Advanced Search

Volume 9 Issue 2

Mar.  1992

Article Contents

Nonlinear Planetary Wave Instability and Blocking


doi: 10.1007/BF02657508

  • The instability of geostrophic wave circulations related to the nonlinear processes involved in the zonal mean heat balance equations is studied. It is found that the planetary waves may be destabilized by thermal forcing in spe-cific baroclinic layers, called the breaking layers. The critical conditions of the instability will be given. In the troposphere, these conditions may be provided in blocking regions and the development of planetary perturbations is characterized distinctly by the unset, maintenance and decay of observed blocks. The whole blocking episode cannot be described as either the barotropic or baroclinic process only. The limitations on the study of wave-wave interaction using spectral models or spectrum analyses will be discussed also.
  • [1] Luo Dehai, 1990: Topographically Forced Rossby Wave Instability and the Development of Blocking in the Atmosphere, ADVANCES IN ATMOSPHERIC SCIENCES, 7, 433-440.  doi: 10.1007/BF03008873
    [2] Debashis NATH, Wen CHEN, 2016: Impact of Planetary Wave Reflection on Tropospheric Blocking over the Urals-Siberia Region in January 2008, ADVANCES IN ATMOSPHERIC SCIENCES, 33, 309-318.  doi: 10.1007/s00376-015-5052-4
    [3] LU Weisong, SHAO Haiyan, 2003: Generalized Nonlinear Subcritical Symmetric Instability, ADVANCES IN ATMOSPHERIC SCIENCES, 20, 623-630.  doi: 10.1007/BF02915505
    [4] Luo Dehai, Ji Liren, 1988: ALGEBRAIC ROSSBY SOLITARY WAVE AND BLOCKING IN THE ATMOSPHERE, ADVANCES IN ATMOSPHERIC SCIENCES, 5, 445-454.  doi: 10.1007/BF02656790
    [5] Ji Zhongzhen, Lin Wantao, Yang Xiaozhong, 2001: Problems of Nonlinear Computational Instability in Evolution Equations, ADVANCES IN ATMOSPHERIC SCIENCES, 18, 397-403.  doi: 10.1007/BF02919318
    [6] Shen Xinyong, Ni Yunqi, Ding Yihui, 2002: On Problem of Nonlinear Symmetric Instability in Zonal Shear Flow, ADVANCES IN ATMOSPHERIC SCIENCES, 19, 350-364.  doi: 10.1007/s00376-002-0027-7
    [7] Zhu Zhengxin, 1985: EQUILIBRIUM STATES OF PLANETARY WAVES FORCED BY TOPOGRAPHY AND PERTURBATION HEATING AND BLOCKING SITUATION, ADVANCES IN ATMOSPHERIC SCIENCES, 2, 359-367.  doi: 10.1007/BF02677252
    [8] Zhang Pei, Ni Yunqi, 1991: Effect of Nonlinear Dynamic Process on Formation and Breakdown of Blocking, ADVANCES IN ATMOSPHERIC SCIENCES, 8, 41-50.  doi: 10.1007/BF02657363
    [9] Huang Ronghui, 1984: THE CHARACTERISTICS OF THE FORCED STATIONARY PLANETARY WAVE PROPAGATIONS IN SUMMER NORTHERN HEMISPHERE, ADVANCES IN ATMOSPHERIC SCIENCES, 1, 84-104.  doi: 10.1007/BF03187619
    [10] Lu Peisheng, 1992: The Structure and Propagation of Stationary Planetary Wave Packet in the Barotropic Atmosphere, ADVANCES IN ATMOSPHERIC SCIENCES, 9, 157-166.  doi: 10.1007/BF02657506
    [11] Li Guoqing, Robin Kung, Richard L. Pfeffer, 1993: Some Effects of Rotation Rate on Planetary-Scale Wave Flows, ADVANCES IN ATMOSPHERIC SCIENCES, 10, 296-306.  doi: 10.1007/BF02658135
    [12] R. Dhar, C. Guha-Roy, D. K. Sinha, 1991: On a Class of Solitary Wave Solutions of Atmospheric Nonlinear Equations, ADVANCES IN ATMOSPHERIC SCIENCES, 8, 357-362.  doi: 10.1007/BF02919618
    [13] Zhang Xuehong, 1985: THE SECOND ORDER APPROXIMATION TO THE NONLINEAR WAVE IN BAROTROPIC ATMOSPHERE, ADVANCES IN ATMOSPHERIC SCIENCES, 2, 167-177.  doi: 10.1007/BF03179749
    [14] He Jianzhong, 1994: Nonlinear Ultra-Long Wave and Its Stability, ADVANCES IN ATMOSPHERIC SCIENCES, 11, 91-100.  doi: 10.1007/BF02656998
    [15] Xiang Jie, Sun Litan, 2002: Nonlinear Saturation of Baroclinic Instability in the Phillips Model: The Case of Energy, ADVANCES IN ATMOSPHERIC SCIENCES, 19, 1079-1090.  doi: 10.1007/s00376-002-0066-0
    [16] Mu Mu, Guo Huan, Wang Jiafeng, LiYong, 2000: The Impact of Nonlinear Stability and Instability on the Validity of the Tangent Linear Model, ADVANCES IN ATMOSPHERIC SCIENCES, 17, 375-390.  doi: 10.1007/s00376-000-0030-9
    [17] LUO Dehai, LIU Jinting, LI Jianping, 2010: Interaction between Planetary-Scale Diffluent Flow and Synoptic-Scale Waves During the Life Cycle of Blocking, ADVANCES IN ATMOSPHERIC SCIENCES, 27, 807-831.  doi: 10.1007/s00376-009-9074-7
    [18] Gao Shouting, 1988: NONLINEAR ROSSBY WAVE INDUCED BY LARGE-SCALE TOPOGRAPHY, ADVANCES IN ATMOSPHERIC SCIENCES, 5, 301-310.  doi: 10.1007/BF02656754
    [19] Li Guoping, Lu Jinghua, 1996: Some Possible Solutions of Nonlinear Internal Inertial Gravity Wave Equations in the Atmosphere, ADVANCES IN ATMOSPHERIC SCIENCES, 13, 244-252.  doi: 10.1007/BF02656866
    [20] Debashis NATH, CHEN Wen, WANG Lin, and MA Yin, 2014: Planetary Wave Reflection and Its Impact on Tropospheric Cold Weather over Asia during January 2008, ADVANCES IN ATMOSPHERIC SCIENCES, 31, 851-862.  doi: 10.1007/s00376-013-3195-8

Get Citation+

Export:  

Share Article

Manuscript History

Manuscript received: 10 March 1992
Manuscript revised: 10 March 1992
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Nonlinear Planetary Wave Instability and Blocking

  • 1. Dept. of Meteorology, University of Edinburgh, EH9 3JZ, U.K.

Abstract: The instability of geostrophic wave circulations related to the nonlinear processes involved in the zonal mean heat balance equations is studied. It is found that the planetary waves may be destabilized by thermal forcing in spe-cific baroclinic layers, called the breaking layers. The critical conditions of the instability will be given. In the troposphere, these conditions may be provided in blocking regions and the development of planetary perturbations is characterized distinctly by the unset, maintenance and decay of observed blocks. The whole blocking episode cannot be described as either the barotropic or baroclinic process only. The limitations on the study of wave-wave interaction using spectral models or spectrum analyses will be discussed also.

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return