jian Maoqiu, 1990: The Dynamic Mechanism of the Formation of the Low Level Jet, ADVANCES IN ATMOSPHERIC SCIENCES, 7, 383-394.  doi: 10.1007/BF03008869

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 January 1996
Manuscript revised: 10 January 1996
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Introduction to an Invariant Quantity Method

  • 1. Nanjing Institute of Meteorology, Nanjing 210044

Abstract: It is impossible, mathematically, to use a time series which is regarded as a set or observational facts of a dynamic system to reconstruct the particular system. Physically, however, with a few assumptions put, a dynamic system can be rebuilt approximately by means of observational facts. This is the goal of the so called invariant quantity method (IQM), whose research and experiment are of potential significance to atmospheric sciences

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return